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This paper reports on the critical analysis of the dry sliding wear characteristics of polyester-based com-
posites through systematic experimentation integrated with artificial neural networks (ANN) and response
surface methodology (RSM). In this study, composites are fabricated with unsaturated polyester resin as the
matrix material and micro-sized walnut shell powder (WSP) as the particulate filler. Such composites with
different filler concentrations have been prepared by simple hand layup technique. The composite char-
acterizations regarding density, porosity and tensile strength are made and validated with the results
obtained from a numerical tool Digimat-FE. Further, wear trials are conducted using a standard pin-on-
disk machine according to design of experiment based on response surface methodology (RSM). The data
obtained from the experiments are considered to train and test an ANN model, which prognosticates the
impact of various control factors on wear behavior of the composites. Among all the factors considered for
analysis, sliding velocity, filler content, and normal load are found to be the significant factors in that
sequence affecting the wear rate of the composites.

Keywords artificial neural networks, polyester, response surface
methodology, sliding wear analysis, walnut shell
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1. Introduction

In the last few decades, research focus has been expedited
towards polymers and their composites from conventional
monolithic materials due to their growing tribological applica-
tions such as in rollers, clutches, brakes and gears due to high
strength, relatively better wear resistance, and low density (Ref
1). These composites are now replacing traditional metal alloys
in aerospace, defense, and sporting industry. As polymer
composites are lighter in weight, these materials are quiet
suitable for weight sensitive uses. But sometimes due to high
cost, use of polymer composites is restricted in the commercial
applications. So the cost of these components could be brought
down by the reinforcement of cheaper materials such as agro
waste lightweight fillers. The available literature reveals that
different types of fillers have been used as reinforcement in
polymer composite (Ref 2). The use of fillers in polymer
composites primarily serves two purposes; first improves
mechanical, tribological, and thermal properties; second
decreases cost of the components (Ref 1). Fillers are mainly

classified into three categories (a) hard fillers (ceramics, metals
and minerals), (b) glass fillers, and (c) natural fillers (Teak
wood dust, pine wood dust, rice husk, coconut shell dust, palm
kernel dust, etc.) (Ref 3). Ceramics and metals are known as
hard particulates which are used to increase mechanical and
wear resistance of the polymers even up to three order
magnitude. Polymer composites with metallic fillers have
several industrial applications such as heater, electrode, and
components, which require thermal durability at high temper-
atures. However, due to growing demand of lightweight
components, use of plant-based organic fillers in polymer
composites is increasing day by day, which is very helpful in
cost reduction and stiffness improvement (Ref 4). Addition of
coconut shell dust increases bulk hardness of low-density
polythene which can be used in automobile interior applications
(Ref 5). Asabe (Ref 6) found that thermal stability of PVC
which is about 103 �C enhances up to 370 �C due to inclusion
of banana stem particulates. Pradhan et al. (Ref 7) recently
reported that thermal conductivity of polyester composites
significantly affected due to addition of walnut shell powder.
Particulate filling not only affects the mechanical and thermal
behavior but also significantly improves tribological properties
of the composites. Pradhan et al. (Ref 8) observed that abrasive
wear losses of epoxy composites have been minimized with 20
wt.% of lantana-camara filler. Aireddy and Mishra (Ref 9)
investigated the effects of coir dust concentration on the erosion
wear behavior of epoxy composites and found that the erosion
resistance of the epoxy resin is improved with increasing
volume fraction of filler. Though several number of natural
fibers and particulates have been explored, use of walnut shell
powder as a filler in polymeric matrices has not been researched
adequately. Walnut is a fruit that grows in the trees of genus
juglans, and its shell is 67% of the total weight of the walnut
kernel. It has been estimated that around 1.5 million tons of
shells generate per year all over the world. Its shell, generally
dark brown in color and is mostly a waste material with hardly
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Fig. 1 (a) SEM (b) EDS of unsaturated polyester resin

Fig. 2 (a) SEM image (b) EDS of walnut shell powder

Fig. 3 (a) SEM (b) EDS of WSP-polyester composite
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any significant utilization (Ref 10). As of now, walnut shell
powder finds its applications in cosmetics, herbal products,
polishing soft metals, glass, wood, plastics and stone (Ref 11).
However, walnut shell powder (WSP) is earlier used as filler
material in several polymers composites (Ref 12-14), but there
is hardly any report on the parametric analysis of sliding wear
behavior under different test conditions.

The quality of composites should be analyzed properly
because some key parameters like curing temperature and
manufacturing speed affect the manufacturing process of
material. So the properties of the composite needs to be
investigated for special engineering applications (Ref 15).
Complex properties like fatigue, wear, modulus, strength and
failure strain are to be correlated to understand the interaction

between them. These relations can be established by a
mathematical tool derived from experimental data, which
reduces the experimental works required for new test domain.
Beacuse of this, ANNs (artificial neural networks) have been
introduced to polymer composites to find the complex nonlin-
ear relationship between the properties without any prior
assumption (Ref 16). The preliminary investigation of tribo-
logical properties using ANN was carried out by Jones et al. on
metals (Ref 17). Satyanarayana also evaluated abrasive wear
behavior of red mud particle-reinforced aluminum composites
by ANN and regression modelling (Ref 18). Recently, in 2015,
Padhi et al. performed ANN studies for the prediction of sliding
wear behavior of GF/PP composites filled with blast furnace
slag (Ref 17).

