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A three-dimensional Voronoi polycrystal model with 125 grains was developed for analyzing the hetero-
geneous phenomena and microplasticity in polycrystalline solids. Using the crystal plasticity, finite element
method, the role of the load modes in the response characteristics of severe plastic deformation was
investigated. Among the tested load modes, uniaxial tension and plane compression are responsible for the
presence of the shear band, while pure shear leads to uniform strain distribution, and simple shear leads to
the concentration of deformation. The higher shear strain was achieved by torsion, followed by simple
shear. At the start-up of the sliding system, torsion and pure shear have the strongest influence, while the
effects of uniaxial compression and plane compression are relatively small. After experiencing the same
strain, simple shear causes lower damage than torsion. In terms of the texture, after tensile strain, poly-
crystalline pure aluminum shows the texture of <111>//ND, after compression, the texture type is {110}//
ND, and after torsion deformation, the texture type is <111>//TD. Under small strain, plane compression
includes copper texture, brass texture, and S-texture. Under high strain, the {111} <211> (annealed)
texture was found in simple shear deformation. Experimental observation verified the high accuracy of the
simulation results based on the excellent agreement between experiment and simulations for the stress–
strain curve and texture evolution, and slip bands. Based on the principle of maximum cumulative plastic
strain and minimum damage, simple shear is determined to be the optimal fine grain mode in the SPD
process.

Keywords crystal plasticity, grain refinement, load modes, severe
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1. Introduction

Due to the great advantages of bulk nanomaterials and
ultrafine-grained materials, severe plastic deformation methods
(SPD) have received intense attention. In particular, the effect
of deformation modes on structure evolution is considered to be
the key basis for evaluating the effectiveness of SPD. Segal
(Ref 1) has analyzed pure shear and simple shear and concluded
that simple shear is the optimal deformation mode for the
development of both high-angle boundaries and fine grains
under monotonic loading and cross-loading. For this mode,
different deformation techniques using simple shear processing
are considered to be particularly suitable for equal channel
angular pressing (ECAP) (Ref 2-4). Vinogradov et al. (Ref 5)
employed either rolling or ECAP, i.e., pure shear or simple
shear mode, to produce two types of specimens and compared
their structures and mechanical behaviors. It was shown that

both simple and pure shear deformation modes under the same
equivalent strain eventually produce similar mechanical prop-
erties. In addition to simple shear and pure shear, some
fundamental load modes such as tension, compression, torsion
and plane strain or their combination contribute to the
development of the structures and mechanical behaviors of
the samples after severe plastic deformation. Li et al. (Ref 6, 7)
used simulation and experiment to investigate the characteris-
tics of combined tension-torsion (CCT) deformation, and the
experimental results revealed that the microstructural evolution
was consistent with the simulation results.

It is difficult to express the reorientation processes of
individual grains after complex load processes in terms of
simple empirical constitutive laws. Generally, experimental
methods are applied, such as using electron backscatter
diffraction patterns (Kikuchi patterns) from a scanning electron
microscope. However, this is often neither practical nor
scientifically rewarding because it provides a large amount of
texture information that is usually unnecessary for predicting
plastic anisotropy and the texture evolution. Various efficient
numerical tools have been used to investigate the effect of load
modes, among which the crystal plasticity finite element
method (CPFEM) has recently been used in the simulation of
fretting for detailed investigations of microplasticity of poly-
crystalline materials (Ref 8-10). The use of such methods is
related to the need for greater insight into not only the
macroscopic responses but also the local fields. Using CPFEM,
considerable effort has been made to model polycrystalline
materials and texture (Ref 11-13). Furthermore, there have been
several studies focused on the microstructure evolution of a
single crystal involving crystallographic slip patterns, plastic
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zones and activated and dominated slip systems. For better
construction of a polycrystalline model that is consistent with
the actual grains, the 3D Voronoi diagram method was
previously employed to discretize space at the grain level.
This polycrystalline model was constructed and used for FEM
analysis. Generally, two approaches were used to generate the
initial orientation of the grains either as a random orientation
distribution or as a distribution based on experimental obser-
vation. The 3D Voronoi model has been successfully applied in
the simulations of tensile tests of polycrystalline aluminum
samples (Ref 14-16). The simulation results show that the grain
size has a significant effect on the deformation behavior, and
the obtained simulated strain–stress relation was in good
agreement with the experimental result. Zhang et al. (Ref 17)
computationally investigated the contribution of dynamic
compression and tension to the microdamage in polycrystalline
ceramics using the Voronoi polycrystal model. The constitutive
modeling considered crystal plasticity by basal slip, intergran-
ular shear damage during compression and intergranular mode I
cracking during tension.

