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In this paper, the limitations of the Hill48 yield model in predicting directional yield stresses and plastic
strain ratios (r-values) were investigated. According to a theoretical derivation, there are several inherent
forms of the variation law of uniaxial tensile yield stress and r-value with angles calculated by Hill48. Three
types of materials, DC04, DP600 and AA3104, were taken as research objects, and the anisotropic
parameters and prediction errors were obtained by direct solution methods and the non-associated flow
rule (non-AFR) methods based on different numbers of experimental data were analyzed. The results show
that the prediction accuracy of the Hill48 yield model mainly depends on whether the anisotropic behavior
of the material satisfies the above change law and is not directly related to the value of r. On this basis,
under the associated flow rule, an anisotropic parameter identification method based on the conditional
extremum of the cost function was proposed. It can significantly improve the prediction accuracy of low-
carbon steel materials compared with the direct solution method. The research results provide detailed
insight into the reasonable application of the Hill48 model in sheet metal forming and a reference for
investigating the limitations of other advanced yield models.
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1. Introduction

Due to the influence of the rolling process, sheet metals
usually exhibit anisotropic properties, which seriously affect the
product formability and performance. Efforts have been made
by researchers to develop constitutive models to predict the
plastic anisotropy of sheet metals under various loading
conditions. Hill (Ref 1) proposed the first yield model
describing the anisotropy of orthotropic metal plates. However,
this quadratic yield function has limited prediction accuracy for
aluminum alloys. Barlat and Lian (Ref 2) extended the Hosford
(Ref 3) model and proposed a non-quadratic yield criterion
(Yld89) for materials with high planar anisotropy. Barlat et al.
(Ref 4) extended the Yld89 yield criterion to a full stress state
by introducing a linear transformation and proposed the Yld91
yield criterion. Later, a plane stress yield criterion using two
linear transformations of the deviatoric stress tensor, referred to
as Yld2000-2d, was proposed (Ref 5). Thereafter, Barlat et al.
(Ref 6) developed the Yld2004-18p yield criterion, which was
established for a pressure-independent material under general

stress conditions. Cazacu et al. (Ref 7) extended the work of
Barlat et al. to hexagonal close-packed metals. Hu (Ref 8)
proposed an anisotropic model that takes distortional aniso-
tropy into account.

As the basis of an FE model, accurate constitutive relations
and corresponding constitutive parameters are prerequisites for
a successful simulation (Ref 9,10). When conventional analyt-
ical methods are used to determine the anisotropic parameters,
many homogeneous tests with different loading paths are
required to meet the basic condition: the number of tests is
larger than the number of anisotropic parameters. Uniaxial
tensile tests along different orientation angles from the rolling
direction are typically used. For simple yield equations such as
Hill48 and Yld91, the three uniaxial yield stresses and three r-
values are sufficient. However, six experimental datasets are
insufficient to calibrate the advanced yield criteria, which
include at least seven anisotropic parameters (Ref 5). Thus,
additional experimental data are needed, such as balanced
biaxial stress by hydraulic bulging (Ref 11), balanced biaxial
strain ratio (Ref 12), and plane strain (Ref 13). By combining
the standard uniaxial tensile specimen and notched specimen,
Bron and Besson (Ref 14) completed the parameter identifica-
tion of the Bron-Besson yield criterion by changing the notch
size to obtain different deformation paths. Due to the com-
plexity of the high-order yield equation, with the increase in
experimental data, the anisotropic parameters cannot be solved
by analytical methods. Therefore, it is usually translated into a
solution of minimizing the cost function, which determines the
difference between the experimental results and the values
calculated by the model (Ref 15).

In the conventional analytical approaches to anisotropic
parameters, as explained earlier, a large number of homoge-
neous tests are time-consuming. In addition, the hydraulic
bulge, biaxial tension, and shear tests require professional
equipment, which is inconvenient. Therefore, Grytten et al.
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(Ref 16) completed the parameter calibration of Yld2004-18p
by replacing the experimental balanced biaxial stress and r-
value with the calculated value using the Taylor model. Zhu
et al. (Ref 17) determined the anisotropic parameters of
Yld2000-2d by introducing a plane strain test instead of an
equi-biaxial tensile test. The influence of different numbers and
types of experimental results on the anisotropic parameters of
different anisotropic yield models were analyzed by Khalfallah
et al. (Ref 18) and Tang et al. (Ref 19). On this basis, the
artificial data obtained from Yld91 were used to substitute the
missing experimental data to identify the anisotropic parame-
ters of CB2001, and the robustness of this method was also
assessed (Ref 20). Hariharan et al. (Ref 21) proposed robust
multi-objective optimization based on an evolutionary algo-
rithm. This method can overcome the limitations in the
approaches used before by minimizing the error in yield stress
and plastic strain ratio simultaneously. Based on this method,
the effects of experimental data on determining the coefficients
of Hill48, Barlat 89 and Yld2000-2d were analyzed by
Bandyopadhyay et al. (Ref 22), and the results indicated that
there is a limit to the improvement of accuracy with the increase
of the input experimental data.

With the development of computational methods and full-
field deformation measurement technology, the identification of
anisotropic parameters is no longer dependent on conventional
experiments with homogeneous stress states (Ref 23). One of
the widely applied inverse identification strategies is finite
element model updating (FEMU). Based on this methodology,
researchers have identified the anisotropic parameters of
various yield criteria from notched specimen tensile tests (Ref
24) and heterogeneous biaxial tensile tests (Ref 25). Souto et al.
(Ref 26) provided an optimization framework for designing
heterogeneous specimens and determined the anisotropic
parameters of the Yld2004-18p yield criterion with the
designed heterogeneous test and the FEMU method. The other
commonly used inverse method is the virtual fields� method
(VFM). In this methodology, the full-field strain data are used
to minimize the gap between the internal virtual work (IVW)
and external virtual work (EVW) of the whole deformation
process. The computational efficiency of this method is greatly
improved as the iteration of FE model updating is skipped,
particularly for advanced nonlinear anisotropic models. The
application of the VFM to plasticity was first proposed by
Grédiac and Pierron (Ref 27), and then Pierron et al. (Ref 28)
extended it to cyclic loads and kinematic hardening. Later,
Rossi and Pierron (Ref 29) first investigated the anisotropic
plasticity based on the VFM, in which a complete three-
dimensional framework for large-strain plasticity was pre-
sented. In addition, different heterogeneous stress states can be
obtained by changing the structure and loading conditions of
the specimens, such as tensile notched tests (Ref 30), unnotched
Iosipescu tests (Ref 31), R-shaped specimens (Ref 32), and
biaxially stretched cross-shaped specimens (Ref 33). Zhang
et al. (Ref 34) compared the identification methods of the
parameters of the Bron and Besson yield models based on
conventional homogeneous tests and heterogeneous biaxial
tensile tests. Fu et al. (Ref 35) proposed a novel method that
enables the simultaneous identification of the multiple aniso-
tropic yields and hardening constitutive parameters from a
single test using the simplest uniaxial testing machine.

For both the traditional methods and the inverse methods,
the basic strategy for improving the prediction accuracy of the

yield model is to increase the different types of experimental
data so that the anisotropic parameters can contain more
anisotropic properties. However, there are few investigations
on the prediction limitations of the yield model itself. That
is, the distribution of directional yield stress and r-values
with respect to angle is the fundamental factor that
determines whether the anisotropic yield model can achieve
accurate prediction. Therefore, the limitations of the Hill48
yield model on the prediction of directional yield stress and
r-values are analyzed in detail, and the comparison with the
non-quadratic yield model Yld89 containing four anisotropic
parameters is performed. Moreover, considering the applica-
tion convenience and limitations of the Hill48 yield model,
the conditional extremum method for identifying the
anisotropic parameters is proposed. Then, a detailed imple-
mentation of each strategy, focusing on the input experi-
mental data aspect, is presented, and their advantages and
disadvantages are also discussed.