Against this background, the present study is aimed to
foresee the effects of walnut shell powder on the dry sliding
wear resistance of polyester resin. This work critically exam-
ines the sliding wear characteristics of polyester composites
filled with walnut shell powder in different proportions using
response surface methodology and artificial neural networks.

2. Experimental Details

2.1 Matrix and Filler Material

In the present investigation, unsaturated isophthalic polye-
ster resin (density 1.37 g/cm3, elastic modulus 1.13 GPa) is

Table 1 Control factors and their levels for sliding wear
test

Control factors

Level

I II III Units

Sliding velocity, Vs 100 300 500 cm/s
Sliding distance, D 500 1500 2500 m
Normal load, Fn 5 10 15 N
Filler content, f 4 8 12 wt.%

Fig. 4 Schematic diagram for relation between input and output vector of a single neuron
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used as matrix material. The polyester resin along its acceler-
ator (cobalt napthenate) and hardener (methyl ethyl ketone
peroxide) is supplied by Testing Instrument Manufacturer,
Kolkata. The SEM and energy-dispersive x-ray spectroscopy

(EDS) of neat polyester resin is shown in Fig. 1(a) and (b)
respectively. The elemental analysis of polyester resin by
energy-dispersive x-ray spectroscopy (EDS) reveals that it
primarily contains carbon (50.12%), oxygen (37.34%), mag-

Figure 5 (a) Measured and theoretical density of the WSP–polyester composite. (b) volume fraction voids (%) for the WSP–polyester
composite. (c) Random distributions of fillers and voids for WSP–polyester composites in three different planes
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nesium (0.21%), silicon (0.97%), sulfur (0.01%), chlorine
(0.40%), potassium (0.41%), and calcium (0.46%).

The shells are removed from walnut kernel and washed in
acetone to remove surface impurities. These walnut shells are
grounded into powder form in a ball mill as a result of which
uniform and very small particles are obtained as shown in
Fig. 2(a). The particles are then passed through a sieve shaker
to obtain an average particle size of 100 lm. The powder is
dried in an oven for 48 hours at 100 �C to remove moisture
content. It can be observed from the EDS analysis as shown in
Fig. 2(b) that the main constituents of walnut shell are carbon
(71.01%), oxygen (22.56%), chlorine (2.74%), potassium
(2.38%), and calcium (1.31%). The high amount of carbon
may be attributed to presence of lignin in the walnut shell
powder (Ref 19).

2.2 Composite Fabrication

The low-temperature polyester resin is mixed with corre-
sponding accelerator and hardener at a ratio 10:3:3 by weight as
recommended. Then 0-20 wt.% walnut shell powder is added to

this homogeneous solution of polyester resin. The amount of
filler in the matrix is kept at maximum 20 wt.% as beyond that
composite making is not possible because of improper and
incomplete wetting. Due to this WSP filler concentration is
restricted to 20 wt.% for the present investigation. The prepared
dough is then smoothly dented in to wax coated glass tube to
obtain cylindrical composite samples of diameter 10 mm and
length 120 mm. The mixture of filler and resin is left in the
glass molds for 24 hours for curing after which castings are
removed by breaking the glass tubes. A typical SEM image of
WSP–polyester composites is shown in Fig. 3(a). The size of
samples considered for tensile test is 150 mm 9 10 mm 9 3
mm as per standard ASTM D 3039-76.

2.3 Density and Void Fraction

The theoretical density (qact) and volume fraction of void
(Vv) of the composites is measured by the Agarwal and
Broutman equation (Ref 20). The actual density of the
composites is evaluated by Archimedes principle. The theoret-
ical density is also predicted by Digimat-FE software.

Figure 5 continued

Fig. 6 SEM image of (a) fracture surface of WSP–polyester composite with 12 wt. filler content after tensile test (b) pores and voids present
on the surface of composite
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2.4 Tensile Test

The tensile test of the samples is conducted by Universal
testing machine (UTM) Instron 1195 with crosshead speed as
10 mm/min. The tensile strength of composites is also
calculated by Digimat-FE software and validated with exper-
imental results.

2.5 Dry Sliding Wear Test

Dry sliding wear tests are carried out on the WSP–polyester
composites in a pin-on-disk test rig as per ASTM G99 standard.
The tests are performed on a counterbody of hardened ground
steel disk covered with sand paper. When normal load is
applied on the composite pin, it is pressed against the rotating
disk. Due to which wear is generated at the contact surface
between pin and disk. The wear tests are conducted under
different parameters as shown in Table 1. An electronic
weighing balancing machine is used to weight the samples
with an accuracy of ± 0.1 mg. The disagreement between
initial and final measurement of weight of the specimen is the
mass loss during the wear test. The volume of material removed
per unit load per unit sliding distance is termed as the specific
wear rate (SWR) and is expressed as follows:

Ws ¼
Dm

qtVSFnð Þ ðEq 1Þ

where Dm is the mass loss of the composite in the test duration
(g), q is the density of the composite (g/mm3), t is the test
duration (s), Vs is the sliding velocity (cm/s), and Fn is the
average normal load (Newton).

