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Martempering is a widely practiced industrial heat treatment process to harden steel parts with minimum
distortion. A numerical experiment to predict hardness distribution in AISI 4140 steel cylinders of various
diameters during martempering is presented in this work. Apart from the diameter (D), the effect of other
process variables such as heat transfer coefficient (h), bath temperature (Tb), and residence time (tr) was
also studied. The relationship between hardness distribution and the aforementioned process variables was
highly nonlinear. An artificial neural network (ANN) model with a single hidden layer and 30 hidden layer
neurons was thus developed to predict the hardness distribution in martempered AISI 4140 steel cylinders.
The increase in bath temperature, diameter, and residence time decreased the average hardness, and
an increase in the heat transfer coefficient increased the average hardness of martempered AISI 4140
cylinders. The weights of the ANN model were used to calculate the relative importance of all input
variables and they followed a decreasing order of Tb>D>tr>h.

Keywords bath temperature, bar diameter, hardness, heat transfer
coefficient, martempering, residence time

1. Introduction

The time quenching technique involves the use of two or
more quenching media on a timed basis. Partial quenching in
water, followed by quenching in oil or molten salt, followed by
air cooling are some examples of the time quenching process.
Interrupted quenching, martempering, and rinse quenching are
commercial examples of this type of quenching practice. The
quenched part is cooled in the medium at a high cooling rate
until martensitic start temperature and then cooled in another
medium at a moderate cooling rate to room temperature. The
practice is to avoid quench defects in the heat-treated part (Ref
1).

Figure 1 shows clearly the difference between conventional
quench hardening, martempering, and modified martempering.
In conventional quench hardening, a large temperature gradient
exists between the surface and core of the part through the
cooling. During martempering (Fig. 1b), the austenitized steel
part is quenched in a quenchant maintained just above Ms, the
part is held in the quenchant until the temperature is equalized
throughout its cross section. The part is then removed from a
high-temperature quench bath and cooled in the air to room
temperature allowing austenite to transform to martensite. The
temperature gradient between the surface and the core,

observed in the parts quenched in high-temperature quenchant
is much less than in conventional quenchants (water, mineral
oil, aqueous polymer, etc.). This reduces both thermal and
transformational stresses, which aids to minimize the distortion
and susceptibility to cracking in the quenched part.

The marquenched parts are subsequently subjected to
tempering. Carbon steels, low alloy steels, and gray cast iron
parts can be subjected to martempering. There are many
variants of martempering. Figure 1(c) shows one of the
variations of the martempering process. Low hardenability
steel parts are subjected to this process. In this process, the part
is quenched in quenchant maintained at a temperature just
below Ms. The low temperature of the quenchant (150-175 �C)
increases the severity of the quenchant. Higher cooling rates
thus offered by the quenchants help in evading high-temper-
ature pearlitic transformation in the quenched part. Another
variant of the martempering process is used to heat treat steel
parts with a large cross-sectional area. In this process, the part is
first quenched in water or brine for a very short time and
subsequently transferred to a martempering bath. This process
increases the depth of hardening as compared to the conven-
tional martempering process.

2. Mathematical Modelling of Hardness Evolution

Quench hardening is a complex multi-physics process that
involves heat transfer, phase transformation, and mechanical
stress fields acting in the quenched body. Generally, TTT and
CCT diagrams have been used to predict the microstructure of
the hardened steel part (Ref 2). Dean et al. (Ref 3) and Rao B.
Smoljan et al. (Ref 4) and Prabhu (Ref 5) used a cooling curve
parameter t85 defined as the time needed to cool from 800 to
500 �C to predict the hardness of hardened steel parts. This
method cannot be used for predicting hardness during martem-
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pering because of the interrupted nature of cooling and high
bath temperature involved in the martempering process.

Tensi (Ref 6) suggested rewetting time, i.e., the time
corresponding to the collapse of vapor blanket stage as a
parameter to predict hardness. Martempering is generally
carried out in molten salt mixture. Rao and Prabhu (Ref 7)
showed that there is no vapor blanket stage during quenching in
molten salt media. Hence, rewetting time cannot be used to
predict hardness during martempering in salt media. Zehtab
et al. (Ref 8) suggested the use of quench factor analysis to
predict the hardness of Jominy end quench steel specimens.

