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Steel tubes produced in steelmaking plants are generally subjected to severe in-service conditions. Hence,
quality control plays a key role in this process. The bottleneck is that this information is made available only
after tube production from laboratory analysis. Given process complexity and current data availability, this
work employs a series of machine learning techniques, namely neural networks, random forests and
gradient boosting trees, to predict critical mechanical properties for steel tubes, namely yield strength,
ultimate tensile strength and hardness. The model performance was kept high by combining different
variable selection procedures. The prediction error was less than the inherent variability of each mechanical
property, i.e., it is equal to 20 MPa for yield strength and ultimate tensile strength, and to 2 HRC, for
hardness. This information in advance allows interventions before complete tube production contributing
to more stable operations and, ultimately, to reduce rework and customer lead time. In sequence, an
optimization problem for set point definition is illustrated. The neural predictive model previously identified
for the yield strength was used in this application, exploring its predictive capabilities. The optimal solution
yielded to lower amount of molybdenum and tube exit temperature from the tempering furnace, while
keeping quality aspects, which means reduction in material and energy costs. Concluding, steelmaking
processes, which are complex by nature, can strongly benefit from data-driven approaches, since data
availability and computational processing are no longer a problem.
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1. Introduction

Steel tubes are usually subjected to severe in-service
conditions. As a result, specific mechanical properties are
required by industrial sectors in general, including oil and gas.
Such properties depend mainly on tube geometry, chemical
composition of the alloy steel and on heat treatment conditions
during tube manufacturing (Ref 1, 2). Before being released to
the final (external) customer, each batch of tubes must wait for
laboratory tests. In addition to the increase in stock, out-of-
specification tubes generate rework and even production losses.
This creates a bottleneck in the process, since laboratory
analysis may require a few days to become available. Hence,
prediction of tube properties, prior to complete tube production,
would be very beneficial from an operational point of view. It
could also prevent infrequent or even improper process
parameter values over time, contributing to more stable oper-

ations. Ultimately, it would improve tube quality control in
several aspects such as design optimization, cost reduction and
customer lead time, to mention a few.

The highly nonlinear and complex relationships involving
steel tube production hinder the use of a pure mathematical
description and, then, final properties� estimation of the tubes
(Ref 3). Such restricted scenario on one side, and the current
availability of massive amounts of data on the other side, favors
the use of machine learning techniques. Data-driven approach
has shown to be successful to describe complex industrial
processes.

In the last decades, studies employing simulated or real data
sets have been carried out with the aim to predict mechanical
properties of steel products in general. Most of them applied
linear regression and neural networks. For example, Pattanayak
et al. (Ref 3) employed neural networks to a multi-objective
optimization problem to improve mechanical properties of API
(American Petroleum Institute) grade microalloyed pipeline
steel tubes, namely strength, impact toughness and ductility,
using chemical composition and processing parameters as
design variables. Sampaio et al. (Ref 4) applied ensemble
learning through a set of neural network models in a thermal
treatment plant of steel tubes later used for online monitoring.
Agrawal et al. (Ref 5) employed multivariate polynomial
regression, decision trees and neural networks to predict fatigue
properties of steels, and Jones et al. (Ref 6) used linear and
nonlinear regression analysis and neural networks to predict
mechanical properties of rolled steels.

After identification and validation, a model can be employed
for several purposes, namely operating safety, clean production
and economic efficiency. This is also the reality of steelmaking
plants. For example, machine learning techniques may con-
tribute to production planning and scheduling, where one
challenge is the varied product portfolio (Ref 7–9). Other area
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with great opportunities is process monitoring, with a particular
interest in developing soft sensors (Ref 10). One example refers
to severe operating conditions, as the determination of the steel
temperature in the ladle furnace. Another concerns monitoring
the output yield of steel, what is important for the control of the
conversion of scrap and iron ore to steel lingots (Ref 11). There
is also interest in the inference of quality parameters (as is the
case of the present work), whose information is usually made
available late from laboratory analysis (Ref 4). Another very
profitable use of machine learning refers to process optimiza-
tion mainly the multi-objective approach (Ref 3). This is
strengthened, from one hand by increasingly tighter market,
government and society regulations, and on the other hand by
the complexity of the operations, given its multivariate and
nonlinear nature. Naturally, adjustments are required prior to its
full implementation on the shop floor. In addition to the
operational issue, it is essential to address human, organiza-
tional and technological aspects to succeed (Ref 12, 13). The
models in this work were developed with the participation of
the process team of the steelmaking plant of the case study.
Also, given the use of the R free statistical software (Ref 14),
computational costs with respect to hosting and general
maintenance tasks are relatively low. Practices like these
facilitate implementations on the shop floor.