This paper investigated the distributions of the stress, strain
and slip systems in pure aluminum subjected to different load
modes for a given appropriate value of the strain. The rate-
dependent crystal plasticity theory and Voronoi polycrystalline
model were adopted to quantitatively evaluate the influence of
the load modes on the deformation behavior of the sample at
the microscale. This model introduced the shape factor to
control the shape, size and orientation of the grains. Through
the Delaunay network, a Voronoi mosaic microstructure with a
random orientation distribution was generated. The crystal
plasticity was implemented in the ABAQUS finite element
method (FEM) software combined with a user subroutine. The
Taylor-type polycrystalline model and the hardening model
considering the interaction of the sliding system were used in
the finite element code to simulate the microshear band in pure
polycrystalline aluminum.

2. Crystal Plasticity Model

2.1 Crystal Plasticity Constitutive Model

A strain-rate-dependent model was employed in this paper
to represent the hardening of the rate-dependent properties of
the used material. The model establishes the relationship

between the decomposition shear stress . sðaÞ and shear strain
rate _c að Þ as described by Eq 1:

_c að Þ ¼ _c að Þ
0 sgn s að Þ

� � s að Þ

s að Þ
c

�����

����� for s
að Þ � s að Þ

c

_c að Þ ¼ 0 for sðaÞ < sðaÞc

sgnðsðaÞÞ ¼ 1 for sðaÞ � 0

�1 for sðaÞ < 0

( ðEq 1Þ

where sðaÞc is the critical shear stress value determining the start-
up of the sliding system a. This value increases with
deformation, reflecting the effect of work hardening and the
difficulty of deformation, _c að Þ

0 is the reference shear strain rate
corresponding to the shear stress that reaches its critical value,
and n is the index describing the stress sensitivity of the slip
system.

Here, a hardening model was established as given by Eq 2.
This model fully considered the interaction between the slip
systems and classified the slip systems. Different hardening
parameters were selected for the interaction between the
different slip systems to more accurately reflect the three
hardening stages of the FCC crystal slip:

haa ¼ h0 � hsð Þsech2 h0 � hsð Þc að Þ

s1 � s0

� �
þ hs

� �
1þ

XN

b¼1

fab tanh
c bð Þ

c0

	 
( )

ðEq 2aÞ

hab ¼ qhaa; a 6¼ b ðEq 2bÞ

where hab is the hardeningmodulusmatrix, with a ¼ b indicating
self-hardening, while otherwise it means latent hardening.
Generally, is the self-hardening coefficient, and habða 6¼ bÞ is
the latent hardening coefficient. q is the ratio of the latent
hardening coefficient to the self-hardening coefficient, h0 is the
hardening modulus at the beginning of the yield, c is the
cumulative shear strain of the slip system, s0 is the initial critical
shear stress, i.e., the initial strength of the slip system, s1 is the
critical stress at the beginning of plastic flow, c0 is the reference
value of the slip shear strain, hs is the hardening modulus of the
easy slip stage, and fab is the interaction coefficient between the
slip system a and the slip systemb, the value ofwhich depends on
the geometric relationship between the slip systems.

Kalidindi et al. proposed a fully implicit integration scheme,
that is, two approaches to be used to set the time gradient: first,
the stress, strain and state variables such as the strength, shear
strain, and section shear stress of the current slip system are
assumed, and then, the nonlinear incremental equation is
expressed by the Newton–Raphson iterative method (Ref 18,
19).

(1) Using tangent modulus method to describe the time
gradient

In the linear increment formula of nonlinear solution, the
relationship between the shear strain and time increment is
defined as:

Dc að Þ ¼ c að Þ t þ Dtð Þ � c að Þ tð Þ ðEq 3Þ

Linear interpolation with Dt is described by:

Dc að Þ ¼ Dt 1� hð Þ _c að Þ
t þ h _c að Þ

tþDt

h i
ðEq 4Þ

where h is the Euler time parameter ranging from 0.5 to 1.