The most widely used method to predict phase distribution
in the quenched steel part was described by Simsir and Gur
(Ref 9, 10). This FEM-based method is based on modified
JMAK (Johnson–Mehl–Avrami–Kolmogorov) and KM equa-
tions (Koistinen–Marburger). Babu and Kumar (Ref 11)
modified this method by incorporating temperature equilibrium
phase limitation for ferrite and bainite to successfully predict
interfacial heat flux at the metal quenchant and phase distri-
bution during quenching of the AISI 4140 steel probe in water
and air.

It is evident that most of the models available in the
literature are focused on predicting hardness during the
conventional quench hardening process. The increasing empha-
sis on distortion control heat treatment processes provides us a
scope for developing similar models to predict hardness during
distortion control heat treatment process. The purpose of the
present work is to modify the phase transformation models
described in the above-mentioned works to model phase
transformations and hardness distributions during the martem-
pering process.

3. Details of the Numerical Model

3.1 FEM-Based Phase Transformation Model

The phase transformation during quench hardening of steel
is a complex process that involves the thermal, metallurgical
effect, and mechanical stress effects interacting with each other.
In the present model, the effect of mechanical stress was
neglected. The thermal field/ heat transfer in the steel is the
driving force for metallurgical transformations. The heat
transfer during quench cooling of a 1-d cylinder is governed

by Eq 1. The heat transfer equation coupled with the phase
transformation field was solved using the FEM method.

qCp

@T

@t
¼ 1

r

@

@r
kr

@T

@r

� �
þ Q ðEq 1Þ

Here, q is density, Cp is the specific heat at constant
pressure, k is thermal conductivity, T is temperature, r
represents radial coordinate and Q is latent heat. The two
physical phenomena that result in the interaction of the phase
transformation field with the thermal field are

(i) Variation of thermophysical properties (q;Cp; k) of the
steel with temperature and the phase composition of the
steel.

(ii) Latent heat evolution is associated with the transforma-
tion of austenite to product phases.

Equation 2 shows the linear mixture rule used to determine
the thermophysical property of a mixture consisting of �N�
phases.

P T; nkð Þ ¼
XN
k¼1

Pknk ðEq 2Þ

where, Pk and nk are the thermophysical property and volume
fraction of the phase �k,� respectively. Phase variable �k� in Eq 2
refers to austenite, ferrite, pearlite, bainite, and martensite.

Q ¼
XN
k¼1

qkDHk
_nk

� �
ðEq 3Þ

In Eq 3, Q is the latent heat that is generated when austenite
transforms to any phase �k� (ferrite, pearlite, bainitic, or

martensite) and DHk and _nk are the latent heat per unit volume
and the rate of evolution of phase k from austenite, respectively.
Figure 2 shows the temperature-dependent thermophysical
properties of AISI 4140 steel. These properties were obtained
from JMatPro software (Ref 12). The ASTM grain size of 9 and
the composition of the AISI 4140 steel probe presented in
Fig. 2 were provided as input to JMatPro software to calculate
thermophysical properties and TTT diagram. Figure 3 shows
the TTT diagram and the critical temperature obtained for 4140
steel.

The transformations of austenite to ferrite, pearlite, and
bainite are diffusional transformations. The transformation of

Fig. 1 Cooling curve superimposed on TTT diagram for (a) conventional quench hardening (b) Martempering (c) Modified martempering [2]
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austenite to martensite is diffusionless transformation. The
isothermal diffusional transformations can be modelled using
the JMAK equation shown in Eq 4.

nk ¼ 1� exp �bk Tð Þtnk Tð Þ
� �� �

ðEq 4Þ

In Eq 4, bk and nk are material parameters that were obtained
from the TTT diagram. In the TTT diagram, transformation
start phase fraction (nki) and transformation finish phase
fraction (nkf ) were 0.1% and 99.9%, respectively.

nk ¼
ln ln nki�1ð Þ

ln nkf �1ð Þ

� �

ln ti
tf

� � ðEq 5Þ

bk ¼ � ln nki � 1ð Þ
tnki

ðEq 6Þ

Equations 5 and 6 show the formulae used to calculate nk
and bk, respectively. Where ti and tf are the transformation times
corresponding to nki and nkf , respectively, at a given temper-
ature (T).

