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The droplet behavior of welding is chaotic and fractal, and thus is significant for diagnosis of weld quality.
To study the long-range correlation of fractals, detrended fluctuation analysis (DFA) is introduced for
current and voltage signals. The DFA curve obviously has crossover and can be expressed by a two
exponent model, including a short-term exponent (a1) at small scale and a long-term exponent (a2) at large
scale. However, the relationship between the weld seam width and the two exponent model is not obviously
linear. A high-dimensional feature is generated on basis of all points of the DFA curve, t-distributed
stochastic neighbor embedding is used for dimension reduction. Then, a low-dimensional feature combined
with support vector machine is used to predict weld seam width, which achieves higher classification
accuracy than the two exponent model. This study provides a new attempt about the chaotic and fractal
characteristics in welding.
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embedding, welding

1. Introduction

Gas metal arc welding (GMAW) is an advanced manufac-
turing technology in which metals are joined by high-temper-
ature heating, and has many advantages, such as low cost, and
high deposition efficiency (Ref 1). However, when process
parameter mismatching or weld distortion occurs, the arc
stabilty and thereby weld seam width and depth will change
(Ref 2, 3). Unstable arc will result in defect of weld quality,
such as porosity, burn-through and undercut. Therefore, it is of
great significance to monitor the welding by the arc signal (Ref
4, 5). Adolfsson et al. extracted the repeated sequential
probability ratio of voltage signal to evaluate welding stability
(Ref 6). Wei et al. used the probability density distribution of
current signal combined with linear discriminant analysis to
classify porosity defects (Ref 7). Wang et al. extracted the low

frequency feature of voltage signal to predict the penetration of
weld seam (Ref 8). Pal et al. extracted the root mean square of
current signal combined with a radial basis function network to
predict weld distortion (Ref 9, 10). He et al. applied local mean
decomposition to extract the time-frequency features of current
signal, and combined with support vector machine to classify
weld defects (Ref 11). However, since statistical analysis and
time-frequency analysis cannot describe the inherent correlation
and complexity of signal, fully depicting the relationship
between electrical signal and welding is difficult.

Recently, the chaos and fractal have been applied to depict
the inherent correlation and complexity of signal. Lv et al.
systematically proved that the droplet behavior is chaotic and
fractal, and extracted the correlation dimension, Lyapunov
exponent and approximate entropy of current signal to classify
the weld quality (Ref 12). He et al. applied the largest
Lyapunov exponent of current signal to quantify welding
stability (Ref 13). Yao et al. extracted the sample entropy of
current signal for pulse GMAW to quantify welding stability
(Ref 14). Nevertheless, it is significant to further study the
chaotic and fractal characteristics for diagnosis of weld quality.

In terms of chaos and fractal, long-range correlation is
important for understanding the self-similarity of fractal. To
depict the long-range correlation of non-stationary time series,
Peng et al. proposed detrended fluctuation analysis (DFA) (Ref
15). DFA can effectively eliminate the false long-range
correlation caused by the non-stationary factor, so as to truly
reveal the long-range correlation of complex systems (Ref 16,
17). Generally, the long-range correlation of time series is
described by a single scale exponent a. The a of DFA is
estimated as the overall slope of a fluctuation function lgðF sð ÞÞ
and different scales lgðsÞ. However, a single scale exponent
cannot fully describe the characteristics of non-stationary time
series in many practical applications. A two-coefficient model
was proposed, which involves a short-term exponent a1 and a
long-term exponent a2 (Ref 18). Moura et al. carried out DFA
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of vibration signals to classify the imbalance level of wind
turbines (Ref 19). Lin et al. extracted the feature of the
crossover of DFA in rotary machinery, and identified fault
diagnosis (Ref 20).

In the welding, the weld seam width is important for
overlaying welding or additive manufacturing based on arc. In
this study, the scale exponent based on DFA is used to analyze
the inherent dynamic behavior of current and voltage signals of
welding. The relationship between the scale exponent and weld
seam width is studied, and t-distributed stochastic neighbor
embedding (t-SNE) and support vector machine (SVM) are
combined to classify weld seam width.