2. Yield Models

2.1 Hill48 Yield Model

The Hill48 yield model is an extension of the von Mises
isotropic yield criterion to orthotropy and is defined as

2f rij
� �

¼ F ry � rz
� �2þG rz � rxð Þ2þH rx � ry

� �2þ2Ls2yz
þ 2Ms2zx þ 2Ns2xy

¼ 1

ðEq 1Þ

where F, G, H , L, M , and N are the anisotropic parameters.
Under plane stress state, there is

2f rij
� �

¼ Gþ Hð Þr2x � 2Hrxry þ F þ Hð Þr2y þ 2Ns2xy ¼ 1

ðEq 2Þ

2.1.1 Uniaxial Tensile Yield Stress. The following rela-
tionship can be obtained based on the stress transformation of
the uniaxial loading to the anisotropic axes.

rx ¼ ra cos
2 a

ry ¼ ra sin
2 a

sxy ¼ ra sin a cos a

8
><

>:
ðEq 3Þ

where ra is the uniaxial tensile yield stress in direction a with
respect to the rolling direction. Substituting Eqs 3 into 2, the
uniaxial tensile yield stress can be written as

ra ¼
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F sin2 aþ G cos2 aþ H þ 2N � F � G� 4Hð Þ sin2 a cos2 a

q

ðEq 4Þ

Let dra=da ¼ 0; thus,

2 sin a cos a ðF � GÞ þ ð2N � F � G� 4HÞð1� 2 sin2 aÞ
� �

¼ 0

ðEq 5Þ

It is obvious that the solutions of Eq 5 exist in sin a ¼ 0,
cos a ¼ 0, and ðF � GÞ þ ð2N � F � G� 4HÞ 1�tan2 a

1þtan2 a ¼ 0.
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Therefore, the distribution curve of the directional yield
stress from 0� to 90� has at most three extreme points: a¼0,

a¼p=2, and a¼a¼ tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N�G�2H
N�F�2H

q
. Furthermore, by analyzing

the second derivative of ra, the following cases can be
obtained. A schematic diagram of the various laws for
directional yield stresses is given in Fig. 1(a).

(1) When N is between F þ 2H and Gþ 2H , there is no
real value of a. If F <G, the uniaxial tensile yield stress
exhibits a local minimum in the 0� direction and a local
maximum in the 90� direction. The yield stress increases
monotonically from 0� to 90� (S-Case 1); in contrast, if
F >G, the yield stress decreases monotonically from 0�
to 90� (S-Case 2).

(2) When N >F þ 2H and N >Gþ 2H , the uniaxial tensile
yield stress exhibits local maximum values in the 0� and
90� directions, and there is a local minimum value in
the a direction. Under this condition, the curve of direc-
tional stress versus angle is a unimodal function (S-Case
3).

(3) When N <F þ 2H and N <Gþ 2H , the uniaxial tensile
yield stress exhibits local minimum values in the 0� and
90� directions, and there is a local maximum in the a
direction. Under this condition, the curve of directional
stress versus angle is a single valley function (S-Case
4).

2.1.2 r-values. According to the Drucker flow rule, each
component of the strain increment satisfies

dex ¼ ½ðGþ HÞ cos2 a� H sin2 a�rdc
dey ¼ ½ðF þ HÞ sin2 a� H cos2 a�rdc
dez ¼ �ðF sin2 aþ G cos2 aÞrdc
dcxy ¼ ðN sin a cos aÞrdc

8
>>>><

>>>>:

ðEq 6Þ

The uniaxial tensile transverse strain increment in the
direction a with respect to the rolling direction can be written as

deaþp=2 ¼ dex sin
2 aþ dey cos

2 a� 2dcxy sin a cos a ðEq 7Þ

Substituting Eq 6 into Eq 7, the ratio of the transverse strain
increment to the thickness strain increment can be obtained as

ra ¼
deaþp=2

dez
¼ H þ ð2N � F � G� 4HÞ sin2 a cos2 a

F sin2 aþ G cos2 a
ðEq 8Þ

Let dra
da ¼ dra

d sin2 a
d sin2 a
da ¼ 0; thus,

2 sin a cos a ð2N � F � G� 4HÞðF sin2 aþ G cos2 aÞð
�

cos2 a� sin2 aÞ
� ½H þ ð2N � F � G� 4HÞsin2 a cos2 a�ðF � GÞ

�
¼ 0

ðEq 9Þ

It is obvious that a¼0 and a¼p=2 are the two solutions of
Eq 9. Other solutions a¼a exist in the following equation.

ð2N � F � G� 4HÞðF sin2 aþ G cos2 aÞðcos2 a� sin2 aÞ � ½Hþ
ð2N � F � G� 4HÞ sin2 a cos2 a�ðF � GÞ ¼ 0

ðEq 10Þ

According to Eq 10, there is

sin2 a ¼ G

	
ðG� FÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GF=ðG� FÞ2 � H=ð2N � F � G� 4HÞ

q

ðEq 11Þ

Let

K1 ¼ G

	
ðG� FÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GF=ðG� FÞ2 � H=ð2N � F � G� 4HÞ

q

K2 ¼ G

	
ðG� FÞ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GF=ðG� FÞ2 � H=ð2N � F � G� 4HÞ

q

8
>>><

>>>:

ðEq 12Þ

A schematic diagram of the various laws for the r-value is
given in Fig. 1(b).

(1) When 0<K1 < 1; K2j j> 1 or 0<K2 < 1; K1j j> 1, there is
one real value of a. The r-values are extremum in the
0�, a, and 90� directions. Under this condition, the curve
of r-values versus angle is a single valley function (r-
Case 1) or unimodal function (r-Case 2).

(2) When K1j j> 1 and K2j j> 1, there is no real value of a.
The r-values are extremum in the 0� and 90� directions.

Fig. 1 Schematic of the distribution law for (a) uniaxial tensile yield stress and (b) r-value
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Under this condition, the r-values increase or decrease
monotonically with the change in a (r-Case 3 and
r-Case 4).

(3) When 0<K1 < 1 and 0<K2 < 1, there are two real val-
ues of a. The r-values are extremum in the 0�, a1, a2
and 90� directions. Under this condition, the curve of
r-values versus angle coexists as a peak and a valley
(r-Case 5). If there is a local maximum in the 0� direc-
tion, there is a local minimum in the 90� direction; in
contrast, if there is a local minimum in the 0� direction,
there is a local maximum in the 90� direction.

According to the above analysis, the Hill48 yield model has
several inherent forms for predicting the uniaxial tensile yield
stress and r-value. In other words, when the anisotropic
behavior of the material approximately satisfies the above
situations, it is possible to obtain relatively accurate prediction
results according to the Hill48 yield model. Otherwise, it can be
expected that the predicted results will deviate from the
experimental results to a great extent.

2.2 Yld89 Yield Model

The Hill48 yield model is considered to be satisfactory for
steel but cannot accurately describe the anisotropy of aluminum
alloy materials. For this, Barlat and Lian (Ref 2) extended the
Hosford isotropic yield criterion based on crystallography to in-
plane anisotropy and proposed the Yld89 yield model.