Diffusion-based transformations occur in two stages, nucle-
ation and growth. Schiel�s additive rule was adopted to describe
the non-isothermal nucleation process that occurs during
quenching. The cooling was divided into small intervals of
Dti. The time for the start of transformation (s nki ; Ti

� �
) was

extracted from TTT. Schiel�s sum was then calculated at each
time step as shown in Eq 7.

Sk¼f ;p;b ¼
Xn
i¼1

Dti
si nk ; Tð Þ ðEq 7Þ

When Schiel�s sum exceeded the value of 1, the nucleation
stage was presumed to be complete. After completion of the
nucleation stage, the growth of phases was modelled using the
JMAK (Johnson–Mehl–Avrami–Kolmogorov) equation as de-
scribed in Eq 8 and 9.

n
0

k tð Þ ¼ ntk

nmaxk ntc þ ntk

� � ðEq 8Þ

sf ¼ �
ln 1� n0k tð Þ
� �
bk Tð Þ

� � 1
nk Tð Þ

ðEq 9Þ

ntþDt
k ¼ nmaxk ntc þ ntk

� �
1� exp bk sf þ Dt

� �nk� �� �
ðEq 10Þ

Fig. 2 Temperature-dependent variation of (a) Density, (b)Thermal conductivity, (c) Specific heat (d) enthalpy of transformations for different
phases

Fig. 3 TTT diagram of AISI 4140 steel probe obtained from
JMatPro
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where fictitious time (sf ) is defined as the time required for the
formation of phase fraction n0k tð Þ at constant temperature T.
Later this fictitious time was used to calculate the phase fraction
at the next time step ðntþDt

k ) as described in Eq 10.

With known values of Ae3 and composition, the eutectoid
composition, and carbon equivalent of the AISI 4140 steel was
calculated using Eq 11 (Ref 13). The maximum ferrite
composition (nmaxFe ) was calculated using the lever rule.
Maximum fraction transformed for pearlite and bainite was 1.

%C ¼ 912�þ15:2%Niþ 44:7%Si� 104%Vþ 31:5%Moðð
þ13:1%W�30%Mn� 11 � Cr�20%Cu

þ700%Pþ 400%Alþ 120%Asþ 400%Ti� Ae3Þ=203Þ2

ðEq 11Þ

The diffusionless martensitic transformation was modelled
using the Koistinen-Marburger model shown in Eq 12. X in the
equation was assumed to be 0.011 (Ref 14).

ntþDt
M ¼ ntc þ ntM

� �
1� exp �X Ms � TtþDt

� �� �� �
ðEq 12Þ

3.2 Simulation of the Effect of Heat Transfer Coefficient,
Bath Temperature, Section Thickness, and Residence
Time on Hardness

As shown in Fig. 4, a simulation study on the effect of four
important process variables during martempering of AISI 4140
steel cylinders was performed. Heat transfer coefficient (h),
quench bath temperature (Tb), diameter (D), and residence time
(tR) were considered as the four process variables

The maximum residence time (tRmax) was defined as the
time required to cool the quenched part surface from austen-
itizing temperature (850 �C) to the quench bath temperature and
also fulfil following two conditions

(1) The temperature difference between the surface and cen-
ter of the steel cylinder below 1 �C

(2) The surface temperature is less than 5 �C.

The component was subjected to air cooling at a time greater
than residence time. To ensure residence time is less than the
maximum residence time, the residence time fraction (f) was
defined as the ratio of residence time to maximum residence
time (f=tR/tRMax). The ambient air temperature was assumed to
be 30±C. The air heat transfer coefficient was obtained from
the work of Kothandaraman et al. (Ref 15). The equation used
to determine the surface temperature-dependent air heat transfer
coefficient is given in Fig. 4.