The paper is organized as follows: in section 2, the DFA is
introduced. In section 3, the current and voltage signals are
analyzed by DFA. In section 4, the t-SNE and SVM are applied
to classify the weld seam width. Finally, the conclusions are
drawn.

2. DFA

DFA can effectively eliminate irrelevant trends and reveal
the long-range correlation that reflects the dynamic behavior of
non-stationary time series. The DFA algorithm for time series
x ið Þ i ¼ 1; 2; . . . ;Nð Þ is conducted as follows:

(1) A summation sequence of de-mean values Y kð Þ is con-
structed:

Y kð Þ ¼
Xk

i¼1

x ið Þ � xh ið Þ ðEq 1Þ

xh i is taken over all points,

xh i ¼ 1

N

XN

i¼1

x ið Þ ðEq 2Þ

(2) Y kð Þ; k ¼ 1; 2; . . . ;N is divided into non-overlapping
data of Ns-segments by the size s, and Ns � int N=s½ �.
Because s is barely an aliquot part of the length N, a
small part of data at the end of x ið Þ will remain. To take
maximal advantage of the data, the same operation is
carried out again from the opposite end. Hence, 2Ns seg-
ments are obtained in all.

(3) In each segment, a least squares line is fitted to the data,
which is regarded as the local trend and denoted by
ym kð Þ (m is the current segment number). The degree of
polynomial can be varied to eliminate linear, quadratic
or higher order trends. Then, the local trend in each seg-
ment is subtracted to get Ys kð Þ:
Ys kð Þ ¼ Y kð Þ � ym kð Þ ðEq 3Þ

Then, the variance of the detrended time series Ys kð Þ is
calculated by averaging over all data points k in the mth
segment:

F2
s mð Þ ¼ Y 2

s kð Þ ¼ 1

s

Xs

k¼1

Y 2
s m� 1ð Þsþ k½ � m 2 1;Ns

ðEq 4Þ

F2
s mð Þ ¼ 1

s

Xs

k¼1

Y 2
s N � m� Nsð Þsþ k½ � m 2 Ns þ 1; 2Ns

ðEq 5Þ

(4) The fluctuation F2
s mð Þ is used to calculate the fluctuation

function F sð Þ:

F sð Þ ¼ 1

2Ns

X2Ns

m¼1

F2
s mð Þ

" #1=2

ðEq 6Þ

(5) For different segment size s (different scale), its fluctua-
tion function F sð Þ can be obtained. In general, F sð Þ
obeys a power-law behavior with respect to s:

F sð Þ � sa ðEq 7Þ

where a is the scale exponent of x ið Þ.

The a is applied to depict the long-range correlation and
self-similarity of the time series. At a ¼ 0:5, the time series
shows short-range correlation, such as constitutes white noise.
At a< 0:5, the time series displays anti-persistence long-range
correlation, and smaller a indicates stronger anti-persistence. At
a> 0:5, the time series shows persistent long-range correlation,
and larger a implies stronger persistence. Especially, when at
a ¼ 1, the time series is a 1=f processes, and at a ¼ 1:5, the
time series represents a Brownian motion. To verify the
algorithm, the time series of white noise (Fig. 1a) and 1=f
processes (Fig. 1b) are obtained. The a of white noise is 0.5119
(Fig. 1c), and the a of 1=f processes is 1.002 (Fig. 1d).

3. Experiment and Analysis

The 316L stainless steel (00Cr17Ni14Mo2) plates are
experimentally welded with different process parameters, and
the equipment consists of two parts, which are an ABB robot
and a Fronius CMTwelding machine (Fig. 2). Other conditions
include the plate size of 20 * 600 * 300 mm3, the contact tip-
to-work distance of 15 mm, the shielding gas of 1.5% O2 + 5%
N2 + 93.5% Ar, and the weld wire of high nitrogen stainless
steel (HNS0.99) in diameter of 1.2 mm.

To obtain varying weld quality, the process parameters are
changed, and the droplet transition is cold metal arc transfer
mode which is developed on the basis of short-circuiting
transition. With the increase of wire feed speed, the wire
melting also increases in unit time, and it causes the weld seam
width increases gradually (Table 1 and Fig. 3). In the welding,
the current and voltage signals are sampled at a rate of 1 kHz.