2.6 Response Surface Methodology (RSM).

In the present study, four major input parameters such as
sliding velocity (Vs), sliding distance (D), normal load (Fn) and
filler content (f) have been considered as response variables
each with three levels which influence the specific ware rate of
the WSP–polyester composites during the dry sliding wear test.
To analyze the impact of these control factors (input) on the
wear response (output) large numbers of tests need to be
conducted, which is a very laborious task. However, the
numbers of experiments could be reduced to great extent by
adopting a suitable design of experiment (DoE) approach. So,
in this analysis, DoE is carried out by face-centered central
composite design (FCCCD) of response surface methodology
(RSM). FCCCD is basically an extension of the central
composite design (CCD) where axial distance is taken as 1.
The response surface methodology (RSM) is used to show the
relation between control factors and quality characteristics to
reach either maximization or minimization of the out puts. In
RSM, the correlation between response X and a set of
independent variable (y1, y2…yn) is approximated by a
second-order model in the following form

x ¼ a0 þ
Xn

i¼1

aiyi þ
Xn

i¼1

aiiy
2
ii þ

Xn

i¼1

aijyij þ a ðEq 2Þ

where a is the error or noise observed in the response x, (x- a) is
the expected response and values are the regression coefficients
to be evaluated (Ref 21).

2.7 Modelling with Artificial Neural Networks (ANN)

The neural network concept in the past is used by several
researchers in the field of function approximation to generate

Fig. 7 Comparison between of Digimat-FE predicted and experimental tensile strength of WSP–polyester composites
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the predicted performance output based on the input database.
The artificial neural network has been successfully imple-
mented to predict wear dependent statistical parameters (Ref
22, 23). Some major types of neural networks are modular
neural networks, feedforward/artificial neural network, radial
basis function neural network, kohonen self-organizing neural
network, recurrent neural network, convolutional neural net-
work (Ref 15). In this investigation, feedforward/artificial
neural network has been used for training and prediction. An
ANN model is constructed and trained with statistical data
obtained from the experiments. This trained network could be
used to predict specific wear rate of any composites. The
network is mainly divided into three layers such as input,
hidden and output layer. During the training and testing
protocol, the generated output is matched with the desired result
and the error is returned to hidden layers to enrich the
prediction. Figure 4 presents schematic diagram of an ANN
configuration. Figure 4 shows that each layer in the network
consists several number of neural elements. The network
function largely depends upon the connection between these
elements. If a single unit of element is considered as shown in

Fig. 4, the relation between the input vector X
ðnÞ
i and output

vector of the element X
ðnþ1Þ
j may be represented as

X
ðnþ1Þ
j ¼ F

X

i

w
ðnÞ
ji Xj

ðnÞ
 !

ðEq 3Þ

where the nonlinear sigmoid function

FðxÞ ¼ 1

1þ e�x
ðEq 4Þ

X ðnþ1Þ
j output of unit j in the nth layer wðnÞ

ji weight from unit i
in nth layer to unit j in (n + 1)th layer.

An input vector is assigned to the units of the input layer.
The units in the hidden layer evaluate weighted sum of the
inputs and produce result of a nonlinear function to the sum.
The learning procedure depends on a gradient search with
errors between the predicted and desired values:

E ¼ 1

2

XP

P¼1

ðdP � OPÞ ðEq 5Þ

where E total sum of squared error, dp target output for pth
pattern, Op actual output

This error could be minimized by changing weights using
the following equation

DW ðnÞ
ji ¼ �g

@E

@W
ðnÞ
ji

ðEq 6Þ

where g ¼ learning rate.
During preparing a network, information is supplied to ANN

many number of times, which is termed as cycle. After each
cycle, the error is estimated to improve the quality of the network.

3. Results and Discussion

3.1 Density and Void Fraction

The actual density of the WSP–polyester composites is
determined by Archimedes’ principle whereas the theoretical

density, voids and pores present in the composites are
calculated from the Agarwal and Broutman equation (Ref
20). As the pores and voids alter the mechanical and wear
properties of the composites, the efficiency of the composites in
real working condition could be improved by proper knowl-
edge about them. The actual density, theoretical density and
volume fraction of voids of the WSP–polyester composites
with different filler loading are presented in Fig. 5(a) and (b)
respectively. The density of the composites is also predicted by
the Digimat-FE and validated with the experimental results.
The Digimat-FE value seems to be in good concurrence with
experimental results. Figure 5(a) shows that the density of the
composites with 0 w.% filler content is about 1.35 g/cm3, which
decreases with the addition of walnut shell particles. The
abetment of the density of the composite takes place due to the
inclusion of relatively low density (1.22 g/cm3) WSP filler
particles. The random distribution of particles and voids in the
WSP–polyester composites is defined by custom phase gener-
ation sequence. In this section, the different inclusion phases
are identified sequentially in the composites. The periodic
geometry of the RVE of the WSP–polyester composites in the
X-Y, Z-X, and Z-Y plane is presented in Fig. 5(c). It can be
observed from the figure that WSP particles are well distributed
throughout the composites whereas maximum voids are present
in the middle part of the composites. During fabrication of the
composites, the moisture present in the walnut shell powder
generates voids in the form of air bubble. But from the surface
of the composites, the air is released to the atmosphere, but it is
entrapped at the middle portion of the composite. Due to this,
maximum voids are present at the center of the composite. The
voids present in the composites can be observed clearly in SEM
image given in Fig. 6(b).

