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In past two decades, number of studies has been reported on 3D printing of polyvinylidene fluoride (PVDF)
composite matrix. But hitherto, little has been reported on 4D applications of graphene(Gr)-reinforced
PVDF for maintenance and repair of heritage structures, especially for self-assembly applications. In this
work, mechanical blending of Gr (size 5-10 nm)-reinforced PVDF has been reported for 4D applications as
possible on-line maintenance tool for heritage structures. The Gr was blended in four different weight
proportions in PVDF matrix. The effect of varying Gr proportion was studied on basis of rheological
properties (melt flow index (MFI) and viscosity) required for processing on open source fused deposition
modeling (FDM) setup. The various proportions/compositions of the composites were also investigated for
thermal stability based upon differential scanning calorimetry (DSC) analysis (required for heritage
structure). The selected proportion/composition of feed stock filament were processed on twin screw ex-
truder (TSE) followed by mechanical testing on universal testing machine (UTM). The results of the MFI
and viscosity outlined that blending of Gr in PVDF decreases the MFI and increases the viscosity of the
composite matrix. The DSC testing showed that PVDF-10%Gr composite have heat capacity of 2 64 J/g
(during heating cycle). The maximum peak strength of 43.01 N/mm2 was observed, while processing at
screw temperature 195 �C with 0.3 Nm torque for filament wire preparation. Finally the 3D printing of
selected composition/ proportion was also successful. The piezoelectric properties of composite were ob-
served after direct current (DC) poling by dielectric constant measurement (D33 = 45 pC/N), which is
sufficient for self expansion/contraction properties. The feed stock samples prepared were counter verified
by performing morphological analysis. For self-assembly applications, vibration sample magnetometry
(VSM) was performed. The results are also supported by Fourier transformed infrared spectroscopy
(FTIR) analysis for ascertaining bonding characteristics corresponding to observed mechanical properties.
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1. Introduction

Additive manufacturing (AM) has brought a revolution in
engineering of various products (Ref 1). Out of commercially
available thermoplastics, many researchers have highlighted
use of PVDF for sensors and actuators (because of the existence
of four different phases in PVDF) (Ref 2). It has been reported
that composite of carbon fiber-reinforced PVDF has good

tribological properties in terms of less wear rate and friction.
FDM of such reinforced thermoplastic material has been
reported by some researchers in which good mechanical
properties were observed (Ref 3, 4). The perfect two dimen-
sional lattices and presence of sp2 hybridized carbon atoms in
Gr gave excellent conducting and thermal properties to it. Some
researchers have reported PVDF polymer matrix based com-
posite for super-capacitance applications by using cellulose
plastics for reinforcing Gr in it (Ref 5, 6). Cement, PVDF
matrix composite and barium titanate-glass based composites
have been reported as electrically conductive material for
electromagnetic induction, sensing and bone regeneration
applications. It has been reported that recycled plastic waste
can be used in road construction, which may help in reduction
of plastic solid waste (PSW) (Ref 7-9). Also, PVDF has been
reported as acceptable material for battery applications due to
efficient electro-active and dielectric properties, whereas
titanate has been found responsible for imparting piezoelectric
property in base polymer matrix (Ref 10-13). The concept of
smart materials with one or two way shape memory program-
ming is of great interest in AM these days. Poly-caprolactum,
polycarbonate, fiber-reinforced polymer composites and con-
crete based smart polymers have been investigated by some
researchers to ascertain 4D or smart properties in composites
for exploring such materials in construction of civil structures
(Ref 14-17). The data shown in Table 1 represent the research
carried in past 30 years (1990-2020) on PVDF and Gr materials
for different engineering applications as per web of science
input using VOS viewer open source software.
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Based on the above data, Fig. 1(a) was obtained for clear
understanding of relevant research carried in the proposed field.
Investigations on PVDF and Gr have been reported for 3D
printing of sensors, actuators, superconductors and many other
robotic applications. Figure 1(b) shows that less work is
reported on 4D capabilities of PVDF-Gr composite for
maintenance and repair of cultural heritage structures.

It has been reported that composite of PVDF, polyamide
(PA6), acrylonitrile butadiene styrene (ABS), polylactic acid
(PLA), etc. having reinforcement of Gr, BaTiO3, TiO2, can be
used successfully for 3D printing on open source FDM setup
with acceptable mechanical properties (Ref 18-27). The
literature review reveals that the previous studies on PVDF
were focused on increasing mechanical and electrical properties
of PVDF for sensor and actuators. But hitherto little has been
reported on PVDF-Gr composite for 4D applications such as
self-assembly in maintenance and repair of heritage structures.
This study reports the investigations on mechanical, thermal,
morphological, magnetic and piezoelectric properties of PVDF-
Gr composite as customized self-assembly based solution for
filling of surface cracks of heritage structures.