3.1 DFA of Current and Voltage Signals

The current and voltage signals of welding in the data length
of 1000, are characteristic of obvious quasi-periodic fluctuation
(Fig. 4). Generally, the quasi- periodicity of signal is directly
related to the periodicity of droplet transfer of welding. The
maximum peak frequency of power spectrum of signal is
mainly about 54.7 Hz (Fig. 5), meaning that the number of
points of each period is about 18, which is basically consistent
with the number of droplet transfer per second. Other peaks
appear at frequency of 48.8, 103.5 and 158.2 Hz, indicating the
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Fig. 1 The a of white noise and 1=f processes signals

Fig. 2 Robot and CMT welding equipment

Table 1 The process parameters and seam width of tests 1-6

Test Wire speed, mm/s Current, A Voltage, V Welding speed, cm/min Gas flow rate, L/min Seam width, mm

1 1.0 40 9.8 30 15 1.0
2 2.0 67 10.4 30 15 1.8
3 3.0 85 10.9 30 15 2.5
4 4.0 105 12.5 30 15 4.8
5 5.0 132 14.6 30 15 6.5
6 6.0 149 16.6 30 15 8.8

Journal of Materials Engineering and Performance Volume 31(5) May 2022—3977



Fig. 3 Weld seam at different wire feed speeds

Fig. 4 The current and voltage signals of welding

Fig. 5 The power spectrum of current and voltage signals
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current and voltage signals are complex with multiple frequen-
cies.

To depict the long-range correlation of time series of
welding, the current voltage signals are calculated by DFA,
with the segment size s set as s 2 10;N=4½ � and the total data
length N = 1000. In the actual calculation, s is equal to [10, 12,
15, 17, 20, 22, 25, 27, 29, 32, 34, 37, 39, 42, 44, 46, 49, 51, 54,
56, 58, 61, 63, 66, 68, 71, 73, 75, 78, 80, 83, 85, 88, 90, 92, 95,
97, 100, 102, 105, 107, 109, 112, 114, 117, 119, 122, 124, 126,
129, 131, 134, 136, 138, 141, 143, 146, 148, 151, 153, 155,
158, 160, 163, 165, 168, 170, 172, 175, 177, 180, 182, 185,
187, 189, 192, 194, 197, 199, 202, 204, 206, 209, 211, 214,
216, 218, 221, 223, 226, 228, 231, 233, 235, 238, 240, 243,
245, 248, 250] and its length is 100. The relationship between
fluctuation function lg F sð Þð Þ and segment size lg sð Þ is nonlin-
ear (Fig. 6) and cannot be fully expressed by a single exponent.
Due to the existence of obvious crossover, it is a typical two
exponent model. The crossover point is at about 22, which is
almost equal to the number of droplet transfer per second. That
is to say, different correlations are observed at small scale and
large scale. For the current signal, the scale exponent a1 at
small scale is greater than 0.5, indicating the current signal is
not independent and has continuous long-range correlation at
small scale. The scale exponent a2 at large scale is smaller than
0.5, indicating the current signal shows anti-persistence corre-
lation.

3.2 The Reason of Crossover Phenomenon of Welding
Signal

The crossover of DFA is closely related to the component of
signal, and the current signal has some peaks at frequency 48.8,
54.7, 103.5 and 158.2 Hz. This means the signal contains some
periodic components, so the effect of peak frequency on the
scale exponent should be discussed. A low-pass filter is used to
filter out the corresponding high-frequency components and the
filter frequencies are set as 30, 70, 110 and 170 Hz. The current
signal is filtered by a low-pass filter, and then the DFA is
conducted (Fig. 7). At the filter frequencies of 70, 110 and 170
Hz, the DFA of the filtered signal also exits obvious crossover
(Fig. 8). However, at the filter frequency of 30 Hz, the
relationship between fluctuation function lg F sð Þð Þ and segment
size lg sð Þ is almost linear, and the crossover phenomenon is not

obvious. Hence, the frequency components of 48.8 and 54.7 Hz
are important factors affecting the occurrence of crossover,
which also means the crossover is affected by the droplet
transfer of welding.