U ¼ a K1 þ K2j jmþa K1 � K2j jmþc 2K2j jm¼2rm ðEq 13Þ

K1¼
rxx þ hryy

2
;K2¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rxx � hryy

2


 �2

þ prxy
� �2

s

ðEq 14Þ

where m is the exponent of the yield function and is
recommended as 6 for BCC and 8 for FCC polycrystals. The
coefficients a, c, h and p are the anisotropic parameters, which
can be calculated based on either r-values or yield stresses.

The uniaxial yield stress and r-value along an arbitrary
orientation can be given as

ra ¼ r
2

aSm1 þ aSm2 þ cðS1 � S2Þm
� 
1=m

ðEq 15Þ

ra ¼
2mrm

@U
@rxx

þ @U
@ryy

� �
ra

� 1 ðEq 16Þ

where

S1; S2 ¼
cos2 aþ h sin2 a

2

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos2 a� h sin2 a

2


 �2

þp2 cos2 a sin2 a

s

ðEq 17Þ

The equi-biaxial yield stress and r-value can be expressed as

rb ¼ r
2

aþ ahm þ cð1� hÞm
� 
1=m

ðEq 18Þ

rb ¼
@U
@ryy

	
@U
@rxx

ðEq 19Þ

3. Effect of Parameter Identification Methods
and Experimental Data on Anisotropic Predic-
tion

3.1 Material Properties

To further provide detailed insight into the limitations of the
Hill48 yield model in predicting uniaxial tensile yield stress, r-
values and yield loci, low-carbon steel, aluminum alloy and
high-strength steel with obvious differences in the distribution
of uniaxial tensile yield stress and r-values are selected as the
research objects, and the experimental data for uniaxial tension
are shown in Table 1.

3.2 Prediction Based on Direct Solution Methods (DS
Methods)

Uniaxial tensile tests in orientations of 0�, 45�, and 90� are
commonly carried out. Therefore, the experimental uniaxial
tensile yield stresses and r-values along these three orientations
are commonly used to calculate the anisotropic parameters of
the yield model. According to the Hill48 yield model, the
following system of equations can be obtained:

r20 ¼
1

Gþ H
r0 ¼

H

G

r245 ¼
4

F þ Gþ 2N
r45 ¼

1

2

2N

F þ G
� 1


 �

r290 ¼
1

F þ H
r90 ¼

H

F

8
>>>>>><

>>>>>>:

ðEq 20Þ

For Yld89 yield model, when r ¼ r0, there is

r0 ¼ r0
2

aþ c


 �1=m

r0 ¼
2

aþ cð1� hÞ � 1

r45 ¼ r0
2

aSm1 þ aSm2 þ cðS1 � S2Þm
� 
1=m

r45 ¼
2mrm0

ð@U=@rxx þ @U
�
@ryyÞr45

� 1

r90 ¼
r0
h

2

aþ c


 �1=m

r90 ¼
2 r0=r90ð Þm

�cþ ðaþ cÞh½ �hm�1
� 1

8
>>>>>>>>>><

>>>>>>>>>>:

ðEq 21Þ

The above system of equations is overdetermined equations.
Different solutions can be obtained by different sets of
experimental data. Parameter N of Hill48 and p of Yld89 are
only related to r45 and r45. Therefore, at least one of r45 and r45
should be included. Eight typical sets of experimental data are
shown in Table 2. The anisotropic parameters of these materials
calculated based on different sets of experimental data are
shown in Appendix Table 3. The predicted uniaxial tensile
yield stresses and r-values based on the different DS methods
are shown in Fig. 2.

To more clearly show the prediction error distribution
in different directions obtained by different methods, the
relative errors of the directional yield stresses fra and r-values f

r
a

in different directions are calculated by Eq 22, as shown in
Fig. 3.

fra¼
rprea � rexpa

�� ��

rexpa
; fra¼

rprea � rexpa

�� ��

rexpa
ðEq 22Þ

where rexpa and rexpa are the experimental directional yield
stresses and r-values at a particular orientation a with respect to
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RD, respectively. rprea and rprea are the corresponding predic-
tions based on the yield model.

For the DC04 material, the change law of the uniaxial tensile
yield stresses and r-values approximately satisfy the form
predicted by the Hill48 yield model. Therefore, the DS methods
based on different experimental data can capture their change laws
of yield stresses and r-values. The differences between these DS
methods are mainly caused by r45 and r45, while other experi-
mental data have little effect on the results, as shown in Fig. 2. For
theDP600andAA3104materials, it is obvious that the distribution
forms of the uniaxial tensile yield stresses and r-values do notmeet
the change lawspredictedby theHill48yieldmodel. Therefore, the
prediction errors of DS methods are relatively large, and there are

Table 3 Anisotropic parameters obtained by different DS methods

Materials DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

DC04 H 3.54E-05 3.55E-05 3.54E-05 3.55E-05 3.54E-05 3.55E-05 3.54E-05 3.55E-05
F 1.52E-05 1.51E-05 1.5E-05 1.51E-05 1.52E-05 1.51E-05 1.5E-05 1.51E-05
G 1.9E-05 1.89E-05 1.9E-05 1.91E-05 1.9E-05 1.89E-05 1.9E-05 1.91E-05
N 8.12E-05 8.13E-05 8.13E-05 8.13E-05 7.66E-05 7.62E-05 7.63E-05 7.65E-05
a 0.650 0.647 0.649 0.654 0.650 0.647 0.649 0.654
c 1.350 1.353 1.351 1.363 1.350 1.353 1.351 1.363
h 0.964 0.964 0.963 0.963 0.964 0.964 0.963 0.963
p 0.944 0.944 0.944 0.943 0.938 0.936 0.937 0.937
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

DP600 H 2.75E-06 2.16E-06 2.75E-06 2.16E-06 2.75E-06 2.16E-06 2.75E-06 2.16E-06
F 1.82E-06 2.41E-06 3.06E-06 2.41E-06 1.82E-06 2.41E-06 3.06E-06 2.41E-06
G 2.93E-06 3.52E-06 2.93E-06 2.30E-06 2.93E-06 3.51E-06 2.93E-06 2.30E-06
N 8.14E-06 7.56E-06 7.52E-06 8.16E-06 9.22E-06 1.14E-05 1.16E-05 9.15E-06
a 0.920 1.150 1.042 0.509 0.920 1.150 1.042 0.509
c 1.080 0.850 0.958 0.468 1.080 0.850 0.958 0.468
h 0.897 0.897 1.011 1.011 0.897 0.897 1.011 1.011
p 0.964 0.966 0.946 1.109 1.004 1.135 1.132 1.132
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

AA3104 H 3.63E-06 6.10E-06 3.63E-06 6.10E-06 3.63E-06 6.10E-06 3.63E-06 6.10E-06
F 7.88E-06 5.42E-06 3.23E-06 5.42E-06 7.88E-06 5.42E-06 3.23E-06 5.42E-06
G 9.02E-06 6.55E-06 9.02E-06 1.51E-05 9.02E-06 6.55E-06 9.02E-06 1.51E-05
N 1.59E-05 1.84E-05 1.83E-05 1.41E-05 2.35E-05 1.66E-05 1.70E-05 2.85E-05
a 1.398 0.990 1.220 9.664 1.398 0.990 1.220 9.664
c 0.602 1.010 0.780 6.178 0.602 1.010 0.780 6.178
h 0.954 0.954 0.737 0.737 0.954 0.954 0.737 0.737
p 0.984 0.983 1.015 0.686 1.129 0.951 0.940 0.940
m 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000

Table 1 Experimental data for uniaxial tension

Angle from RD (�) DC04 DP600 AA3104

r-values Initial yield stress r-values Initial yield stress r-values Initial yield stress

0 1.862 135.57 0.94 419.40 0.403 281.15
15 1.812 136.39 0.92 426.80 0.413 285.79
30 1.726 139.18 1.13 432.70 0.557 286.97
45 1.741 142.61 1.44 436.00 0.888 286.41
60 1.918 143.85 1.15 455.20 0.927 293.50
75 2.162 141.92 1.00 463.80 1.060 297.71
90 2.353 140.61 0.90 467.30 1.125 294.69
Biaxial 0.82 137.19 0.80 408.40 0.783 326.60

Table 2 Direct solution methods based on different sets
of experimental data

Methods r0 r45 r90 r0 r45 r90

DS1 4 4 4 4

DS2 4 4 4 4

DS3 4 4 4 4

DS4 4 4 4 4

DS5 4 4 4 4

DS6 4 4 4 4

DS7 4 4 4 4

DS8 4 4 4 4
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also large differences between different sets of experimental data.
These phenomena can also be found in the prediction results of the
Yld89 yield model. Compared with the Hill48 yield model, the
predicted results of the Yld89 yield model are closer to the
experimental results, especially for DC04.