3.2 Tensile Test

The tensile test of WSP–polyester composites is conducted
using an Universal testing machine (UTM) Instron 1195 and
the result are shown in Fig. 7. It could be observed from Fig. 7
that tensile strength of neat polyester is about 62.5 MPa, which
reduces to 55.6 MPa with the addition of 20 wt.% of WSP filler
content. The walnut shell particles consist of lower amount of
hygroscopic elements such as cellulose/hemicelluloses and high
amount of lignin (Ref 24). Lignin is the major element which
significantly reduces the tensile strength (Ref 25). With the
addition of walnut shell particles, the lignin percentage
increases leads to reduction in the tensile strength of the
composites. FE analysis is also used to determine the tensile
behavior of WSP–polyester composites with the help of micro-
scale Representative Volume Element (RVE). As shown in
Fig. 18(h), the shape of walnut shell particle is nearly spherical,
due to which RVE with spherical inclusions is considered for
FE analysis. The tensile strength predicted by Digimat FE is
validated with the experimental result. After generating RVE,
meshing is carried out with the help built-in-mesh. Though two
types of meshing are available such as conforming mesh and
voxel mesh, conforming mesh is used in this analysis. The
mechanical loading is applied to the meshed RVE to simulate
different types of macroscopic strain fields. The comparison
between predicted and experimental values of tensile strength
for WSP–polyester composite is shown in Fig. 7. Also, the
RVE of WSP–polyester composites with different filler loading
along with stress distribution is presented in Fig. 8. The stress
distribution in the RVE at the microstructural level is analyzed
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by Digimat FE and the color contour presents the stress levels
at different phases of the composite (Ref 26). The highest stress
concentration of 62.5 MPa is observed for the composite
sample with 0 wt.% of WSP filler. As the WSP filler loading
increases up to 20 wt.%, the tensile strength of the composite
decreases by about 24% compared to neat polyester. At higher

filler loading, composite shows lower stress level than that with
a lower particle volume fraction when applied to the same
strain rate. So material fails easily at higher filler content leads
to a reduction in tensile strength of the composites. The SEM
image of WSP–polyester composite with 12 wt.% filler content
after tensile testing is shown in Fig. 6(a). When filler content is

Fig. 8 RVE and stress distribution of WSP–polyester composites with 0, 4, 8, 12, 16 and 20 wt.% of WSP

Fig. 9 Comparison between RSM, ANN predicted and experimental result of SWR for WSP–polyester composites
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increased in the composite, the ductility of material reduces and
brittleness increases simultaneously as shown in Fig. 6(a) due
to which tensile strength of the composite decreases. Similar
type of behavior is also observed by Nitin and Singh during
their study on the tensile strength analysis of WSP-epoxy
composite (Ref 27).

3.3 Dry Sliding Wear Test Result

3.3.1 RSM Analysis. In this investigation, face-centered
central composite design (FCCCD) which belongs to the
response surface methodology (RSM) part set is used for the
design of experiments (DoE). The experimental runs of

FCCCD consists total of 16 factorial points (a full factorial
design with all combinations of the factors at the two levels).
Out of these16 factorial points, eight belongs to axial points,
six-star points and two central points (Ref 28). Total 30 test
runs have been carried out by maintaining the input parameters
at designed levels. Each experimental test is performed in
triplicate and the average value of results is considered as
specific wear rate. The response, that is, the specific wear rate
of each experiment is presented in Fig. 9. The analysis of the
goodness of fit of the designed model is very much required for
the examination of the data. Therefore, in this study, analysis of
variance (ANOVA) is carried out on the wear responses of the

Table 2 ANOVA table for specific wear rate (before elimination)