2. Experimentation

Mechanical blending of PVDF and Gr nano-particles was
performed to investigate rheological, thermal, mechanical,
piezoelectric, morphological and 4D properties of the compos-
ite. Figure 2 shows the work methodology of the present
research work.

2.1 MFI and Viscosity Testing

To investigate the rheological properties of PVDF and its
composite, nano sized Gr particles were reinforced in PVDF in
four different weight proportions i.e., 2.5, 5.0, 7.5, and 10% by
mechanical blending. MFI of each composition/proportion was
tested as per ASTM D1238 standard. Table 2 shows the MFI of
prepared samples. The wire sample obtained from MFI tester
was weighed and volume of each sample was recorded for
viscosity calculations as per literature reference (Ref 18). Shear
stress and shear rate for each case was recorded as per standard
equations. Table 3 shows density and viscosity of each

composition/proportion. The results obtained for rheological
and viscosity test were discussed.

2.2 Thermal and Mechanical Characterization

Thermal analysis of each composition/proportion was
performed on Mettler Toledo DSC setup. The heat capacity
observed for each sample is shown in Table 4. All the
proportions were processed on TSE to prepare 3D printer
feedstock filament wire. Wires were extruded at screw temper-
ature of 195 �C with 0.3 Nm torque by applying 10 kg load.
Mechanical properties of each filament wire were tested on
UTM. 3D printing of disk-shaped pallet was performed on
FDM based open source printer.

2.3 4D Characterization

The DC poling of 3D printed disk was performed on 5 kV
poling unit and dielectric constant (D33) for each composition
was measured. After ascertaining piezoelectric properties in
PVDF-Gr composite, 4D characteristics of compositions were
investigated by performing VSM test. The FTIR of PVDF and
its composites was performed to analyze bonding characteris-
tics and effect of Gr reinforcement on mechanical properties.
Morphology of each composition/proportion was studied using
Tool Maker�s and metallurgical microscope.

3. Results and Discussion

3.1 Rheological and Viscosity Analysis

Based upon Tables 2 and 3, MFI and viscosity of PVDF-Gr
composite matrix were plotted with common X-axis (Fig. 3). As
observed from Fig. 3, PVDF-5%Gr composition/proportion is
representing intersection point for MFI and viscosity observa-
tions. One of the major outcomes is that beyond this point
usually mechanical and thermal properties are improved (which
may be counter verified from mechanical and thermal testing).
Hence this proportion may be considered as a limiting/ bare
minimum proportion for preparing PVDF-Gr composites.

Table 1 Relevance of research of PVDF and graphene

S. No. Term Occurrences Relevance score

1 PVDF matrix 45 0.9469
2 PVDF hfp 23 1.1483
3 Graphene 86 0.6684
4 Graphene nanoplatelet 16 1.1216
5 Vinylidene fluoride co hexafluoropropylene 15 0.6277
6 Piezoelectric nanogenerator 18 1.6429
7 Piezoelectric property 17 0.9898
8 Polymer 81 0.5283
9 Polymer matrix 25 0.382
10 Dielectric permittivity 14 1.4846
11 Dielectric property 40 1.5769
12 Differential scanning calorimetry 11 1.3281
13 Dispersion 42 0.6503
14 Dielectric permittivity 14 1.4846
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3.2 Thermo-Mechanical Analysis

Based upon Table 4 it has been ascertained that heat
capacity of PVDF composite matrix increased with increase in
weight percentage of Gr (Fig. 4).

The results obtained for UTM test of filament wire is shown
in Table 5. It was observed that mechanical properties like peak
strength and Young�s modulus were best obtained for PVDF +
10%Gr. The stress-strain curve obtained during tensile test is
shown in Fig. 5. As compared to virgin PVDF wire (sample
no.1), PVDF-10%Gr has shown better strain at break (SB) due
to which this may be considered as better solution for 3D
printing.