Daniel H Herring (Ref 16) discussed the average heat
transfer coefficients for various quench media like air, salt, gas,
oil, polymer, water, and brine. In the simulations, the quench
heat transfer coefficient was varied from 500 to 3500W/m2 �C
in steps of 500 W/m2 �C. Bath temperature was varied in steps
of 50 �C from Ms � 100 to Ms+100 in intervals of 50 �C. The
diameter of the steel bar was varied in steps of 2, 5, 7.5, 10, 20,
30, 40, 60, 80, and 100 mm. A detailed description of the time
step size and mesh size used in the FEM model is given in
Fig. 4. At each node, the kinetics of diffusion-based and
diffusionless transformations and phase-dependent thermo-
physical properties were modelled as discussed in section 1.1.
The FEM-based code to solve phase transformation coupled
heat transfer equation (Eq 1-12) was coded in MATLAB
compiler (Ref 17). The calculation was stopped when the
temperature at the center of the probe decreased below MS of
the steel grade. As shown in Eq 13 , 14, the volume fraction of
austenite and martensite at room temperature was assumed to
be 5% and 95% of total austenite available for martensitic
transformation at each node at Ms.

nT¼25�C
A ¼ 0:05 nT¼Ms

A

� �
ðEq 13Þ

nT¼25�C
M ¼ 0:95 nT¼Ms

A

� �
ðEq 14Þ

Yield strength was calculated using the linear mixture rule
shown in Eq 15. The hardness (H) was modelled as a function
of yield strength (ry). The hardness-yield strength relationship
was obtained from JMatPro software and is shown in Fig. 5.
Table 1 shows yield strength at room temperature for different
phases obtained from JMatPro.

Fig. 4 Flowchart of the numerical experiment
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H ¼
X

k¼A;F;P;B;M

rknk ðEq 15Þ

The phase transformation coupled heat transfer equation was
solved for all combinations of varying input variables shown in
Fig. 4. The total number of simulations performed was
10979596=2100, where 10, 7, 5 and 6 were the number of
levels of input variables D, h, Tb, and f, respectively

4. Results and Discussion

The results of the simulations for an AISI 4140 steel
cylinder of 60mm diameter quenched in a medium that offers a
heat transfer coefficient of 1000W/m2 K maintained at a bath
temperature of 323.6 �C and held for a residence time of tRmax

is shown in Fig. 6. A sharp change in the thermal profile after
residence time (tr) was due to a change of boundary conditions
to air cooling boundary conditions. The volume % of austenite
(1.14%), ferrite (0.73%%), pearlite (0%), bainite (73.39%), and
martensite (21.69%) phases at room temperature was calculated
at the geometric center.

Similarly, phase fractions were obtained at all the nodes of
the axisymmetric model of the cylinder and these phase
fractions were further used to predict hardness distribution in
the cylinder. Figure 7(a) and (b) shows the distribution of phase
fractions and predicted hardness from surface to center of the
steel. A detailed description of the procedure adopted for the
calculation of these phase fractions and predicting hardness was
provided in Section 2.2. The higher hardness near the surface of
the cylinder was due to a higher volume fraction of martensite
near the surface.

As shown in Fig. 7, the average hardness, HAvg, was
calculated based on the hardness distribution (H(r)) in the steel
cylinder. The average hardness was calculated using the
fundamental theorem of calculus, i.e.,
HAvg ¼ 1

rmax
r
rmax

0

H rð Þdr.Similar procedure was followed and the
value of HAvg was calculated for all 2100 simulations.
Appendix A shows the variation of average hardness in 4140
steel cylinders of different diameters with heat transfer
coefficient, bath temperature, and residence time fraction
during martempering.

4.1 Effect of Section Thickness, Heat Transfer Coefficient,
Bath Temperature, and Residence Time on the Hardness
of AISI 4140 Steel Cylinders during Martempering

Appendix A shows the variation of mean hardness in AISI
4140 steel probes of different diameters (D) with bath
temperature (Tb), heat transfer coefficient (h), and residence
time fractions (f).