The first-order Taylor expansion of _c að Þ
tþDt shows that:

_c að Þ
tþDt � _c að Þ

t þ h
@ _c að Þ

@s að Þ Ds
að Þ þ h

@ _c að Þ

@g að Þ Dg
að Þ ðEq 5Þ

Combining Eq 3 and 5 leads to the following equation:

Dc að Þ � Dt _c að Þ
t þ h

@ _c að Þ

@s að Þ Ds
að Þ þ h

@ _c að Þ

@g að Þ Dg
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� �
ðEq 6Þ

Introducing the symmetric and asymmetric parts of the

Schmid tensor of each slip system, p
að Þ
ij and x að Þ

ij were

represented as follows:
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The incremental expression of the hardening function Dg að Þ

is given by:

Dg að Þ ¼
X

b
habDc

bð Þ ðEq 8Þ

Therefore, the increment of the shear stress Ds að Þ in the
section can be expressed as:

Ds að Þ ¼ Lijll
að Þ
kl þ x að Þ

ik rjk þ x að Þ
jk rik

h i
� Deij �

X
b
l að Þ
ij Dc bð Þ

h i

ðEq 9Þ

Considering the constitutive equation of material deforma-
tion in Eq 10, it is observed that the expression of synchronous
rotation stress increment Drij is given by Eq 11:

r̂ ¼ L : D�
Xn
a¼1

L : P að Þ þ B að Þ
h i

_c að Þ ðEq 10Þ

Drij ¼ LijkDekl � rijDekk

�
X

a
Lijkll

að Þ
kl þ x að Þ

ik rjk þ x að Þ
jk rik

h i
Dc að Þ ðEq 11Þ

For a given strain increment Deij, the shear strain increment
can be uniquely determined by the following linear equation

X
b
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ðEq 12Þ

where dab is the Kronecker delta.

Given the increment of the slip shear stress Dc að Þ, other
unknown values can be obtained by using the above formulas.

(2) Expression of nonlinear incremental formula by New-
ton–Raphson iteration

When the Taylor expansion of Eq 5 is canceled, all of the
incremental equations remain unchanged except Eq 6, and the
stress and state variables are calculated at the end of the time

increment. The linear equation of shear strain Dc að Þ is given by

Dc að Þ � 1� hð ÞDt _c að Þ
t � hDt _c að Þ

t f að Þ s að Þ
t þ Ds að Þ

g að Þ
t þ Dg að Þ

 !
¼ 0

ðEq 13Þ

The material parameters of pure aluminum used in this paper
are presented in Table 1. The parameters including the elastic
properties, latent hardening and self-hardening of the slip

systems are fitted from the experimental work of Zhang et al.
(Ref 20).

3. Polycrystalline microstructure

Taking a cube with the dimensions of 1 9 1 9 1 mm3 as the
space, a Voronoi diagram with 125 grains is established. First,
the space is divided into 125 2a 9 2b 9 2c mm3 hexahedra, as
shown in Fig. 1(a). Then, in each isometric space, a certain rule
is used to sow seeds. We use hexahedron (i, j, k) in Fig. 1(b) to
illustrate this method: supposing that the central coordinate
point of the hexahedron space is (x, y, z), then in the
hexahedron, a small hexahedron is determined by points
(x � x, y � y, z � z) and (x + x, y + y, z + z). In this small
hexahedral space, the seeds are randomly distributed with
x = aa, y = bb, z = cc (a, b and c are defined as shape control
parameters), so that the positions of seed points in each
partition area can be controlled by these three parameters
(Table 2). The specific algorithm of generating three-dimen-
sional Voronoi diagram with MATLAB is as follows:

(1) The values of the numbers of grains n1, n2, n3 in three
directions and the critical values of the shape control
parameters a, b and c and seed spacing are picked;

(2) The analysis area is divided into n19 n29 n3 hexahedra,
and the center coordinates of each hexahedron are calcu-
lated;

(3) In the first hexahedron, the position range is determined
by the given shape control parameters a, b, c and the
coordinate of the center point of the hexahedron, and
random seed 1 is generated;

(4) The seed point spacing between seed 1 and its adjacent
hexahedron is calculated. If the spacing is greater than
the given critical value, the seed is generated success-
fully and the algorithm proceeds to the next step. Other-
wise, it will return to (3);

(5) Cycle through the remaining seeds according to the
method in (3).