The predicted yield loci in the normalized principal stress
space are plotted in Fig. 4. According to these eight DS
methods, as shown in Table 1, only four kinds of yield loci
were obtained. That is, the yield loci obtained by DS1, DS2,
DS3, and DS4 are equal to those of DS5, DS6, DS7, and DS8,
respectively. Because the experimental equal-biaxial tensile
yield stress is not included in the DS methods, the prediction of
the equal-biaxial tensile yield stress is poor. Moreover, the yield
loci of DC04 predicted by different DS methods are almost the
same. However, there were obvious differences in the yield loci
of AA3104 and DP600 predicted by these DS methods. This is
mainly related to the degree of in-plane anisotropy and the
variation of the uniaxial tensile yield stress and r-values with
angle. The total prediction error under different stress states is
calculated by Eq 23 and shown in Fig. 5.

X¼nr þ nr þ frb þ frb ðEq 23Þ

where nr and nr are the sum of prediction errors of the uniaxial
tensile yield stresses and r-values at seven orientations,
respectively. frb and frb are the prediction errors of the equi-
biaxial yield stress and r-value, respectively.

frb¼
rpreb � rexpb

�� ��

rexpb

; frb¼
rpreb � rexpb

�� ��

rexpb

ðEq 24Þ

nr¼
X7

i¼1

rpreai � rexpai

�� ��

rexpai
; nr¼

X7

i¼1

rpreai � rexpai

�� ��

rexpai
ðEq 25Þ

The DS methods cannot accurately predict directional
stresses and r-values simultaneously. The main reason is that
this method can only contain limited experimental data, which
is not enough to fully reflect the anisotropic characteristics.

3.3 Solution Method Based on the Non-Associated Flow
Rule (NA Methods)

In the non-associated flow rule (non-AFR), two independent
functions of yield ryðrijÞ and plastic potential rpðrijÞ are used
to determine the yield and plastic flow direction, respectively.
For the Hill48 yield model, there is

ryðrijÞ ¼
ffiffiffi
3

2

r
Frr2y þ Grr2x þ Hr rx � ry

� �2þ2Nrs2xy
Fr þ Gr þ Hr

" #1
2

ðEq 26Þ

rpðrijÞ ¼
ffiffiffi
3

2

r
Frr2y þ Grr2x þ Hr rx � ry

� �2þ2Nrs2xy
Fr þ Gr þ Hr

" #1
2

ðEq 27Þ

where Fr, Gr, Hr, and Nr are the parameters based on yield
stresses, and Fr, Gr, Hr, and Nr are the parameters based on r-
values. At present, the following equations are usually used to
determine the stress-based anisotropic parameters and defor-
mation anisotropic parameters.

Fr ¼ 1

2

1

r290
� 1

r20
þ 1

r2b

� 

Gr ¼ 1

2

1

r20
� 1

r290
þ 1

r2b

� 


Hr ¼ 1

2

1

r20
þ 1

r290
� 1

r2b

� 

Nr ¼ 1

2

4

r245
� 1

r2b

� 


8
>>><

>>>:

ðEq 28Þ

Fig. 2 Comparison between experimental data and the results predicted by different DS methods: (a) Directional yield stresses; (b) r-values
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Fr ¼
r0

r90ð1þ r0Þ
Gr ¼

1

ð1þ r0Þ

Hr ¼
r0

ð1þ r0Þ
Nr ¼

1

2

r0 þ r90ð Þð1þ r45Þ
r90ð1þ r0Þ

8
>><

>>:
ðEq 29Þ

For the Yld89 yield model, the anisotropic parameters based
on stress and r-values are calculated by Eqs 30 and 31,
respectively. The anisotropic parameter p needs to be solved
numerically.

Fig. 3 Prediction errors of uniaxial tension obtained by different DS methods (a) Directional yield stresses and (b) r-values at seven
orientations

Fig. 4 Predicted yield loci in the normalized principal stress space based on different DS methods
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cr ¼ 2� ar r45 ¼ r0
2

aSm1 þ aSm2 þ cðS1 � S2Þm
� 
1=m

hr ¼ r0
r90

ar ¼ 2
ðr0=rbÞm � ð1� hÞm

1þ hm � ð1� hÞm
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>>>:

ðEq 30Þ

ar ¼ 2� cr r45 ¼
2mrm0

ð@U=@rxx þ @U
�
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ðEq 31Þ

where r0, r45, and r90 are the experimental yield stresses at 0�,
45�, and 90� with respect to RD, respectively. rb is the equi-
biaxial yield stress. r0, r45, and r90 are the experimental r-values
obtained from the uniaxial tensile test at 0�, 45�, and 90� with
respect to RD, respectively. The method based on stress (r0,
r45, r90 and rb) is named NAS1, and the method based on r-
values (r0, r0, r45 and r90) is named NAR1.

On this basis, cost function methods based on non-AFR are
used to analyze the influence of the input experimental data on
the prediction accuracy. The stress cost function and r-value
cost function are constructed to solve the stress anisotropic
parameters and deformation anisotropic parameters, respec-
tively. As shown in the Eqs 32 and 33,

Ur ¼
Xn

i¼1

rexpai

� �2

rpreaið Þ2
� 1

2

64

3

75

2

ðEq 32Þ

Ur ¼
Xn

i¼1

rexpai

rpreai
� 1

� 
2
ðEq 33Þ

where rexpa and rexpa are the experimental directional yield
stresses and r-values. rprea and rprea are the corresponding
prediction values calculated by the yield model. n is the number
of experimental data points used in the cost function. When
n ¼ 4, a1 ¼ 0, a2 ¼ 30, a3 ¼ 60, and a4 ¼ 90. Under this

condition, the stress cost function and r-value cost function are
named NAS2 and NAR2, respectively. When n ¼ 5, a1 ¼ 0,
a2 ¼ 30, a3 ¼ 45, a4 ¼ 60, and a5 ¼ 90. Under this condition,
the stress cost function and r-value cost function are named
NAS3 and NAR3, respectively. When n ¼ 7, a1 ¼ 0, a2 ¼ 15,
a3 ¼ 30, a4 ¼ 45, a5 ¼ 60, a6 ¼ 75, and a7 ¼ 90. Under this
condition, the stress cost function and r-value cost function are
named NAS4 and NAR4, respectively. The anisotropic param-
eters can be determined by minimizing the cost function, as
shown in Appendix Tables 4 and 5. The comparison of the
predicted yield stresses and r-values with experimental data is
shown in Fig. 6.