For cylinders of diameters lesser than 5mm, variation in the
h, Tb, and f did not have a significant effect on hardness

Fig. 5 Hardness as a function of yield strength

Table 1 Yield strength of different phases

Phase Ferrite Austenite Bainite Pearlite Martensite

Yield strength (MPa) 245 273 850 586 1936

Fig. 6 (a) Transient variation of temperature at geometric center and the surface of the cylinder and (b) Volume fraction of various phases at
the geometric center of the cylinder obtained for numerical experiment with D = 60mm, h = 1000W/m2K, Tb=Ms (323.6 �C) and f=1
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evolution. The mean hardness calculated in this case was very
high.

For cylinders of diameter greater than 10mm, there was a
significant drop in the hardness for low values of h and high
values Tb. This effect of lower hardness at higher h and Tb

increased with increasing diameter. This was evident from the
increase in the lower mean hardness area in the h v/s Tb contour
plots with increasing diameters.

There was no significant effect of residence time fraction (f)
on the hardness for cylinders with diameters less than 10mm.
The decrease in the residence time fraction resulted in
decreased mean hardness values in cylinders with diameters

greater than 15mm as observed in Fig. 16, 17, 18, 19, 21, 22.
This decrease in mean hardness was initially observed to
concentrate in high heat transfer coefficient and high bath
temperature region. However, with an increase in the diameter
of the cylinder, the effect of �f� on mean hardness was observed
in the low heat transfer coefficient and low bath temperature
region. From the contour plots, it is very clear that the mean
hardness is significantly affected by all the four process
parameters and the variation was observed to be nonlinear.
Modelling such a complex process is thus not possible using
conventional regression models.

Fig. 7 (a) Phase fractions and (b) Predicted hardness as a function of radial distance obtained for numerical experiment with D = 60mm,
h = 1000 W/m2K, Tb = Ms (323.6 �C) and f = 1

Fig. 8 Variation of maximum residence time with (a) diameter of steel cylinder
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4.2 Variation of Maximum Residence Time

Residence time is one of the important process variables
during martempering of steel parts. Figure 8 shows the
variation of maximum and minimum values of tRmax with
diameter, heat transfer coefficient, and bath temperature. The
maximum and minimum values of tRmax were significantly
dependent on the diameter of the cylinder. The minimum values
of tRmax decreased with increasing heat transfer coefficient and
bath temperatures. The maximum value of tRmax was indepen-
dent of heat transfer coefficient and bath temperature.

4.3 An Artificial Neural Network Model for Predicting
Hardness Distribution in AISI 4140 Steel Cylinder

Artificial neural network (ANN) is a powerful machine
learning algorithm that is inspired by biological neuronal
networks in animal brains. The neural network toolbox in
MATLAB was used to model the hardness in the AISI 4140
steel cylinder during martempering. Figure 9 shows the
architecture of the artificial neural network model used to
predict hardness distribution in martempered AISI 4140 steel
cylinders

As described in section 2.2, 2100 simulation experiments
were performed for AISI 4140 steel cylinders by varying
diameter, heat transfer coefficient, bath temperature, and
residence time fractions. The hardness values were extracted

at various radial locations in the cylinder of radius ro. These
locations were defined by the dimensionless radial location (r/
ro). The hardness values were extracted at 11 equally spaced
radial locations between the center (r/ro=0) and surface (r/ro=1)
for each simulation experiment with incremental steps of 0.1.
The total number of input/output data set available for training
neural network model was thus 23,400 (2100 simulations 9 11
radial locations).