Figure 2 shows the three-dimensional Voronoi diagrams
generated with different shape control parameters and com-
posed of 125 cells. It can be observed that with increasing
values of the shape control parameters, the degree of the
irregularity of the cells in the Voronoi diagram increases
significantly. The Voronoi diagram of a = b = c = 0.5 is in good
agreement with experimental observations and therefore is
selected as the simulated geometric model.

Generally, the orientation of metallic polycrystals tends to
be scattered around one or some specific orientations in
Eulerian space, where the value of the orientation distribution
function represents the density near the specific orientation (Ref
22). The precise polycrystal model used in the finite element
analysis is modeled strictly according to the Voronoi diagram.
In this work, the coordinates of three-dimensional vertices of
each grain were obtained based on MATLAB and implemented
in ABAQUS in a Python routine. According to the mesh
division of each grain, the interface of each grain is simplified
accordingly. In the Python routine, the mesh size can be
controlled by the control parameter Ms, as shown in Fig. 3. In
the figure, the number of the grains is 125 and there are 125
random orientations, and the element type is C3D8I.

Table 1 Parameters of the interactions between the slip
systems (Ref 21)

a1 a2 a3 a4 a5

1.75 1.75 1.75 2 2.25
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4. Results and Discussion

Figure 4 is a cloud chart of Mises stress distribution under
different loading modes. It can be seen from the figure that
there are obvious concave and convex phenomena on the
surface of the model due to the inhomogeneous plastic
deformation in the polycrystalline grains with different orien-
tations. Moreover, the distribution of the stress and strain in
grains is not uniform, with a clear stress concentration around
the grain boundaries. This is due to the preferential plastic
deformation of the grains under external loading on the slip
surface with the minimum critical shear stress. Based on the
overall stress distribution of the analysis model, the loading
mode has a strong influence on the stress distribution in the
specimen. For uniaxial tension, compression and simple shear
deformation, the stress distribution inside the specimen is
relatively uniform, while the stress of the torsion and pure shear
deformation specimen is relatively large, and the distribution is
uneven.

Figure 5 shows the change curve of the Mises stress and
shear stress with deformation (time) of the selected element. It
is observed from Fig. 5(a) that the Mises stress of torsion
deformation is significantly higher than that of other deforma-
tion modes, which is followed by the Mises stress of simple
shear deformation. Thus, high Mises stress can be produced
rapidly in grains during torsion deformation. In the process of
large plastic deformation, the grain refinement is first initiated
by the slip system under the action of shear stress and then
stops during the sliding process, leading to the appearance of
local stress concentration and grain refinement. Therefore,
Fig. 5(b) shows the shear stress distribution of the selected

element under different loading modes. The analysis shows that
the shear stress is the greatest (approximately 110 MPa) under
torsion and simple shear deformation modes, while the shear
stress is 85 MPa under pure shear. Torsion deformation and
simple shear deformation can also initiate the slip system
during the deformation process, so as to achieve grain
refinement.

Figure 6 shows the distribution of the maximum principal
strain for the strain of 0.1. Similar to the equivalent stress
distribution, the maximum principal strain also shows an
obvious nonuniform distribution with a gradient in the grain.
Some grains show heavy deformation, and the grain boundary
also displays large deformation that will hinder the deformation
of the adjacent grains. Due to the differences in their grain
orientations, the degree of deformation will be different for
each grain. Comparison of the strain distribution nephograms
under different loading modes shows that shear bands can form
in local areas under the uniaxial tension and plane compression
deformation. As shown by the red lines in Fig. 6(a) and (d), the
shear bands have an angle of 45� along the direction of tension
or compression. However, under other loading modes, such
obvious shear bands cannot be formed. Comprehensive anal-
ysis shows that the compression strain is small and uniformly
distributed, while it is the largest and unevenly distributed after
torsion. The strain distribution produced by pure shear is more
uniform. Simple shear gives rise to a strain concentration in the
local area of grains, and the strain difference between the
adjacent grains is large.