3.3 Piezoelectric Analysis

3D printing of nanoGr-reinforced PVDF composites was
found successful as 0.3 mm thick disk-shaped pallets were
printed for performing DC poling and measuring dielectric
constant D33. Figure 6(a) shows 0.3 mm thick disks 3D printed
for direct current (DC) poling and measurement of dielectric
constant (D33). Figure 6(b) and (c) shows 5 kV DC poling
setup and D33 equipment for measuring piezoelectric charac-
teristics in PVDF-Gr composites. After DC poling for 3 hours
on disk-shaped samples, PVDF-10%Gr attained the highest
electric charge of 45 pC.

Fig. 1 (a) Web of research carried on PVDF and Gr. (b) Highlighted research on PVDF matrix and Gr
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3.4 VSM and FTIR Analysis

The results obtained for VSM of PVDF-Gr samples showed
that sample 3, 4 and 5 possess acceptable value of magneti-
zation (emu/g), coercivity (Oe) and retentivity (G) for good
magnetic properties. Figure 7(a), (b) and (c) shows the
hysteresis plots obtained for VSM testing of sample 3, 4 and
5, respectively. Table 6 shows the magnetic characteristics of
each tested composite. VSM analysis outlined that composi-
tion/proportion of PVDF with 10%Gr can be magnetized up to
maximum content with average magnetization of
0.00131 9 10�3 emu/g. This proportion has higher average
retentivity and coercivity of 6.16 9 10�3 G and 1660.34 Oe,
respectively.

The FTIR analysis of sample 1 and sample 5 (as per Table 2)
was conducted to investigate the effect of infra-red (IR) rays
intensity on nature of bonding in PVDF due to reinforcement of
nanoGr particles. The FTIR of samples shown in Figure 8(a)
and (b), respectively, highlighted the FTIR absorption spectrum
of virgin PVDF in comparison to PVDF-10%Gr composite.
The sharp peaks in FTIR of PVDF-10%Gr show the increase in
bond strength of composite that possibly increased the
mechanical properties of the composite. The stretch of C-F
bond (observed in the range of 830-890 WN) was also
confirmed by FTIR. The sharp peaks showing C-O stretch at
1160-1180 WN frequency range show the strong chemical
bonding in atoms of sample 5 in comparison to sample 1. The
incremental change in bond strength can be seen clearly in
sample 5 as the peaks got sharper in comparison to sample 1 at
865 WN for C-F stretch and at 1178 WN for C-O bond stretch.
It shows that reinforcement of 10%Gr in PVDF matrix is
responsible for bond stretching and increase in bond strength as
the absorption of composite increased in sample 5 as compared
to PVDF absorption spectra. Further at high WN the
absorbance is approaching zero value both for virgin PVDF

Fig. 2 Process outflow of the proposed work

Table 2 MFI results of PVDF-Gr composites

S. No. Composition/proportion MFI g/(10 min)

1. PVDF 3.804±0.005
2. PVDF + 2.5%Gr 3.647±0.002
3. PVDF + 5%Gr 3.164±0.004
4. PVDF + 7.5%Gr 2.723±0.003
5. PVDF + 10%Gr 2.451±0.002

Table 3 Viscosity of PVDF-Gr composites

S. No. Composition Density, g/cm3 Viscosity, Pa-s

1. PVDF 1.004 4014.32
2. PVDF + 2.5%Gr 1.06 4194.99
3. PVDF + 5%Gr 1.37 4266.13
4. PVDF + 7.5%Gr 1.51 4461.84
5. PVDF + 10%Gr 1.83 5184.22

Table 4 Thermal (heat) capacity of PVDF-Gr composite

S. No. Composition/proportion Thermal (heat) capacity, J/g

1 PVDF � 24
2 PVDF + 2.5%Gr � 26
3 PVDF + 5%Gr � 43
4 PVDF + 7.5%Gr � 52
5 PVDF + 10%Gr � 64
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and PVDF-10%Gr matrix; hence the prepared composite may
be used as sensor in remote sensing applications.

3.5 Morphological Analysis

Tool Maker�s microscopic images obtained at 930 magni-
fication (Fig. 9) show uniform distribution of nano Gr particles

in PVDF matrix due to which acceptable mechanical and 3D/
4D properties were obtained. The images show that uniform
cross section of feedstock filament wire can be prepared using
TSE at proposed processing parameters.