3.3 The Scale Exponent of Welding Signal at Different Wire
Feeding Speeds

In the welding, the wire feed speed parameters are close to
the weld seam width. With the increase of wire feed speed, it
means that the wire melting also increases in unit time, it will
cause the weld seam width increases gradually. Figure 9, 10 and
11 show the original current signals at different wire feeding
speeds (1.0-6.0 m/min in Table 1 and Fig. 3), while other
parameters are kept constant. With the rise of wire feed speed,
the amplitude of current signal increases, and its frequency
distribution changes. The current signals of different wire
feeding speeds are analyzed by DFA (Fig. 12). The value of
fluctuation function lg F sð Þð Þ increases with the acceleration of
wire feeding speed, and the scale exponents obey a two
exponent model (a1 and a2).

To depict the relationship of two scale exponents (a1 and
a2) with wire feed speed, 10 sets of data sample of current
signal are calculated. The mean and variance values of a1 and
a2 are also computed (Table 2). The mean value of scale
exponent at small scale E a1ð Þð Þ is larger than 0.5, and increases
with the increase of wire feeding speed. This result indicates the
current signal is not independent and has continuous long-range
correlation at small scale. The mean value of exponent at large
scale E a2ð Þð Þ is small than 0.5, indicating the current signal is
close to anti-persistence correlation.

Furthermore, the voltage signals of different wire feeding
speeds are analyzed by DFA (Fig. 13). About 10 sets of data
samples of voltage signals are calculated, and the mean and
variance values of two scale exponents (a1 and a2) are obtained
(Table 3). The mean value of exponent at small scale E a1ð Þð Þ is
larger than 0.5, and increases with the increase of wire feeding
speed. This result indicates the voltage signal is not indepen-
dent and has continuous long-range correlation at small scale.
The mean value of exponent at large scale E a2ð Þð Þ is smaller
than 0.5 and rises with the increase of wire feeding speed,
indicating the voltage signal is close to anti-persistence
correlation.

Fig. 6 The two scale exponents of DFA
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4. Classification of Weld Seam Width Based
on t-SNE and SVM

The weld seam width will increase gradually with the
acceleration of wire feed speed, so it may be classified by using
the current and voltage signals. Based on the two exponent
model (a1 and a2) of DFA of current and voltage signals, a 4-
dimensional feature vector can be obtained to depict the
changes of weld seam width. However, the linear relationship
of a1 or a2 with weld seam width is unclear (Tables 2 and 3).

Since the scale exponent is estimated as the overall slope of
fluctuation function lg F sð Þð Þ and different scales lg sð Þ of the
DFA curve, all the points of the DFA curve are used as the
feature vector. A 200-dimensional feature vector will be
determined to depict the change of weld seam width, and a
feature reduction method is needed to improve the generalizing
performance of penetration status classification.

Recently, a manifold learning called t-distributed stochastic
neighbor embedding (t-SNE) is proposed to reduce feature
dimensions and its mainly steps can be described as follows
(Ref 21, 22):

(1) For the original data X ¼ x1; x2; . . . ; xnf g, the condi-
tional probability pjji with perplexity (Perp, a cost func-
tion parameter) of xj to xi can be calculated by Eq 8:

pjji ¼
exp � xi � xj

�� ��2=2d2i
� �

P
k 6¼i exp � xi � xkk k2=2d2i

� � ðEq 8Þ

where di is the variance of the Gaussian that is centered on
data point xi:

(2) The joint probability pij is the symmetrical conditional
probability in the high-dimensional space, so it is de-
fined as pij ¼ pjjiþpijj

2n , where n is the total number of data
points.

(3) Then, the initial low-dimensional data is set as y 0ð Þ ¼
y1; y2; . . . ; ynf g from N 0; 10�4ð Þ.