Figure 7 shows the results for the accumulated shear strain
of the selected element under different loading modes. It is
observed that the highest cumulative shear strain is obtained for

Fig. 1 Sketch map of seed point generation in 3D Voronoi diagram: (a) regional equal division; (b) cell species

Table 2 Parameters in the constitutive model (Ref 20)

n _c0, 1/s h0, MPa hs, MPa s1, MPa s0, MPa c0

300 0.0001 100 0.01 6.3 6 0.001
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Fig. 2 3D Voronoi graphs with different shape control factors (a = b = c): (a) 0; (b) 0.25; (c) 0.5; (d) 1

Fig. 3 Simplified polycrystalline models controlled by different mesh sizes: (a) Ms = 0.02; (b) Ms = 0.1
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the torsion deformation, followed by simple shear. The
accumulated shear strain is smaller under other loading modes.
For the displacement of 0.1, i.e., the time is 1.0, the torsion
cumulative shear strain is approximately 1.2, and the simple
shear is approximately 0.5. The accumulated shear stress of the
other four loading methods is relatively small due to the shear
stress component of the grains during the deformation and is
basically consistent with the analysis results presented in Fig. 6.

However, it is not comprehensive to judge the optimal grain
refinement mechanism only from the cumulative shear strain in
Fig. 7. It is still necessary to consider the evolution of damage
presented during deformation process. Figure 8 shows the
variation trend of damage in terms of six-load condition. As
seen in Fig. 8, suffering the same strain, the values of
cumulative damage under compression and torsion are the
largest, while the least for pure shear and simple shear. In
addition, torsion deformation can accumulate damage in a short

time; this is not conducive to the continuation of straining. In
consideration of the principle, namely maximum plastic strain
accumulation and minimum damage, the torsion deformation
cannot be regarded as the optimal fine-grained mode of SPD
deformation, while the simple shear can be taken as the optimal
one.

According to the classical crystal plasticity theory, the
presence of plastic deformation is the driving force for the start-
up and sliding of different slip systems, but when the crystal
undergoes plastic deformation, only some slip systems can be
activated. To elucidate the influence of the deformation mode
on the grain sliding system, specific cellular grains were
selected for analysis. The normal and tangential direction of the
sliding surface is characterized by SDV37-39 and SDV73-75,
respectively, as shown in Fig. 9. It is observed that there is a
relationship between the initiation of the slip system in the
grains and the macrostress distribution, and the initiation of

Fig. 4 Stress distribution nephogram: (a) uniaxial tension; (b) uniaxial compression; (c) uniaxial torsion; (d)planar compression; (e) pure shear;
(f) simple shear; (g) legend

Fig. 5 Variation trend of stress with simulated time under different loading modes: (a) Mises stress; (b) shear stress
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Fig. 6 Strain distribution nephogram: (a) uniaxial tension; (b) uniaxial compression; (c) uniaxial torsion; (d) planar compression; (e) pure shear;
(f) simple shear

Fig. 7 Variation trend of accumulated shear strain with simulated
time under different loading modes of the selected element

Fig. 8 Variation trend of accumulated damage with simulated time
under different loading modes of the selected element
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different slip systems in the grains also presents an uneven
distribution. Moreover, as the plastic deformation became more
intense, the sliding system initiated, but the response of the start
of the sliding system to the loading mode varied strongly
depending on the deformation mode, with torsion deformation
and pure shear deformation exerting the strongest influence on
the start of the sliding system, and uniaxial compression and
plane compression exerting the least influence. In addition, the
starting conditions of the simple shear slip system are different
from those of other modes in that the SDV37-39 is negative.

The pole diagram from different loads is obtained in Fig. 10.
For most face-centered cubic (FCC) metals, the slip surfaces are
mostly {111} surfaces, and therefore the {111} polar diagram is
often used to characterize the texture of FCC metals. The
evolution of texture under different load modes of the strain
ranging from 0.1 to 0.9 is obtained by simulation. The ordinate
direction with the center point as the origin is RD direction, and
the abscissa to the right is TD direction.