Compared with the DS methods, the prediction accuracy of
non-AFR methods has been greatly improved. The results
obtained by the different non-AFR methods are relatively
small, especially for DC04. For material DC04, the increase in
the number of experimental data used in the cost function will
not improve the prediction accuracy. Therefore, for this kind of
material, the basic experimental data are sufficient. Due to the
limitations of the Hill48 yield model, it can only approximately
predict the change law of directional stresses and r-values of
DP600 and AA3104 materials with a monotonic function or
unimodal function and cannot reflect their real change law.
With the increase in the number of uniaxial tensile experimental
data, the prediction curve is interspersed between the experi-
mental points. The relative errors at seven orientations obtained
by NAS3/NAR3 and NAS4/NAR4 are relatively uniform, but
the accuracy is not notably improved, as shown in Fig. 9.

To investigate the effect of equi-biaxial tensile experimental
data on the prediction results, the equi-biaxial tensile yield
stress and r-value are added to the stress cost function and r-
value cost function, respectively. The predicted uniaxial tensile
yield stress and r-value based on the NA(EQ) methods
(considering equi-biaxial tensile experimental data) are shown
in Fig. 7. To distinguish these methods from the above
methods, the stress-based methods are renamed NAS2(EQ),
NAS3(EQ) and NAS4(EQ). The r-value-based methods are
renamed NAR2(EQ), NAR3(EQ) and NAR4(EQ).

As shown in Fig. 7, when the equi-biaxial tensile experi-
mental data are considered, the prediction accuracy of the
uniaxial tensile yield stress of DC04 and the uniaxial tensile r-
value of AA3104 obtained by the Hill48 yield model is

Fig. 5 Prediction errors under different stress states obtained by different DS methods
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Fig. 6 Comparison between experimental data and the results predicted by different NA methods (without equi-biaxial tensile experimental
data): (a) Directional yield stresses; (b) r-values

Fig. 7 Comparison between experimental data and the results predicted by different NA(EQ) methods (containing equi-biaxial tensile
experimental data): (a) Directional yield stresses; (b) r-values
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significantly reduced. For the Yld89 yield model, this change is
reflected only in the uniaxial tensile r-value of AA3104. A
comparison between the yield loci predicted by different NAS
methods (without equi-biaxial tensile stress) and those pre-
dicted by the NAS(EQ) methods (containing equi-biaxial
tensile stress) is shown in Fig. 8. Different combinations of
uniaxial tensile test data have a great impact on the NAS
methods, and they cannot accurately capture the equi-biaxial
tensile yield stress. When the equi-biaxial tensile yield stress is
considered in the cost function, the influence of different
uniaxial tensile test data on the yield locus can be ignored.

Figures 9 and 10 shows the total prediction errors obtained
by different NA methods based on the Hill48 yield model and
Yld89 yield model, respectively. For the Hill48 yield model,
considering the equi-biaxial tensile experimental data cannot
always effectively improve the total prediction accuracy, such
as DC04 and AA3104. Although the prediction accuracy of
equal-biaxial tensile stress and r-value has been improved by
considering the equi-biaxial tensile experimental data in the
cost function, it is not enough to offset the increased prediction
error of uniaxial tension. The same law also occurs in the
prediction results of the Yld89 yield model. Compared with the
Hill48 yield model, it is helpful to consider the equi-biaxial
tensile stress in the stress cost function to improve the stress
prediction accuracy of the Yld89 yield model.

For different materials, appropriate solutions should be
chosen. For materials whose changes law of the directional
yield stresses and r-values approximately satisfy the predicted
forms of the Hill48 yield model, the NA1 method can achieve
good prediction accuracy under conventional experimental
data. However, for aluminum alloys and high-strength steel

with a multipeak distribution of stress and r-values, the NA2
method is the best choice to approximately describe the
uniaxial tensile yield stress and r-values.

However, the use of non-AFR requires a secondary
development, which is inconvenient to the application. In
addition, a large number of studies have shown that the
anisotropic parameters based on the stress can only describe the
yield stress well, and there are great errors in the prediction of
r-values. The anisotropic parameters based on the r-values are
the opposite. For this reason, under the associated flow rule, the
conditional extremum method is proposed.

3.4 Conditional Extremum Methods Based on Cost Function
(CE Methods)

In the process of deformation, the hardening and plastic
deformation should affect each other. Therefore, the anisotropic
parameters should be determined by both stresses and r-values,
especially for materials with distortional hardening and evolu-
tion of r-values. For this, the stress cost function is constructed
and different r-values are taken as constraint conditions. Then,
the analytical solution of anisotropic parameters coupling the
yield stresses and r-values can be obtained by solving the
stationary point of the stress cost function. In this section, the
anisotropic parameters calculated by different stress cost
functions (based on different sets of experimental data of yield
stresses) and constraint conditions are given and compared.

Constructing the following cost function with yield stresses,

U ¼
Xn

i¼1

1

rpreaið Þ2
� 1

rexpaið Þ2

" #2

ðEq 34Þ

Fig. 8 Yield loci predicted by different (a) NA methods (without equi-biaxial tensile stress) and (b) NA(EQ) methods (containing equi-biaxial
tensile stress)
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where rexpa and rprea are the experimental uniaxial tensile yield
stresses and the predicted value at orientation a with respect to
RD, respectively.

(1) When n ¼ 3, a1 ¼ 0, a2 ¼ 45, and a3 ¼ 90. According
to the Hill48 yield model and Eqs 4, 34 can be trans-
formed as

U ¼ Gþ H � 1

rexp0

� �2

" #2

þ F þ Gþ 2N

4
� 1

rexp45

� �2

" #2

þ F þ H � 1

rexp90

� �2

" #2

ðEq 35Þ

Taking r0 ¼ H=G and r90 ¼ H=F as the constraint condi-
tions, by taking the first derivative of U with respect to H and
N, the anisotropic parameters can be obtained as Eq. 36, which
is named the CE1 method.

H ¼ 1

1þ 1=r0ð Þ2þ 1þ 1=r90ð Þ2
1þ 1=r0

r20
þ 1þ 1=r90

r290


 �

G ¼ H

r0

F ¼ H

r90

N ¼ 1

2
4
�
r245 � F � G

� �

8
>>>>>>>>>>><

>>>>>>>>>>>:

ðEq 36Þ

Fig. 9 Influence of the equi-biaxial tensile experimental data on the prediction errors of the Hill48 yield model

Fig. 10 Influence of the equi-biaxial tensile experimental data on the prediction errors of the Yld89 yield model
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When taking r0 ¼ H=G, r45 ¼ N=ðF þ GÞ � 1=2, and
r90 ¼ H=F as the constraint conditions, by taking the first
derivative of U with respect to H , the anisotropic parameters
can be obtained as Eq. 37, which is named the CE2 method.

H ¼
r20r

2
90

1þ1=r0
r20

þ 1þr45ð Þ 1=r0þ1=r90ð Þ
2r245

þ 1þ1=r90
r290

� �

1þ r0ð Þ2r290 þ 1þ r45ð Þ2 r0 þ r90ð Þ2
.
4þ 1þ r90ð Þ2r20

G ¼ H

r0

F ¼ H

r90

N ¼ 1

2
2r45 þ 1ð Þ F þ Gð Þ

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

ðEq 37Þ

(2) When n ¼ 5, a1 ¼ 0, a2 ¼ 30, a3 ¼ 45, a4 ¼ 60, and
a5 ¼ 90. Taking r0 ¼ H=G and r90 ¼ H=F as the con-
straint conditions, according to the above solution pro-
cess, the anisotropic parameters are obtained as Eq. 38,
which is named the CE3 method.