A single hidden layer neural network architecture shown in
Fig. 9 was used to model the hardness distribution in
martempered AISI 4140 steel cylinders. The neural network
consists of 3 layers input, hidden, and output layers. Equa-
tion 16 shows the scheme adapted to calculate the weighted
summation of normalized input (xi) for each neuron (Nj) in the
hidden layer. Where Wi,j, and bj correspond to weight and bias
for ith input variable and jth hidden layer neuron, respectively.
zj is the input to the hidden layer.

zj ¼ bj þ
X5
i¼1

ðWi;jxiÞ ðEq 16Þ

Fig. 9 Architecture of artificial neural network model used to predict hardness distribution in martempered AISI 4140 steel cylinders

Table 2 Parameters used to normalize inputs and
outputs of the ANN model

D, mm h, W/m2K Tb , �C tr , s r/ro H, HRC

XMin 2 500 223.6 1.5 0 12.82
XMax 100 3500 423.6 1887.4 1 57.86

Fig. 10 (a) Variation of standard error with the number of neurons
in the hidden layer (b) Error plot for NHL=30
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The output from the hidden layer Xo,j was calculated by
applying tan sigmoidal activation function on zj in MATLAB
algorithm as shown in Eq 17.

xO;j ¼
ezj � e�zj

ezj þ e�zj
ðEq 17Þ

A linear activation function was applied on the weighted
sum of xo,j in the output layer to calculate the output Yo as
shown in Eq 18. The output of the ANN model is the
normalized hardness value (YO).

Fig. 11 Distribution of hardness predicted by simulation experiment and ANN model in AISI 4140 cylinder of a) 80mm diameter and
h=1000W/m2K Tb=373.6 �C and f=0.99 b) 100mm diameter and h=3000W/m2K Tb=273.6 �C and f=0.5

Table 3 Weights (Wi,j) and bias (bj) of artificial neural network model

j W1,j W2,,j W3,j W4,j W5,j WO,j bj

1 4.492603 0.054934 � 5.08655 0.783852 0.055709 � 2.98211 � 7.24139
2 � 0.6905 0.094646 � 1.47182 0.076989 0.013129 1.179655 1.091808
3 � 0.37052 1.497062 � 1.37877 � 1.67004 0.005636 � 0.01899 � 2.35544
4 � 1.18454 3.019145 0.074979 � 0.93708 � 0.06961 1.909715 3.46264
5 � 9.54444 0.755572 � 16.2657 1.561605 0.007497 � 0.18663 6.408081
6 0.767698 0.023879 0.048547 0.487942 0.794669 6.055483 � 3.87458
7 � 2.84446 0.258235 � 1.71212 � 0.78966 0.005831 0.532277 0.934729
8 0.209203 1.394904 � 1.64777 � 1.54386 � 0.01999 � 0.16848 0.099309
9 2.887866 2.089068 10.65952 � 2.74416 � 0.10115 0.055021 � 7.72186
10 2.291986 � 0.39156 2.08661 0.787674 � 0.01146 0.584253 � 1.28031
11 1.198053 � 2.83948 � 0.05875 1.099371 0.088066 1.694199 � 3.3097
12 � 3.64561 � 0.30463 � 0.68556 � 1.60414 � 0.01428 � 0.15509 � 0.45347
13 � 12.3348 0.136089 � 9.98664 2.108396 0.068137 0.165096 3.164992
14 � 0.7424 1.075641 � 1.12914 � 0.06884 0.00643 17.95364 0.731976
15 � 5.61135 � 0.05063 5.49732 � 0.80394 � 0.05941 � 2.98014 8.385253
16 0.264735 � 1.3608 � 1.53398 � 0.32562 0.062692 0.083633 � 0.36446
17 6.24201 0.220558 3.928629 � 0.7437 � 0.03775 0.150824 0.107486
18 � 13.2923 1.958165 � 21.9448 � 2.72919 0.08047 0.23651 1.651672
19 � 14.0021 1.06473 � 7.62084 � 1.54792 � 0.02622 4.120855 � 3.41239
20 � 14.9592 � 0.09496 � 29.7522 3.631593 0.040068 0.226373 10.39039
21 0.206447 � 1.13724 � 1.03732 0.502724 0.045574 � 0.10534 0.804228
22 10.96785 � 2.90453 12.91009 � 50.5459 0.006387 0.302004 � 51.9761
23 � 14.0079 1.094948 � 7.60315 � 1.53471 � 0.02759 � 4.00721 � 3.38446
24 � 16.4834 1.615599 � 3.33929 76.43355 � 0.00401 14.75319 64.87251
25 � 0.80544 1.232852 � 1.11738 � 0.09919 0.004065 � 9.09161 0.702555
26 3.037347 � 3.60937 2.423694 � 0.12605 � 0.79645 � 0.36204 � 9.17145
27 � 16.4785 1.626744 � 3.30308 77.16986 � 0.00415 � 14.6326 65.5622
28 11.81401 � 0.94906 1.596262 � 110.599 � 0.00023 � 16.5745 � 103.054
29 � 0.68184 0.854129 � 1.15797 0.00016 0.009935 � 9.46744 0.800716
30 3.069873 � 1.78486 � 5.64006 1.760682 0.005621 � 0.38596 10.98341
bo 1.7527