From the result in Fig. 10, the six deformation modes can
make the texture tend to concentrate. With the increase in

Fig. 9 Time-dependent trend of slip system of all nodes of the selected element: (a) uniaxial tension; (b) uniaxial compression; (c) uniaxial
torsion; (d) planar compression; (e) pure shear; (f) simple shear
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deformation degree, the grain orientation is more concentrated
and the texture is stronger. After 0.9 tensile strain, polycrys-
talline pure aluminum shows the texture in the direction of
<111>//ND; after compression, the sample shows the texture
in the direction of {110}//ND; and after torsional deformation,
the texture type is <111>//TD. Compared with the texture in
the strain of 0.1, the texture in the strain of 0.9 rotates
anticlockwise in the direction of ND by 10�; the plane
compression strain includes copper texture and brass texture
in the low strain. Under high strain, the texture is mainly copper

type; pure shear deformation texture is copper type; and simple
shear deformation texture is {111} <211> (annealed) texture.

5. Experimental Verification

Prior to the deformation, all of the samples were annealed in
a furnace. The samples were heated to 450 �C for 2 h and then
were cooled in the furnace. For calibration and verification of
the model, we characterized the responses of the above six load

Fig. 10 {111} polar diagram of polycrystalline pure aluminum under different loading modes: (a) uniaxial tension; (b) uniaxial compression;
(c) uniaxial torsion; (d) planar compression; (e) pure shear; (f) simple shear
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modes to the strain of 0.1 for a polycrystalline pure aluminum
with 99.9 wt.% purity to estimate the stress–strain curve,
texture evolution and the slip bands of the samples. The tensile
specimen was plate-shaped with a length and width of 100 mm
and 20 mm, respectively. The height and diameter of the
uniaxial compression specimen were 12 mm and 8 mm,
respectively. For planar compression, the sample was con-
strained in the transverse direction. The sample dimensions
were approximately 1091096 mm3, and the test details are
described in (Ref 23). These three tests were carried out using
an Instron 3382 Material Testing Machine (MTS). Cylindrical
samples with a diameter and length of 8 mm and 44 mm,
respectively, were deformed in the torsion achieved in wire
torsion testing machine as described in the literature (Ref 24).
The simple shear and pure shear experiments were carried out
using variable angle fixture, and a detailed description of the
procedure is provided in the literature (Ref 25, 26).

Figure 11 shows the experimental and simulated stress vs.
strain curves for the three load tests at the strain of 0.1. As
observed from Fig. 10, a good agreement between the predicted
stress–strain curve and the experimental stress–strain curve was
obtained, with a particularly good agreement in the initial yield
range. The experimental observation also confirms the harden-
ing trend obtained by the CPFEM model of a motivated

hardening dependence in polycrystals based on their slip
systems. Generally, slip system hardening is achieved through
statistically stored dislocations, and the process can be
described by some equations that capture the influence of the
self- and latent hardening employed in the present study. For
uniaxial compression, as the strain increases, the analysis
shows much more hardening than that observed in the
experiment owing to the contributions of the additional damage
or failure mechanisms within the material. However, the
opposite results were found for planar compression subjected
to the constraints from three surfaces that led to a reduced
probability of damage or failure.

The (1 1 1) pole figures for pure aluminum deformed by four
different modes obtained experimentally using electron
backscatter diffraction (EBSD) are shown in Fig. 12. It is
observed that similar to the simulated results, the pure
aluminum samples after 10% reduction also show very strong
orientation dispersion displaying good agreement between the
simulated and the symmetrized experimental pole figures. This
comparison shows that the CPFEM model underestimates the
texture spread for the FCC crystal. The texture of the
experimental tension sample is slightly different from that in
the simulated tension sample. The pole figure morphology for
the uniaxial compression is characterized by the clustering of

Fig. 11 Material response based on simulated and experimental results of pure aluminum subjected to: (a) uniaxial tension; (b) uniaxial
compression; (c) planar compression
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the orientations into ‘‘4 lobes’’ around the center region.
Another important phenomenon is the relatively weaker texture
obtained experimentally for the uniaxial compression sample
compared to that in the simulation, which is attributed to the
discontinuity in the experimental bulk material with many
micropores. During the compression process, the imposed
strain will be consumed, particularly for small strain. On the
other hand, in both simulation and experiment, the texture of
planar compression is characterized by the presence of the
copper and brass texture components. Although the CPFEM
simulations do not fully capture the microstructural details, they
do provide a possible deformation mechanism that will
eventually lead to the simulated texture. Several previous
studies have concluded that more accurate simulated texture
with better agreement with the experimental results is obtained
for a greater number of grains and denser simulation mesh (Ref
27–32).