H ¼ A

B

G ¼ H
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F ¼ H

r90

N ¼ 16
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r230
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r260
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ðEq 38Þ

where

A ¼ 2ð1þ 1=r0Þ=r20 þ 2ð1þ 1=r90Þ=r290 þ ð1=r0 þ 1=r90Þ=2r245
þ ð9=r0 þ 1=r90 þ 4Þ=8r230 þ ð1=r0 þ 9=r90 þ 4Þ=8r260

� 23

34

1

r0
þ 1

r90


 �
þ 6

17

� 

3

4

1

r230
þ 1

r260


 �
þ 1

r245

� 


B ¼ 2 1þ 1=r0ð Þ2þ2 1þ 1=r90ð Þ2þ 1=r90 þ 1=r0ð Þ2
.
8

þ 1=r90 þ 9=r0 þ 4ð Þ2
.
128þ 9=r90 þ 1=r0 þ 4ð Þ2

.
128

� 16

17

23

32
1=r90 þ 1=r0ð Þ þ 3

8

� 
2

Fig. 11 Comparison between experimental data and the results predicted by different CE methods (without equi-biaxial tensile experimental
data): (a) Directional yield stresses; (b) r-values
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Fig. 12 Comparison between experimental data and the results predicted by different CE(EQ) methods (containing equi-biaxial tensile
experimental data): (a) Directional yield stresses; (b) r-values

Fig. 13 Yield loci predicted by different (a) CE methods (without equi-biaxial tensile stress) and (b) CE(EQ) methods (containing equi-biaxial
tensile stress)
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When taking r0 ¼ H=G, r45 ¼ N=ðF þ GÞ � 1=2, and
r90 ¼ H=F as the constraint conditions, the anisotropic param-
eters can be obtained as Eq. 39, which is named the CE4
method.

H ¼
Bþ C

�
r245 þ D

�
r230 þ E

�
r260

Aþ C2 þ D2 þ E2

F ¼ H

r90

G ¼ H

r0

N ¼ 1

2
2r45 þ 1ð Þ F þ Gð Þ

8
>>>>>>>>>>><

>>>>>>>>>>>:

ðEq 39Þ

where

A ¼ 1þ 1=r0ð Þ2þ 1þ 1=r90ð Þ2, B ¼ 1þ 1=r0ð Þ
�
r20þ

1þ 1=r90ð Þ
�
r290, C ¼ ð1þ 1=r45Þ 1=r0 þ 1=r90ð Þ=2,

D ¼ 9=r0 þ 1=r90 þ 4þ 3 2r45 þ 1ð Þ 1=r0 þ 1=r90ð Þ½ �=16,
E ¼ 1=r0 þ 9=r90 þ 4þ 3 2r45 þ 1ð Þ 1=r0 þ 1=r90ð Þ½ �=16.

(3) To compare with the above methods, the following com-
prehensive cost function Eq. 40 with seven directional
yield stresses and r-values is constructed. The anisotro-
pic parameters can be obtained by minimizing the cost
function, which is named the CF method.

Fig. 14 Influence of the equi-biaxial tensile stress on the prediction errors of the Hill48 yield model

Fig. 15 Influence of the equi-biaxial tensile stress on the prediction errors of the Yld89 yield model
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ðEq 40Þ

For the Yld89 yield model, its anisotropic parameters cannot
be expressed explicitly. Therefore, the anisotropic parameters
of different conditional extremum methods are solved numer-
ically. The anisotropic parameters calculated by the above-
mentioned CE methods are given in Appendix Table 6.
Figure 11 shows the uniaxial tensile yield stress and r-value
predicted by different CE methods based on the Hill48 yield
model and Yld89 yield model. The constraint conditions have a
higher effect on the predicted results than the cost function. The

cost function and constraint conditions will not change the
predicted change law of the uniaxial tensile yield stresses and r-
values. The difference between these CE methods is mainly
reflected in the uniaxial tensile yield stress and r-value in the
45� direction. For the DC04 material, the CE2, CE4, and CF
methods based on Hill48 can all give accurate prediction
results. However, for DP600 and AA3104 materials, these CE
methods can only approximately predict the r-values. The
reason for this phenomenon is the limitations of the Hill48
model in predicting the directional yield stress and r-values. On
the other hand, the anisotropic parameters of the Hill48 yield
criterion are too few to contain more anisotropic characteristics.
The same rule is also reflected in the prediction results of the
Yld89 yield model. In contrast, for the DC04 material, CE

Fig. 16 Comparison of the prediction errors obtained by different methods
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methods based on the Yld89 model are not sensitive to r45.
Whether r45 is included will not significantly change the
predicted variation law of uniaxial tensile stress and the r-value

with angle. As shown in Fig. 13(a), the yield loci obtained by
different CE methods are different but not significant. Because
the Yld89 yield model has a higher-order equation form, the
prediction accuracy of its yield loci is slightly higher than that
of the Hill48 yield model, especially for DC04.

Similarly, the CE(EQ) method including equi-biaxial tensile
stress can be obtained by adding the equi-biaxial tensile stress
in the stress cost function. They are renamed CE1(EQ),
CE2(EQ), CE3(EQ), and CE4(EQ). For the Hill48 yield model,
the explicit solutions of the CE(EQ) methods can be easily
obtained according to the above solution method, which is not
repeated here. The anisotropic parameters of the Yld89 yield
model are still solved numerically. The equi-biaxial tensile
stress and r-value error term are added to Eq. 40, which is
renamed the CF(EQ) method.

As shown in Figs. 12 and 13(b), the uniaxial tensile yield
stresses, r-values and yield loci obtained by the CE(EQ)
methods (considering equi-biaxial tensile stress) are given. The
uniaxial tensile yield stress and r-value predicted by the
CE(EQ) methods are different from those obtained by the CE
methods, and the prediction errors of the uniaxial tensile stress
state are increased. However, the prediction accuracy of equi-
biaxial tensile stress is not significantly improved. This leads to
an increase in the total prediction error of the CE(EQ) methods,
as shown in Figs. 14 and 15. In addition, it can be seen that the
predicted results of the Yld89 yield model are more sensitive to
the equi-biaxial tensile stress than those of the Hill48 yield
model.

Fig. 17 Comparison between the prediction results of the Hill48 and Yld89 yield models based on the NA1 method and that of the Yld2000-
2d yield model: (a) Uniaxial tensile stress and r-value; (b) yield locus

Fig. 18 Prediction errors under different stress states obtained by
different yield models
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4. Analysis of the Identification Strategy Results

The sum of prediction errors of the above three materials
calculated by Eq 41 is shown in Fig. 16, which are used to
evaluate the adaptability of the above identification strategies to
different materials.

W¼
X3

j¼1

nr þ nr þ frb þ frbð Þ ðEq 41Þ

where j=1 represents DC04 material, j=2 represents DP600
material, and j=3 represents AA3104 material. nr and nr are the
sum of prediction errors of the uniaxial tensile yield stresses
and r-values at seven orientations, respectively. frb and frb are
the prediction errors of the equi-biaxial tensile yield stress and
r-value, respectively.

As shown in Fig. 16, the sum of prediction errors obtained
by the non-AFR methods is obviously less than that obtained
with DS methods and CE methods. This is due to the
advantages that the yield stress and deformation can be
predicted with two sets of anisotropic parameters in the non-
associated flow rule methods. Among the non-AFR methods,
the prediction accuracy calculated by the NA1 method is the
best. This indicates that when using the non-AFR method, the
basic experimental data are sufficient. The prediction accuracy
may not be effectively improved by adding additional uniaxial
tensile test data to the error function. To further clarify the
prediction accuracy of the NA methods, the comparison
between the prediction results of the Hill48 and Yld89 yield
models based on the NA1 method and those predicted by the
advanced non-quadratic yield model Yld2000-2d is given. As
shown in Fig. 17, the uniaxial tensile yield stress, r-value and
equi-biaxial tensile stress obtained by the NA1 method can
reach a prediction accuracy similar to that of the Yld2000-2d
yield model. Their difference is mainly reflected in the equi-
biaxial tensile r-value, as shown in Fig. 18. Therefore, the NA
method can approximately substitute the higher-order yield
model when the influence of the equi-biaxial tensile r-value on
the simulation can be ignored.