Fig. 12 Pie chart showing the percentage of relative importance
input variables
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YO ¼ bo þ
XNHL

j¼1

ðWO;jxo;iÞ ðEq 18Þ

5. Data Pre-Processing

There is a large difference between the magnitude of
different input/output variables used in the ANN model. For
instance, h varies between 3500 and 500 whereas D varies
between 2 and 100. To avoid the adverse effects of magnitude
on the convergence of network parameters, the input and output
variables were normalized and scaled between 0 and 1. The
maximum and minimum values of input and output variables
used for normalization are shown in Table 2. Equation 19
shows the formula used to normalize the values of D, h, Tb, tr
(f9tRmax) r/ro, and H.

XNorm ¼ X � XMinð Þ
ðXMax � XMinÞ

ðEq 19Þ

Normalization of input and output data is a very important
step in training the neural network. However, for the prediction
of hardness, normalized output data, Yo, needs to be denor-
malized. Equation 20 shows the formula used to calculate the
hardness from the normalized output from the ANN model.

X ¼ XNormðXMax � XMinÞ þ XMin ðEq 20Þ

6. Training and Validation of the ANN Model

Training a neural network involves the calculation of
weights (Wi,j and WO,j) and biases (bj and bO) by minimizing
the error in the output variables. MATLAB uses the Leven-
berg–Marquardt algorithm to minimize the error of the output
variable and calculate weights and biases.

To avoid overfitting, 70% of the total data set was randomly
selected to train the neural network. The balance of 30% of the
total data was equally divided and used to validate and test the
neural network model.

The number of neurons in the hidden layer (NHL) is an
important parameter that defines the architecture of an ANN
model. Equation 21 shows the procedure adapted to calculate
the mean square error (MSE). The mean square error was
calculated using the whole data set consisting of 23400 input/
output data set.

MSE ¼ 1

n

Xn
i¼1

HSim � HANNð Þ2n ¼ 23400 ðEq 21Þ

As shown in Fig. 10(a), the mean square error decreased
with the number of neurons in the hidden layer. Beyond 30
neurons in hidden layers, there is no significant reduction in the
mean square error with further increases in the number of
neurons in the hidden layer.

A single hidden layer neural network with 30 neurons was
thus used to model the hardness distribution in AISI 4140
cylinders during martempering. Figure 10(b) shows the error
between hardness values over the entire range. The hardness
values predicted by the ANN model were in fair agreement
with hardness values from the simulations.

Figure 11 shows the hardness distribution in AISI 4140 steel
cylinders as predicted using the simulations and ANN model.
The process variables causing the hardness distribution in
Figure 11were chosen to demonstrate the accuracy of hardness
prediction in low and high average hardness regimes, respec-
tively.

6.1 The Relative Importance of Input Variables

Table 3 presents values of all weights and biases of the
suggested neural network model. Equation 22 shows the
procedure suggested by Ibrahim (Ref 18) to calculate the
relative importance (RI) of input variables based on the
connection weights in the neural network. Table 3 shows the
relative importance of parameters calculated for all input
variables neural network model.