Some special phenomena were observed in the experiment,
particularly for uniaxial tension, as shown in Fig. 13. After
tension, coarse grains such as Grain 1 and Grain 2 elongated
and a large number of slip bands appeared inside the grains
marked by the yellow rectangular frame in Fig. 13. The
macroscopic fracture morphology shows that the fracture starts
at the edge of the sample and develops through the grain, and
the microscopic fracture presents the transformation process
from the brittle edge of the pure aluminum sample to tough
center of the sample. The initiation and proliferation of the slip
system prior to the fracture were observed, as predicted by the
simulation results in Fig. 9. In the preliminary CPFEM that
used self- and latent hardening of the microstructures, the
development of the slipping system is responsible for the
macrocrack observed at the slipping system (see the small
yellow rectangular frame in Fig. 13). The presence of dense slip
bands also shows that an increase in the average number of
active slip systems was confirmed in both the experiment and
simulation.

6. Conclusions

A three-dimensional Voronoi polycrystalline geometric
model is established, and the combination of crystal plasticity
finite element and damage model is realized by simulations
carried out using ABAQUS combined with a Python routine.
The stress distribution, strain distribution, slip system start-up,
deformation damage and texture evolution under different
loading modes are predicted and verified.

(1) In the processes of uniaxial tension, compression and
simple shear, the stress distribution is relatively uniform,
while in the uniaxial torsion and pure shear deformation,
the stress is large and is unevenly distributed. Uniaxial
tension and plane compression easily produce local
deformation shear bands, and this phenomenon was ver-
ified by experimental observation for the uniaxial ten-
sion test of coarse pure aluminum. Pure shear produces
a more uniform deformation strain, and simple shear
leads to the concentration of the deformation in the local
area. The cumulative shear strain of torsion deformation
is the largest, followed by that of simple shear.

(2) Torsion deformation and pure shear deformation have
the strongest effect on the start-up of the sliding system,
while uniaxial compression and plane compression have
relatively small influence on the sliding system.

(3) After the same strain for simulation, the cumulative
damage of plane compression and torsion is the largest,
while pure shear and simple shear damage are the least.
For the stress–strain curves under the same strain, it was
found that the experimental observation and the simula-
tion results show excellent agreement, verifying the
accuracy of the simulation.

(4) After tensile strain, pure aluminum shows the texture of
<111>//ND, while after compression, the texture type
is {110}//ND, and after torsion deformation, the texture
type is <111>//TD. Under low strain, plane compres-

Fig. 12 Experimental and simulated {111} polar diagram of pure aluminum under four loading modes
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sion deformation includes copper texture, brass texture
and S-texture. Under high strain, the texture is mainly
copper type, and after pure shear, the texture is copper
type, while{111} <211> (annealed) texture is obtained
for simple shear. Experimental observations of the tex-
ture of the sample are in good agreement with the simu-
lated results.

In conclusion, based on the principle of maximum accu-
mulated plastic strain and minimum damage, it can be
concluded that simple shear is the optimal fine-grain mode in
the SPD process.

Acknowledgments

The authors would like to express their sincere thanks for the
research grants provided by the National Natural Science Foun-
dation of China (Grant No. 51805002) and by the Research Fund
of Key Laboratory of Advanced Metal Material Green Preparation
and Surface Technology (AHUT), Ministry of Education, China
(Grant No. GFST2020KF03).