Source Sum of squares df Mean square F value P value

Model 0.0002 14 0.0000 185.78 < 0.0001
A-Sliding velocity (Vs) 6.535E�06 1 6.535E�06 97.73 < 0.0001
B-Sliding distance (D) 1.309E�06 1 1.309E�06 19.58 0.0005
C-Normal load (Fn) 1.089E�11 1 1.089E�11 0.0002 0.9900
D-Filler content (fs) 0.0002 1 0.0002 2441.37 < 0.0001
AB 4.536E�07 1 4.536E�07 6.78 0.0199
AC 1.823E�10 1 1.823E�10 0.0027 0.9591
AD 7.543E�07 1 7.543E�07 11.28 0.0043
BC 5.402E�09 1 5.402E�09 0.0808 0.7801
BD 2.223E�07 1 2.223E�07 3.32 0.0882
CD 1.014E�07 1 1.014E�07 1.52 0.2370
A2 2.129E�08 1 2.129E�08 0.3184 0.5809
B2 1.092E�12 1 1.092E�12 0.0000 0.9968
C2 2.068E�08 1 2.068E�08 0.3093 0.5863
D2 4.476E�07 1 4.476E�07 6.69 0.0206
Residual 1.003E�06 15 6.687E�08
Lack of fit 7.653E�07 10 7.653E�08 1.61 0.3124
Pure error 2.377E�07 5 4.754E�08 185.78

Cor total 0.0002 29 97.73
Standard deviation = 0.0003 R2 = 0.9943
Mean = 0.0040 Adjusted R2 = 0.9989
Coefficient of variation = 6.53 Predicted R2 = 0.9677
Adequate precision = 43.5154

Table 3 ANOVA table for specific wear rate (after elimination)

Source Sum of squares df Mean square F value P value

Model 0.0002 8 0.0000 360.83 < 0.0001
A-Sliding velocity (Vs) 6.535E�06 1 6.535E�06 108.63 < 0.0001
B-Sliding distance (D) 1.309E�06 1 1.309E�06 21.76 < 0.0001
C-Normal load 1.089E�11 1 1.089E�11 0.0002 < 0.0001
D-Filler content 0.0002 1 0.0002 2713.66 < 0.0001
AB 4.536E�07 1 4.536E�07 7.54 0.0121
AD 7.543E�07 1 7.543E�07 12.54 0.0019
CD 1.014E�07 1 1.014E�07 1.69 0.0012
D2 1.252E�06 1 1.252E�06 20.82 0.0002
Residual 1.263E�06 21 6.016E�08
Lack of fit 1.026E�06 16 6.410E�08 1.35 0.3964
Pure error 2.377E�07 5 4.754E�08

Cor total 0.0002 29
Standard deviation = 0.0002 R2 = 0.9982
Mean = 0.0040 Adjusted R2 = 0.9900
Coefficient of variation = 6.59 Predicted R2 = 0.9811
Adequate precision = 59.0050
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composites to analyze the adequacy of fit of the model.
3.3.2 Analysis of Variance and Fitting Regression

Model. The fit summary of the sliding wear behavior of the
WSP–polyester composites is conducted by response surface
methodology (RSM), which indicates that the designed
quadratic model is statically significant due to the higher value
of adjusted R2 (0.9943). The dry sliding wear test results of the
quadratic model in the form of ANOVA are illustrated in
Table 2. ANOVATable 2 shows that the associated p value for
the quadratic model is smaller than 0.05 (i.e., 95% confidence,
or a = 0.05), which indicates that the model is granted to be

statically significant. The value of the coefficient of determi-
nation (R2) is equal to 0.9943, which indicates that the response
model confirms 99.43% of the total variation. The difference
between R2 (0.9943) and adjusted R2 (0.9989) value is very
less, which shows that the capacity of the quadratic model has
been utilized effectively. As the value of both R2 and adjusted
R2 for WSP–polyester composites is greater than 0.95, this
confirms that the regression model presents an effective relation
between independent process parameters and wear responses.
For lack of fit, the associated p value should be greater than
0.05 because it shows any term left out of model is not

Fig. 10 (a) Predicted versus actual plot of WSP–polyester composite. (b) Normal probability plot of WSP–polyester composite, (c) Residual
plot of WSP–polyester composite, (d) Perturbation Plot of WSP–polyester composite
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significant. The lack of fit p value for the regression model of
WSP–polyester composite is 0.3124, which indicates that lack
of fit is not significant so the designed model fits outstandingly.
Further from the ANOVATable 2, it could be observed that the
factor sliding velocity (Vs), filler content (f) , sliding distance
(D), interaction between filler content (f) and sliding velocity

(Vs), the second-order term of factor filler content (f) signif-
icantly affect the specific wear rate (Ws) of the composites . The
nonsignificant terms have been neglected by backward elim-
ination so that the regression model can fit the wear rate (Ws)
effectively. The ANOVA table for the reduced quadratic model
is presented in Table 3. The values of R2 (0.9982) and adjusted

Fig. 11 (a) Surface plot effect of filler content and sliding velocity on specific wear rate of WSP–polyester composite (b) Surface plot effect of
filler content and normal load on the specific wear rate of WSP–polyester composite