Morphological properties of PVDF-Gr composites were
investigated using metallurgical microscope (at 9100 magni-

Fig. 3 Correlation graph between MFI and viscosity of PVDF-Gr composite

Fig. 4 DSC observations of PVDF-Gr composite
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fication) is shown in Fig. 10(a). Images for surface of filament
wire along the longitudinal axis and radial axis were captured
and processed on metallurgical image analysis software
(MIAS) 4.0 to measure the porosity% in the filament wire
along its length and cross section. Figure (10b) shows that
PVDF-10%Gr possesses lesser porosity% (i.e., 2.93% along
longitudinal axis and 2.21% along the radial axis). As regards
to better morphological and mechanical properties, this com-
position/proportion may be considered as the better for required
3D/4D applications.

4. Conclusions

Following conclusions may be drawn from the present
study:

• The rheological analysis outlined that blending of Gr in
PVDF decreases the MFI and increases the viscosity of
the composite matrix. The 5% Gr reinforcement in PVDF
resulted into a turning point beyond which better mechani-
cal, thermal and morphological properties were noticed.
The thermal testing showed that PVDF-10%Gr composite

Table 5 UTM results of PVDF and PVDF-Gr composites

S. No. PL, N BL, N PS, N/mm2 BS, N/mm2 PE, mm BE, mm %EP %EB SaB, mm SaP, mm MoT, N YM, MPa

1 52.9 47.61 22 19.80 2.85 3.23 5 5 0.053 0.047 0.4080 354.736
2 43.15 38.79 17.92 16.13 3.99 7.98 7 13 0.133 0.065 0.8212 374.615
3 56.3 50.67 23.41 21.07 3.42 3.8 6 6 0.063 0.057 0.5111 314.561
4 70.6 63.54 29.36 26.43 4.75 5.51 8 9 0.091 0.079 0.9293 383.957
5 103.4 93.06 43.01 38.71 3.61 7.41 6 12 0.123 0.060 1.8302 547.313
Here, PL peak load, PE peak elongation, BL break load, BE break elongation, PS peak strength, BS break strength, %EP percentage elongation (peak)
and %EB percentage elongation (break), SaB strain at break, SaP strain at peak, MoT modulus of toughness, YM Young�s Modulus

Fig. 5 Stress-strain curves for PVDF filament and PVDF-Gr composites
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have highest heat capacity of � 64 J/g (during heating cy-
cle).

• The maximum peak strength of 43.01 N/mm2 was ob-
served, while processing at screw temperature 195 �C
with 0.3 Nm torque for filament wire preparation of
PVDF-10% Gr matrix. Finally the 3D printing of selected
composition/ proportion was also successful.

• The piezoelectric properties of composite (PVDF-10% Gr)
were observed (after DC poling) by dielectric constant
measurement (D33 = 45 pC/N), which is sufficient for self
expansion/ contraction properties.

• The feed stock samples prepared were counter checked
for morphological testing, which outlined that porosity for

PVDF-10%Gr was observed as minimum (2.93 % for sur-
face along longitudinal axis and 2.21 % for surface along
radial axis).

• For self-assembly applications, vibration sample magne-
tometry (VSM) was performed on PVDF-Gr composite.
Finally based upon observed magnetic properties (magne-
tization 0.00131 910�3 emu/g, retentivity 6.16 910�3 G
and coercivity 1660.34 Oe) and piezoelectric property
(45pC/N) of PVDF-10%Gr composite, it may be used as
4D material for self-assembly applications by preparing
3D printed smart fillers for repairing cracks in heritage
structures.

Fig. 6 3D printed disks (a), DC poling setup (b), D33measuring equipment (c)
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Fig. 7 Hysteresis curve obtained from VSM test for PVDF-Gr specimen

Table 6 Magnetic properties of PVDF-Gr composites

S. No. Composition/proportion

Output

Coercivity, Oe Retentivity, G Magnetization, emu/g

+ 2 + 2 + 2

1 PVDF + 5%Gr 584.18 546.93 4.36 9 10�3 3.74 9 10�3 0.00122 9 10�3 0.00090 9 10�3

2 PVDF + 7.5%Gr 946.56 802.23 4.91 9 10�3 3.82 9 10�3 0.00129 9 10�3 0.00110 9 10�3

3 PVDF + 10%Gr 1660.34 1439.50 6.16 9 10�3 5.19 9 10�3 0.00131 9 10�3 0.00124 9 10�3
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Fig. 8 (a) FTIR absorption spectra of PVDF wire specimen. (b) FTIR absorption spectra of PVDF + 10%Gr

Fig. 9 Tool Maker�s microscope images of PVDF-Gr composites (at 930)
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Fig. 10 (a) Optical photo micrographic images (at x100 magnification). (b) Porosity% images (at x100 magnification)
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