RIi ¼
PNHL

j¼1 jWi;jWO;jjP5
i¼1

PNHL

j¼1 jWi;jWO;jj
� � ðEq 22Þ

From Fig. 12 which shows the proportions from Table 4, it
is clear that both temperature and diameter are the most
important input variables, followed by the residence time and
heat transfer coefficient. The dimensionless radial position was
the least important input variable in the neural network model.
The relative importance of input variables should be analyzed
in conjunction with the trends in Fig. 13, 14, 15, 16, 17, 18, 19,
20, 21, 22. Analysis of larger trends in the simulation results
reveals that increased bath temperature, diameter, and residence
time results in decreased hardness whereas, an increased heat
transfer coefficient increased average hardness in martempered
AISI 4140 cylinders. Also from Fig. 11, hardness increased
with an increase in r/ro.

7. Conclusions

In martempering, for a given section thickness of the part,
the heat transfer coefficient, quench bath temperature and
residence time are the process variables that need to be
controlled by the heat treaters. The present work proposes a

Table 4 Relative importance parameter calculated for input variables of neural network model

Inputs Diameter, D Heat transfer coefficient, h Bath temperature, Tb Residence time, tr Radial distance ratio, r/ro

Relative importance (RIi) 8.989 4.640 9.613 6.190 0.568

3424—Volume 30(5) May 2021 Journal of Materials Engineering and Performance



FEM model to simulate martempering process and further uses
the simulation results to formulate an artificial neural network
model to predict hardness in the steel cylinder. These models
are beneficial for the heat-treating community for designing
martempering process. The following are the important con-
clusions from the work.

1. An increase in bath temperature, diameter, and residence
time results in a decrease in hardness whereas, an in-
crease in heat transfer coefficient results in an increase of
average hardness in martempered AISI 4140 cylinders.

2. The artificial neural network model was trained to predict
hardness distribution in martempered AISI 4140 steel
cylinders.

3. The weights of the neural network were used to calculate
the relative importance parameter for each input variable.
The ability of input variables to influence the hardness is
arranged in the following increasing order: Tb > D>
tr > h> r/ro.

4. The proposed model for the prediction of hardness con-
siders the effects of bath temperature, part diameter, resi-
dence time, and the heat transfer coefficient as well.

8. Appendix A

See Figures 13, 14, 15, 16, 17, 18, 19, 20, 21, 22.

Fig. 13 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 2mm diameter for residence
time fraction of (a) 1, (b) 0.99, (c) 0.95, (d) 0.9, (e) 0.75, (f) 0.5
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Fig. 14 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 5 mm diameter for residence
time fraction of (a) 1, (b) 0.99, (c) 0.95, (d) 0.9, (e) 0.75, (f) 0.5
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Fig. 15 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 10 mm diameter for residence
time fraction of (a) 1, (b) 0.99, (c) 0.95, (d)0.9, (e) 0.75, (f) 0.5
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Fig. 16 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 15 mm diameter for residence
time fraction of (a) 1, (b) 0.99, (c) 0.95, (d) 0.9, (e) 0.75, (f) 0.5
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Fig. 17 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 20 mm diameter for residence
time fraction of (a) 1 (b) 0.99, (c) 0.95, (d) 0.9, (e) 0.75, (f) 0.5
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Fig. 18 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 30 mm diameter for residence
time fraction of (a) 1, (b) 0.99, (c) 0.95 (d) 0.9, (e) 0.75, (f) 0.5
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Fig. 19 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 40 mm diameter for residence
time fraction of (a) 1, (b) 0.99, (c) 0.95, (d) 0.9, (e) 0.75, (f) 0.5
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Fig. 20 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 60 mm diameter for residence
time fraction of (a) 1 (b) 0.99, (c) 0.95, (d) 0.9 (e) 0.75, (f) 0.5
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Fig. 21 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 80 mm diameter for residence
time fraction of (a) 1, (b) 0.99, (c) 0.95, (d) 0.9, (e) 0.75, (f) 0.5
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Fig. 22 Effect of heat transfer coefficient and bath temperature on the average hardness in AISI 4140 cylinder of 100 mm diameter for
residence time fraction of (a) 1, (b) 0.99, (c) 0.95, (d) 0.9, (e) 0.75, (f) 0.5
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