Only one set of anisotropic parameters can be used under the
associated flow rule, which presents a challenge when simul-
taneously describing the yield stress and r-value. Therefore,
limited experimental data will inevitably lead to large predic-
tion errors, such as the DS method. For this reason, including
more experimental data on the anisotropic parameters is an
effective way to solve this problem. The prediction accuracy
obtained by the conditional extremum method proposed in this
work is obviously better than that of the DS methods.
Nevertheless, as far as the current research is concerned, the
CE method is only good for low-carbon steel materials. There
are still large errors in the prediction of high-strength steel and
aluminum alloy. On the other hand, the increase in the input
experimental data is only valid within a certain range. When the
number of experimental data reaches saturation, the increase in
experimental data will not significantly improve the prediction
accuracy due to the limitations of the yield models.

In addition, the total prediction accuracy is not always
improved by adding equi-biaxial tensile experimental data to
the cost function of the NA methods and CE methods. In
contrast, it will reduce the prediction accuracy of uniaxial
tension. The prediction results of the Yld89 yield model also

show the same law. An important reason for this phenomenon
is that the yield equation contains too few anisotropic
parameters, which makes them unable to meet different stress
states simultaneously. Therefore, when the number of aniso-
tropic parameters of the yield equation is small, the premise of
the reasonable application of the yield models is whether the
variation form of yield stresses and r-values with angle
conforms to the prediction form of the yield models.

5. Conclusions

The Hill48 yield model has inherent limitations in predicting
uniaxial tensile yield stresses and r-values. There are two or
three extreme points in the curve of uniaxial tensile yield stress
changing with angle, which can only describe the materials
whose stress distribution satisfies the form of monotonic
increasing, monotonic decreasing, unimodal and single valley
functions. The curve of r-values changing with angle has two to
four extreme points, so it can only describe the materials that
the distribution of r-value satisfies the form of monotonic
increasing, monotonic decreasing, single peak, concave valley,
coexist one peak and one valley. Therefore, the prediction
accuracy of the Hill48 yield model depends on whether the
anisotropic behavior of the material meets the above distribu-
tion law but is not directly related to the value of r.

The DS methods are unstable and greatly affected by
material properties. The prediction errors obtained with the
non-AFR methods are relatively minimal, and they have strong
adaptability to different materials. To improve the prediction
accuracy of the Hill48 yield model under the associated flow
rule, this paper proposed a conditional extremum method. For
materials that meet the characteristics of the Hill48 yield model,
the CE2 method can obtain a prediction accuracy similar to that
of the non-AFR method, and its analytical solution can be more
conveniently applied to numerical simulation.

The increase in uniaxial tensile experimental data used in the
cost function will not change the prediction law of directional
yield stresses, and r-values and cannot significantly improve the
prediction accuracy. In addition, the total prediction accuracy is
not always improved by adding equi-biaxial tensile experi-
mental data to the cost function of NA methods and CE
methods. In contrast, the prediction accuracy of uniaxial
tension will be reduced to varying degrees. Therefore, to
further improve the prediction accuracy, we should focus on
how to introduce new variables into the anisotropic parameters
so that the yield function can contain more material properties.
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Table 4 Anisotropic parameters based on stresses

Materials NAS1 NAS2 NAS2(EQ) NAS3 NAS3(EQ) NAS4 NAS4(EQ)

DC04 Fr 1.96E-05 4.56E-05 2.47E-05 4.57E-05 2.49E-05 4.56E-05 2.47E-05
Gr 2.34E-05 4.99E-05 2.47E-05 4.99E-05 2.49E-05 4.99E-05 2.47E-05
Hr 3.09E-05 4.68E-06 2.47E-05 4.63E-06 2.49E-05 4.75E-06 2.47E-05
Nr 7.68E-05 4.99E-05 2.47E-05 4.99E-05 2.49E-05 4.99E-05 2.47E-05
ar 1.033 1.932 1.049 0.875 1.048 1.242 1.052
cr 0.967 0.103 0.987 1.160 0.985 0.801 0.992
hr 0.964 0.959 0.959 0.959 0.959 0.958 0.958
pr 0.939 0.917 0.935 0.938 0.936 0.932 0.935
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000

DP600 Fr 2.44E-06 2.46E-06 2.45E-06 3.75E-06 2.45E-06 2.62E-06 2.47E-06
Gr 3.55E-06 3.55E-06 2.45E-06 4.83E-06 2.45E-06 3.67E-06 2.47E-06
Hr 2.13E-06 2.11E-06 2.45E-06 8.20E-07 2.45E-06 1.94E-06 2.47E-06
Nr 7.52E-06 7.13E-06 2.45E-06 6.02E-06 2.45E-06 7.15E-06 2.47E-06
ar 1.541 1.788 1.538 0.469 1.537 0.968 1.524
cr 0.459 0.201 0.453 1.504 0.438 0.955 0.399
hr 0.897 0.899 0.899 0.899 0.898 0.902 0.902
pr 0.969 0.940 0.941 0.954 0.957 0.960 0.962
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000

AA3104 Fr 4.11E-06 1.04E-05 4.12E-06 2.83E-06 4.14E-06 8.26E-06 4.12E-06
Gr 5.25E-06 1.15E-05 4.12E-06 3.94E-06 4.14E-06 9.38E-06 4.12E-06
Hr 7.39E-06 1.13E-06 4.12E-06 8.66E-06 4.14E-06 3.11E-06 4.12E-06
Nr 1.96E-05 1.27E-05 4.12E-06 2.06E-05 4.14E-06 1.51E-05 4.12E-06
ar 0.358 1.062 0.357 0.825 0.358 1.877 0.357
cr 1.642 0.934 1.638 1.150 1.621 0.020 1.539
hr 0.954 0.955 0.955 0.954 0.954 0.954 0.954
pr 0.982 0.962 0.965 0.974 0.974 0.981 0.979
m 8.000 8.000 8.000 8.000 8.000 8.000 8.000

Table 3 Anisotropic parameters obtained by different DS methods

Materials DS1 DS2 DS3 DS4 DS5 DS6 DS7 DS8

DC04 H 3.54E-05 3.55E-05 3.54E-05 3.55E-05 3.54E-05 3.55E-05 3.54E-05 3.55E-05
F 1.52E-05 1.51E-05 1.5E-05 1.51E-05 1.52E-05 1.51E-05 1.5E-05 1.51E-05
G 1.9E-05 1.89E-05 1.9E-05 1.91E-05 1.9E-05 1.89E-05 1.9E-05 1.91E-05
N 8.12E-05 8.13E-05 8.13E-05 8.13E-05 7.66E-05 7.62E-05 7.63E-05 7.65E-05
a 0.650 0.647 0.649 0.654 0.650 0.647 0.649 0.654
c 1.350 1.353 1.351 1.363 1.350 1.353 1.351 1.363
h 0.964 0.964 0.963 0.963 0.964 0.964 0.963 0.963
p 0.944 0.944 0.944 0.943 0.938 0.936 0.937 0.937
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