(4) In the low-dimensional space, the joint probability qij is
defined using a Student t-distribution with one degree of
freedom:

Fig. 7 Current signals of different filtering frequency

Fig. 8 The scale exponent of different filtering frequencies
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qij ¼
1þ yi � yj

�� ��2
� ��1

P
k 6¼l 1þ yk � ylk k2

� ��1 ðEq 9Þ

(5) To measure the similarity between the joint probability
distributions P of high-dimensional space and joint
probability distribution Q of low-dimensional space, and
using a gradient descent algorithm to minimize cost
function C ¼

P
i
KLðPijjQiÞ ¼

P
i

P
j
pjji log

pjji
qjji

that Kull-
back-Leiblerhe divergence between P and Q, the gradi-
ent dC=dyi is calculated by:

dC
dyi

¼ 4
X

j

pij � qij
� �

yi � yj
� �

1þ yi � yj
�� ��2

� ��1

ðEq 10Þ

(6) The low-dimensional space data can be obtained by Eq
11

y tð Þ ¼ y t�1ð Þ þ g
dC
dy

þ a tð Þ y t�1ð Þ � y t�2ð Þ
� �

ðEq 11Þ

where learning rate g and momentum a tð Þ are optimization
parameters.

(7) Steps (4) to (6) are repeated from t = 1 to T, where T is
maximum number of iterations that should be pre-set.

Fig. 9 Current signals at wire speed of 1.0 and 2.0 m/min

Fig. 10 Current signals at wire speed of 3.0 and 4.0 m/min

Fig. 11 Current signals at wire speed of 5.0 and 6.0 m/min
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At last, the low-dimensional data y Tð Þ ¼ y1; y2; . . . ; ynf g
are obtained.

Thus, t-SNE is used to decrease the 200-dimensional feature
of the DFA curve of current and voltage signals to a 3-
dimensional feature, and then a three-dimensional histogram is
adopted to visualize data (Fig. 14b). At the same time, the 4-
dimensional feature vector of double scale exponents is
processed by t-SNE (Fig. 14a). The six kinds of weld seam
width are almost completely separated, which showed that the
200-dimensional feature vector of the DFA curve is more
effective than the double-exponent model for classification of
weld seam width.

The SVM classification model is selected to characterize the
effect of t-SNE data quantitatively (Ref 23, 24). From totally
480 samples, 240 samples are selected into the SVM model for
training, and the other 240 samples for testing (Fig. 15). At last,
the recognition accuracy is 100% from the all points of DFA
curve, and is about 86.25% from the double-exponent model.
This result indicates the all points of DFA curve is more
accurate than the double-exponent model in classification of
weld seam width.

5. Conclusions

The DFA of current and voltage signals in welding is
analyzed. When the feature of DFA is used to classify weld
width, the all points of DFA curve can obtain higher accuracy
compared to the double-exponent model.

(1) The DFA of current and voltage signals is characteristic
of multi-scale exponents and shows crossover. The
crossover point is about equal to the count of droplet
transition per second.

(2) The scale exponent of current and voltage signals is
greater than 0.5 at small scale, which indicates the sig-
nal is not independent and has continuous long-range
correlation. At large scale, the scale exponent is smaller
than 0.5 and tends to be relatively stable, indicating the
signal is close to anti-persistence long-range correlation.

(3) Compared to the double-exponent model, the all points
of DFA curve can obtain higher accuracy rate up to
100% in classifying the weld width combined with t-
SNE.

Fig. 12 DFA of current signals

Table 2 The two scale exponents of current signal at different wire speeds

Exponent

Wire speed

1 m/min 2 m/min 3 m/min 4 m/min 5 m/min 6 m/min

E(a1) 0.870 0.875 0.977 1.163 1.329 1.340
r(a1) 0.016 0.037 0.329 0.036 0.034 0.124
E(a2) 0.088 0.078 0.081 0.134 0.040 0.249
r(a2) 0.006 0.008 0.012 0.006 0.009 0.100
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Fig. 13 DFA of voltage signals

Table 3 The two scale exponents of voltage signal at different wire speeds

Exponent

Wire speed

1 m/min 2 m/min 3 m/min 4 m/min 5 m/min 6 m/min

E(a1) 1.127 1.104 1.216 1.335 1.332 1.283
r(a1) 0.034 0.042 0.028 0.063 0.048 0.116
E(a2) 0.080 0.092 0.100 0.131 0.167 0.246
r(a2) 0.007 0.011 0.021 0.014 0.027 0.065

Fig. 14 Three-dimensional visualization of the results of t-SNE
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Fig. 15 The SVM classification model
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