Fig. 12 Surface roughness plot of WSP–polyester composites at (a) 4 wt.% , 500 cm s-1, 500 m, 5 N (b) 8 wt.% , 300 cm s-1, 1500 m, 25 N
(c) 12 wt.%, 500 cm s-1, 500 m, 25 N
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R2 (0.9999) obtained from Table 3 indicates that the model is
significant whereas the lack of fit (0.3964) is not significant.
From the predicted versus actual plot shown in Fig. 10(a), it can
be observed that the predicted wear rates of the composites are
in good concurrence with the actual results. The normal plot
residual for the specific wear rate of the composites is presented
in Fig. 10(b). The normal plot of residuals closely falls into a
straight line, which indicates that the errors are normally
distributed. The graph plotted by residuals vs run is used to
evaluate the independence of the data. The residual plot shown
in Fig. 10(c) reveals that the graph does not take any shape of
the predictable pattern because all the runs fall between range
levels � 4 to 4.This confirms the significance of ANOVA
assumptions. The impact of all the factors on a single plot can
be compared by perturbation plot. A perturbation plot is used to
analyze the influence of all the factors on the specific wear rate
at the center point, which is shown in Fig. 10(d). It can be
observed from the perturbation plot that the specific wear rate,
among all the factors, is predominantly affected by the
concentration of the filler content in the WSP–polyester
composites.

The final response equation to evaluate specific wear rate
(Ws) of the composites after eradicating the nonsignificant
terms is mentioned below:

WS ¼ 0:009582 þ 3:92122E � 06VS þ 1:71024E � 08D
þ 0:000016Fn� 0:001059f þ 8:41875E
� 10VSD� 2:71406E � 07VSf� 1:99062E � 06Fnf
þ 0:000026f

ðEq 7Þ

The effect of filler content and sliding velocity on the
specific wear rate of the WSP–polyester composites is shown in
Fig. 11(a). Figure 11(a) shows that the specific wear rate of
WSP–polyester composites decreases with the addition of filler
content irrespective of sliding velocity. The shape of walnut
shell powder forms an effective interlock with the matrix
material. Due to which a transfer film is formed on the surface

of counterface, which behaves like a protective barrier to
prevent large-scale fragmentation of polyester resin and
prevents removal of material at higher filler loading. Also as
WSP content increases in the composite, lignin concentration
also increases and subsequently carbon content also increases
as seen in the EDS analysis (12 wt.% WSP–polyester
composite) shown in Fig. 3(b). Due to this, the bulk effective
hardness of the composite increases. This may be another
reason behind this abetment in SWR at higher filler loading.
Doddamani et al. also reported decrease in specific wear rate of
WSP-epoxy composite with increase in filler content (Ref
29).The effect of normal load and filler concentration on the
specific wear rate of the composites is presented in Fig. 11(b).
The wear is primarily generated at the contact surface of the pin
and sliding disk. The increase in normal load results in a
simultaneous rise in frictional thrust causing occurrence of
debonding between filler and matrix. Also at higher loads,
irregular shaped walnut shell particles with sharp edges
penetrate in to the surface of the disk. This leads to an increase
in the wear rate of the composite material at higher loads. The
surface roughness of WSP–polyester composites is measured
by profile meter and the Ra value is presented in Fig. 12.
Figure 12(a), (b), and (c) shows the surface roughness pattern
of the composites at (a) 4 wt.% , 500 cm s�1, 500 m, 5 N (b) 8
wt.% , 300 cm s�1, 1500 m, 25 N (c) 12 wt.%, 500 cm s�1, 500
m, 25 N respectively. The surface roughness value of 4 wt.%
composite is found to be 1.79 Ra under 5 N, whereas the
surface roughness of 8 and 12 wt.% composite is 1.6 and 1.1 Ra
under 25 N load, respectively. The roughness of the composites
is decreasing with increase in filler content even at higher load
which signals that SWR is not only affected by normal load but
also influenced significantly by the filler content.

3.3.3 Prediction using Artificial Neural Network
(ANN). 3.3.3.1 Network Testing and Training. From the
above discussion, it is concluded that dry sliding wear behavior
of the WSP–polyester composites depends upon many factors
and the impact of these factors should be analyzed carefully

Fig. 13 Constructed ANN model for prediction of specific wear rate
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beyond the test domain used in this investigation. Artificial
neural network (ANN) is a technique, which could be used to
simulate, analyze and predict the output for wide range of input.
Therefore, in the present work, artificial neural network (ANN)
is used to validate the model obtained from response surface
methodology and predict the output with combination of
different input parameters. A neural network is created based
on the experimental data in three steps such as training, testing
and prediction. This network can be used to solve complex and
nonlinear problems because it works like human brain, which
means it can learn directly from the supplied data without
providing any formula.

3.3.3.2 Preparation of the Specific Wear Rate Database.
The specific wear rate of WSP–polyester composite with
different filler concentration (4, 8 and 12 wt.%) is measured by
pin-on-disk machine. Total 30 experiments have been con-
ducted according to design of experiments (DoE) prepared by

face-centered central composite design (FCCCD). The result
obtained from the experiments is used as database for training
the network.