References

1. V.M. Segal, Severe Plastic Deformation: Simple Shear Versus Pure
Shear, Mater. Sci. Eng. A, 2002, 338(1–2), p 331–344

2. A. Shan, I.G. Moon, H.S. Ko and J.W. Park, Direct Observation of
Shear Deformation During Equal Channel Angular Pressing of Pure
Aluminum, Scr. Mater., 1999, 41(4), p 353–357

3. M. Furukawa, Z. Horita and T.G. Langdon, Microstructures of
Aluminum and Copper Single Crystals Processed by Equal-Channel
Angular Pressing, Mater. Sci. Forum, 2010, 638–642, p 1946–1951

4. R. Venkatraman, S. Raghuraman and R.R. Mohan, Modeling and
Analysis on Deformation Behavior for AA 6061 through Equal

Channel Angular Pressing Die, Commun. Comput. Inf. Sci., 2012, 330,
p 520–525

5. A. Vinogradov, S. Yasuoka, S. Hashimoto, On the Effect of Deforma-
tion Mode on Fatigue: Simple Shear vs. Pure Shear, Materials Science
Forum, 2008, Trans Tech Publ, p 797–802

6. J. Li, F. Li, M.Z. Hussain, C. Wang and L. Wang, Micro-structural
Evolution Subjected to Combined Tension-Torsion Deformation for
Pure Copper, Mater. Sci. Eng. A, 2014, 610, p 181–187

7. J. Li, F. Li, C. Zhao, H. Chen, X. Ma and J. Li, Experimental Study on
Pure Copper Subjected to Different Severe Plastic Deformation Modes,
Mater. Sci. Eng. A, 2016, 656, p 142–150

8. S.H. Choi, D.H. Kim, S.S. Park and B.S. You, Simulation of Stress
Concentration in Mg Alloys Using the Crystal Plasticity Finite Element
Method, Acta Mater., 2010, 58(1), p 320–329

9. A.K. Kanjarla, P.V. Houtte and L. Delannay, Assessment of Plastic
Heterogeneity in Grain Interaction Models Using Crystal Plasticity
Finite Element Method, Int. J. Plast, 2010, 26(8), p 1220–1233

10. Y. Liang, S. Jiang, Y. Zhang, Y. Zhao, S. Dong and C. Zhao,
Deformation Heterogeneity and Texture Evolution of NiTiFe Shape
Memory Alloy Under Uniaxial Compression Based on Crystal
Plasticity Finite Element Method, J. Mater. Eng. Perform., 2017,
26(6), p 2671–2682

11. Y.S. Choi, M.A. Groeber, P.A. Shade, T.J. Turner, J.C. Schuren, D.M.
Dimiduk, M.D. Uchic and A.D. Rollett, Crystal Plasticity Finite
Element Method Simulations for a Polycrystalline Ni Micro-Specimen
Deformed in Tension, Metall. Mater. Trans. A, 2014, 45(13), p 6352–
6359

12. D.K. Kim, J. Kim, W. Park, H.W. Lee, Y.T. Im and Y.S. Lee, Three-
Dimensional Crystal Plasticity Finite Element Analysis of Microstruc-
ture and Texture Evolution During Channel Die Compression of IF
Steel, Comput. Mater. Sci., 2015, 100, p 52–60

13. H.K. Ji, M.G. Lee, J.H. Kang, C.S. Oh and F. Barlat, Crystal Plasticity
Finite Element Analysis of Ferritic Stainless Steel for Sheet Forma-
bility Prediction, Int. J. Plast, 2017, 93, p 26–45

14. O. Ozhoga-Maslovskaja, K. Naumenko, H. Altenbach and O.
Prygorniev, Micromechanical Simulation of Grain Boundary Cavita-
tion in Copper Considering Non-proportional Loading, Comput. Mater.
Sci., 2015, 96, p 178–184

15. P. Zhang, M. Karimpour, D. Balint, J. Lin and D. Farrugia, A
Controlled Poisson Voronoi Tessellation for Grain and Cohesive

Fig. 13 Fracture and slip bands in pure aluminum under uniaxial tension

1992—Volume 30(3) March 2021 Journal of Materials Engineering and Performance



Boundary Generation Applied to Crystal Plasticity Analysis, Comput.
Mater. Sci., 2012, 64, p 84–89

16. S.I. Liang-Ying, L.Ü. Cheng, K. Tieu and X.H. Liu, Simulation of
Polycrystalline Aluminum Tensile Test with Crystal Plasticity Finite
Element Method, Trans. Nonferrous Met. Soc. China, 2007, 17(6), p
1412–1416

17. K.S. Zhang, D. Zhang, R. Feng and M.S. Wu, Microdamage in
Polycrystalline Ceramics Under Dynamic Compression and Tension, J.
Appl. Phys., 2005, 98(2), p 79
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