DP600 H 2.75E-06 2.16E-06 2.75E-06 2.16E-06 2.75E-06 2.16E-06 2.75E-06 2.16E-06
F 1.82E-06 2.41E-06 3.06E-06 2.41E-06 1.82E-06 2.41E-06 3.06E-06 2.41E-06
G 2.93E-06 3.52E-06 2.93E-06 2.30E-06 2.93E-06 3.51E-06 2.93E-06 2.30E-06
N 8.14E-06 7.56E-06 7.52E-06 8.16E-06 9.22E-06 1.14E-05 1.16E-05 9.15E-06
a 0.920 1.150 1.042 0.509 0.920 1.150 1.042 0.509
c 1.080 0.850 0.958 0.468 1.080 0.850 0.958 0.468
h 0.897 0.897 1.011 1.011 0.897 0.897 1.011 1.011
p 0.964 0.966 0.946 1.109 1.004 1.135 1.132 1.132
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

AA3104 H 3.63E-06 6.10E-06 3.63E-06 6.10E-06 3.63E-06 6.10E-06 3.63E-06 6.10E-06
F 7.88E-06 5.42E-06 3.23E-06 5.42E-06 7.88E-06 5.42E-06 3.23E-06 5.42E-06
G 9.02E-06 6.55E-06 9.02E-06 1.51E-05 9.02E-06 6.55E-06 9.02E-06 1.51E-05
N 1.59E-05 1.84E-05 1.83E-05 1.41E-05 2.35E-05 1.66E-05 1.70E-05 2.85E-05
a 1.398 0.990 1.220 9.664 1.398 0.990 1.220 9.664
c 0.602 1.010 0.780 6.178 0.602 1.010 0.780 6.178
h 0.954 0.954 0.737 0.737 0.954 0.954 0.737 0.737
p 0.984 0.983 1.015 0.686 1.129 0.951 0.940 0.940
m 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
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Table 5 Anisotropic parameters based on r-values

Materials NAR1 NAR2 NAR2(EQ) NAR3 NAR3(EQ) NAR4 NAR4(EQ)

DC04 Fr 0.276 1.723 1.744 1.912 1.695 1.540 1.687
Gr 0.349 2.171 2.159 2.397 2.102 1.923 2.079
Hr 0.650 4.051 4.064 4.482 3.958 3.584 3.916
Nr 1.402 8.668 8.696 9.632 8.484 7.730 8.425
ar 0.649 0.809 0.862 0.661 0.856 0.720 0.666
cr 1.351 1.685 1.802 1.378 1.788 1.493 1.385
hr 0.963 0.963 0.965 0.963 0.966 0.964 0.966
pr 0.937 0.935 0.936 0.936 0.936 0.937 0.938
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000

DP600 Fr 0.538 2.848 3.728 2.438 2.320 2.499 2.369
Gr 0.515 2.784 4.467 2.381 2.798 2.561 2.866
Hr 0.484 2.590 3.703 2.169 2.261 2.227 2.261
Nr 2.044 9.651 14.041 8.786 9.330 9.212 9.518
ar 1.042 1.355 1.671 1.827 1.893 1.220 1.476
cr 0.958 1.246 1.520 1.644 1.683 1.074 1.287
hr 1.011 1.005 0.967 1.005 0.966 0.994 0.966
pr 1.132 1.077 1.060 1.109 1.092 1.109 1.096
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000

AA3104 Fr 0.255 2.004 3.135 1.860 2.874 1.713 3.441
Gr 0.712 5.732 4.439 5.171 3.989 4.962 4.836
Hr 0.287 2.262 2.949 2.070 2.638 1.885 3.126
Nr 1.343 9.590 9.363 9.170 8.982 8.681 10.817
ar 1.220 1.494 1.798 1.627 0.665 1.602 1.415
cr 0.780 0.957 1.423 1.045 0.517 1.001 1.084
hr 0.737 0.737 0.963 0.744 0.964 0.737 0.963
pr 0.940 0.904 0.967 0.922 0.990 0.922 0.992
m 8.000 8.000 8.000 8.000 8.000 8.000 8.000

Table 6 Anisotropic parameters based on the CE methods

Materials CE1 CE1(EQ) CE2 CE2(EQ) CE3 CE3(EQ) CE4 CE4(EQ) CF CF(EQ)

DC04 F 1.51E-05 1.65E-05 1.53E-05 1.64E-05 1.51E-05 1.65E-05 1.54E-05 1.61E-05 1.55E-05 1.92E-05
G 1.90E-05 2.09E-05 1.93E-05 2.07E-05 1.90E-05 2.08E-05 1.95E-05 2.04E-05 1.94E-05 2.36E-05
H 3.54E-05 3.89E-05 3.60E-05 3.85E-05 3.54E-05 3.88E-05 3.63E-05 3.79E-05 3.58E-05 3.88E-05
N 8.13E-05 7.96E-05 7.75E-05 8.30E-05 8.12E-05 7.79E-05 7.82E-05 8.17E-05 7.89E-05 8.89E-05
a 0.650 0.849 0.659 0.816 0.650 0.893 0.662 0.818 0.659 0.811
c 1.354 1.770 1.373 1.700 1.354 1.861 1.379 1.705 1.366 1.683
h 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.963 0.964 0.967
p 0.944 0.893 0.937 0.937 0.944 0.872 0.937 0.937 0.938 0.936
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

DP600 F 2.73E-06 2.85E-06 2.49E-06 2.62E-06 2.72E-06 2.84E-06 2.38E-06 2.48E-06 2.37E-06 2.45E-06
G 2.61E-06 2.72E-06 2.39E-06 2.51E-06 2.60E-06 2.72E-06 2.28E-06 2.38E-06 2.58E-06 3.01E-06
H 2.46E-06 2.56E-06 2.24E-06 2.36E-06 2.45E-06 2.55E-06 2.15E-06 2.23E-06 2.25E-06 2.38E-06
N 7.85E-06 7.74E-06 9.47E-06 9.97E-06 7.66E-06 7.47E-06 9.05E-06 9.42E-06 8.59E-06 9.10E-06
a 0.706 0.926 0.607 0.811 0.699 0.974 0.546 0.765 0.671 0.933
c 0.649 0.852 0.558 0.746 0.643 0.896 0.502 0.704 0.606 0.850
h 1.011 1.011 1.011 1.011 1.011 1.011 1.011 1.010 0.976 0.964
p 1.034 0.972 1.131 1.131 1.022 0.935 1.131 1.130 1.078 1.051
m 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000

AA3104 F 3.73E-06 3.20E-06 3.60E-06 3.26E-06 3.66E-06 3.18E-06 3.52E-06 3.31E-06 4.18E-06 4.50E-06
G 1.04E-05 8.93E-06 1.01E-05 9.09E-06 1.02E-05 8.87E-06 9.82E-06 9.23E-06 9.83E-06 6.33E-06
H 4.19E-06 3.60E-06 4.05E-06 3.66E-06 4.12E-06 3.57E-06 3.96E-06 3.72E-06 4.22E-06 3.14E-06
N 1.73E-05 1.83E-05 1.90E-05 1.71E-05 1.74E-05 1.88E-05 1.85E-05 1.74E-05 1.78E-05 1.44E-05
a 2.442 0.920 2.430 1.022 2.528 0.778 2.188 0.972 1.953 0.517
c 1.576 0.605 1.568 0.674 1.637 0.515 1.417 0.650 1.226 0.248
h 0.741 0.751 0.741 0.752 0.743 0.754 0.743 0.760 0.777 0.966
p 0.902 1.058 0.941 0.942 0.896 1.109 0.941 0.944 0.937 1.090
m 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000 8.000
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