3.3.3.3 Training the Network. A neural network consists of
several cross-linked simple processing unit called neurons. A
neural network has three different layers connected in series
such as (i) input layer (ii) hidden layer (iii) output layer. Input
layer receives the information while hidden layer carries out-
processing of this information. Finally, the result is exported by
output layer. In this analysis, a three-layer ANN model is
constructed as shown in Fig. 13 which consists four neurons the
input layer, which represent sliding velocity, sliding distance,
normal load, and filler content, whereas the output layer has one
neuron as specific wear rate. But, the number of neuron in the
hidden layer is chosen by hit and trial method, and is obtained
12. The results obtained from experiments are utilized to train
the network. The input variables are normalized so that all the

Fig.14 Coefficient of Determination obtained by training a network
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values fall in same range 0-1. Total 30 numbers of experiments
are used for training the network. Several ANN structures are
tested with different numbers of neurons present in the hidden
layer. But the optimized network is obtained with 12 neurons in
the hidden layer. One network is selected for the training of
input–output data based on least error criterian. The network is
chosen for prediction when coefficient of determination reached
R = 0.97791as shown in Fig. 14.

3.3.3.4 Testing of the Neural Network. The testing aims to
evaluate the network performance. The framed neural network
is trained by considering the input database obtained from
sliding wear tests. Then it is simulated to predict the same 30
numbers experiments used in response surface methodology.
The comparison between the ANN, RSM predicted specific
wear rate of WSP–polyester composites with experimental
result is presented in Fig. 13.

3.3.4 Predicting the Specific Wear Rate
of the WSP–Polyester Composites for a New Domain Data
Set. Figure 9 shows that the designed neural network predicts
the specific wear rate of the composites very similar to RSM
and experimental results and the corresponding errors lie within
a range of 0–10 percent as shown in Fig. 15. Therefore, this
well-trained neural network can be very useful to study the
effect of input parameters with new domain of data set on the
specific wear rate of the composites even beyond the exper-
imental range.

3.3.4.1 Effect of Sliding Velocity on the Specific Wear Rate
of the Composites. Figure 16(a) shows that the specific wear
rate of composites increase monotonically with the sliding
velocity. When sliding velocity increases, more heat is
generated at the contact surface of the composite pin and the
disk. Due to this, the temperature at the surface of the
composite rises and this increase in temperature not only
damages the mechanical properties but also weakens the
bonding between the polymer and filler (Ref 30). In the year
2012, similar kind of result is observed by Rout and Satapathy
form their investigation on rice husk-filled epoxy composites
(Ref 1). Padhi et al. found that specific wear rate of blast
furnace slag–epoxy composite increases with increase in sliding
velocity up to certain limit and beyond that it decreases

marginally (Ref 17). More recently, investigation conducted by
Nayak and Satapathy on marble dust-filled polyester compos-
ites showed similar types of findings in their study (Ref 31).
Omrani et al. have also reported poor wear performance for
jute/pp composites at higher sliding speed (Ref 30).

3.3.4.2 Effect of Filler Content on the Specific Wear Rate of
the Composites. The effect of filler content on the specific wear
rate of the composites is shown in Fig. 16(b). Figure 16(b)
shows that the specific wear rate of polyester resin decreases
with addition of WSP filler content at any range of sliding
velocity. As shown in Fig. 17(a), the microstructure of walnut
shell consists of stone cells of high lignification, which are
relatively short and isodiametric, whereas the thickness of
secondary wall is varied and filled up with lumina and lignin
(Ref 32). These cells are comprised of about 90% of shell
volume, which provide high strength and stiffness to walnut
shell in comparison with wood flour (Ref 33). Similar structural
features can also be noticed in the SEM image 17 (b) of walnut
shell powder. The maximum drop in the specific wear rate can
be seen for WSP–polyester composites with 12 wt.% of filler
content and this drop possibly occurs due to the presence of
these harder walnut shell particles. Investigation carried out by
Kranthi and Satapathy also found that inclusion of pine wood
dust improves the wear resistance capacity of epoxy composites
(Ref 4). Pashaei and Hosseinzadeh observed that wear volume
loss of WSP-filled vinyl ester composites decreases with
increase in WSP content (Ref 34). Similarly, the co-efficient of
friction and wear resistance of the walnut shell powder, jute and
phenolic binder composites are improved significantly when
filler content increases from 0 to 5.6 wt.% and these materials
can be used in eco-friendly brakes (Ref 35).

3.3.4.3 Effect of Normal Load on the Specific Wear Rate of
the Composites. The variation in the specific wear rate of
WSP–polyester composites with filler content at different
normal load is shown in Fig. 16(c). During prediction, the
sliding distance and sliding velocity value is kept constant.
Figure 16(c) clearly illustrates that increase in normal load
accelerates the material removal rate from the surface of the
composite. This material removal mechanism could be
explained by Archard equation which states that increment in
specific wear rate is directly proportional to the applied load
(Ref 36). When normal load increases, the contact surface
between pin and disk increases which leads to enhancement of
temperature and stress level in the composite (Ref 37). This
increase in temperature on the surface of the composite paves
way to the debonding between filler and matrix due to which
pulling out of WSP takes place. This pulling out of particles
creates small craters which in turn increase SWR value of the
composites. Pattnaik et al. in his investigation clearly described
the relation between normal load and specific wear rate of the
composites along this line (Ref 38).

3.3.4.4 Effect of Sliding Distance on the Specific Wear Rate
of the Composites. The variation in the specific wear rate as a
function of sliding distance is presented in Fig. 16(d). SWR of
the composites is predicted by the constructed ANN model by
considering constant normal load and sliding distance. The
SWR remains high up to 2500m for all the composites
irrespective of filler content and beyond that it starts reducing
slightly. At the beginning, the abrasive particles of the sand
paper easily penetrate in to the composite due to which more
removal of material takes place. But at longer sliding distance,
sand paper becomes smooth due to which size of abrasive
particles decrease leads to lesser penetration into the composite

Fig. 15 Error (%) of RSM and ANN predicted SWR with
experimental result
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Figure 16 (a) Variation of specific wear rate of WSP–polyester composites with sliding velocity for different filler content. (b) Variation of
specific wear rate of WSP–polyester composites with filler content for different sliding velocity. (c) Variation of specific wear rate of WSP–
polyester composites with normal load for different filler content. (d) Variation of specific wear rate of WSP–polyester composites with sliding
distance for different filler content

Fig. 17 SEM image of (a) walnut shell and (b) walnut shell powder
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Fig. 18 SEM micrographs of worn surface for WSP–polyester composites at different test condition (a) 12 wt.%, 500 cm s�1, 500 m, 25 N (b)
8 wt.% , 300 cm s�1, 1500 m, 25 N (c) 4 wt.% , 500 cm s�1, 500 m, 5 N (d) 4 wt.% , 100 cm s�1, 2500 m, 5 N (e) 4 wt.% , 300 cm s�1,
1500 m, 15 N (f) 4 wt.% , 100 cm s�1, 2500 m, 25 N (g) 8 wt.% , 300 cm s�1, 1500 m, 15 N (h) nearly spherical shape walnut shell particle
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surface. Pradhan et al. found similar type of result during their
investigation on the epoxy-lantana camara fiber composites
(Ref 8).

3.3.5 Morphology of Worn Samples. The scanning
electron micrographs of the composite worn surfaces are
presented in Fig. 18(a), (b), (c), (d), (e), (f), and (g). Figure 18(a)
shows micrograph of WSP–polyester composite containing 12
wt.% of filler content after testing at sliding velocity 500 cm
s�1, sliding distance 500 m and 25 N load. From the SEM
image, the uniform distribution of walnut shell particles is
clearly visible. But even at 25 N load wear tracks cannot be
observed clearly on the surface of the composites, which
signals that composite at higher filler loading is capable of
resisting the wear effectively even at higher applied load.
Figure 18(b) shows SEM image of composite containing 8
wt.% of filler at sliding velocity 300 cm s�1, sliding distance
1500 m and 25 N load. Wear tracks with comparatively lower
indentation could be identified which is created due to relative
motion between composite and the countersurface of the
rotating disk. Figure 18(c) is the SEM image of worn surface of
the composites containing 4 wt.% of WSP content after sliding
distance 500 m at 500 cm s�1 velocity under 5N load.
Figure 18(c) shows that deep wear tracks are present on the
surface of the composites even when tested under lower load.
This clearly shows that identification of wear track becomes
very difficult with increase in filler content. The SEM image of
composites with 4 wt.% filler content at velocity 100 cm s�1

tested after 2500 m under 5 N is shown in Fig. 18(d). The
surface is looking hazy and comparatively smoother. After
being tested for long sliding distance, the sand paper becomes
smoother and not able to penetrate more effectively in to
composites due to which wear rate decreases with longer
sliding distance. Figure 18(e) and (f) present the worn surface
of composites at 4 wt.% , 300 cm s�1, 1500 m, 15 N and 4
wt.% , 100 cm s�1, 2500 m, 25 N, respectively. When load is
increased, more heat is generated between the composites and
countersurface, which makes the material softer. Due to which
plastic deformation occurs and cracks are formed on the surface
of the composites. When load is again increased from 15 to 25
N, this micro-fracture leads to the material removal from the
surface of the composite as shown in Fig. 18(f). Figure 18(g)
illustrates the SEM image image of worn surface of composite
at 8 wt.%, 300 cm s�1, 1500 m, 15 N. The wear debris and
plastic deformation are clearly identified on the surface. This
may be occurring due to decrease in ductility of the composites
as a result of higher filler content in the matrix body but it is
difficult to find wear tracks (Ref 31).

4. Conclusions

This work shows that the walnut shell, despite being an
agricultural waste, can be a source for a functional filler
material. The reinforcing potential of the walnut shell powder is
established by successfully fabricating polyester-based com-
posites using it as the filler through the simple hand layup
technique. It is found that the density, porosity, tensile strength,
etc., of these composites depend on the filler loading. Dry
sliding wear behavior of the composites is studied experimen-
tally and the responses are analyzed using a novel statistical
technique like response surface methodology. The analysis
shows that the wear rate of the composites is largely dependent

on the walnut shell powder content. Its inclusion as a filler
enhances the wear resistance capability of polyester resin under
different dry sliding conditions. This work also proposes a
prediction model based on artificial neural networks for
estimating specific wear rates of composites with different
filler concentrations and test conditions within and beyond the
experimental domain.
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