The present study develops predictive models for mechan-
ical properties of steel tubes using machine learning techniques.
The real case study refers to a steelmaking plant in Brazil and,
more specifically, to its heat treatment process regarding
quenching and tempering operations. The common mechanical
characteristics of interest, namely yield strength, ultimate
tensile strength and hardness, are predicted. They were defined
to promote a fine adjustment in the quality control of this unit.
The models are based on neural networks, random forests and
gradient boosting trees. Next, a process optimization problem
for defining set points is illustrated using the previously
identified predictive model for yield strength.

Section 2 depicts the methodology, and section 3 describes
the case study and its data set. The results of the predictive
models are presented and discussed in section 4. Section 5
illustrates a machine learning application in steelmaking by
presenting an optimization problem that employs one of the
predictive models previously obtained. Final considerations are
given in section 6.

2. Methodology for Construction of the Predictive
ML Models

Figure 1 depicts the steps of the methodology adopted for
constructing the predictive models. Each step is described next.

2.1 Data Preprocessing

Given the objective of this study, the raw data set is
composed by operation and quality data. The former is obtained
through the Quenching and Tempering Material Tracking
System that has the operational history of every tube produced.
This system is composed of process variables (flow rates,
temperatures and pressures), design variables (diameter and
wall thickness) and process parameters (the soaking time index
and the Tsuchiyama parameter). The latter, obtained from the
Laboratory Information Management System, stores the chem-
ical composition analysis of the steel and the mechanical
property tests, which are the response variables to be predicted
by the machine learning models. Both concern the heat
treatment process. The role of this step is to construct a
reasonable working data set, which is crucial in any data-driven
model description. Variables with considerable register errors,
missing values, or relative low variance are then removed.
Besides literature, it is essential to consider process team
expertise for data cleaning.

2.2 Variable Selection

The goal is to identify the most compact and informative
variable subset, that is, with minimum redundancy and
maximum relevance among variables (Ref 15–17). Given the
previous variable selection based on literature and process
expertise, a second one using two statistical stepwise methods,
namely forward and backward, was carried out (Ref 18). These
procedures, with the objective of a fine adjustment on the
number of predictors, respectively, add/remove variables, one
at a time, to/from a linear regression model. They used the root-
mean-squared error as decision criterion. The variables were
initially normalized in the [0, 1] range to give them the same
importance.

2.3 Model Identification and Evaluation

For the prediction of mechanical properties, two regression
techniques were investigated, namely, artificial neural networks
(ANN) and tree ensemble models. The first approach used the
well-known multi-layer perceptron (MLP) architecture (Ref
19). The starting point of the second approach is the decision
tree technique, which partitions the prediction space into
subregions. Given a new sample, model output is generally
given by the average response of the training samples in the
closer partition. The tree ensemble model is composed of a set
of decision trees (Ref 20). An ensemble approach often
improves any individual performance. The present work
employs random forests (RF) and gradient boosting trees
(XGB) ensemble algorithms. To mitigate the problem of
generalization capacity, the k-fold cross-validation procedure

Fig. 1 Methodology steps for obtaining the predictive machine learning models
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was used for model identification and selection. This procedure
randomly splits the data set into k subsets, where (k � 1) are
used for model estimation, and the remaining, for model
evaluation. They are, respectively, called training and valida-
tion sets. This is repeated k times, each one with a particular
validation set. The root-mean-squared error (RMSE) and the
mean absolute error (MAE) performance metrics are calculated
in each run. They are, respectively, given by Eqs. 1 and 2,
where y is the target value, ŷ is the corresponding model
estimate, and N is the size of the validation set. It aims at
selecting the model that provides the lowest average (consid-
ering the k runs) RMSE and MAE values among all candidate
models. The generalization capacity of the selected models is
also evaluated by the residues analysis, by verifying normality
and proximity to zero mean.
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yi � ŷij j

v

u

u

t ðEq 2Þ

A critical task in machine learning concerns model tuning.
After some trials, the parameter set investigated for each
technique during cross-validation is given as listed below.

• Multi-layer perceptron (MLP): Number of neurons in the
first hidden layer [10:2:40], number of neurons in the sec-
ond hidden layer [0:2:20], number of epochs
[100:100:400], regularization coefficient [0.0001:0.0001:
0.001] and learning rate parameter [0.01:0.01:0.1].

• Random forests (RF): Number of variables randomly cho-
sen for each branch [4:2:12], number of trees
[100:100:1000] and maximum number of nodes for each
tree [50:50:300].

• Gradient boosting trees (XGB): Regularization coefficient
[0:0.1:0.5], learning rate parameter [0.01:0.02:0.2], maxi-
mum depth of each tree [3:3:12] and number of rounds
[200:100:800].

For instance, the number of neurons in the first hidden layer of
the neural network models (MLP) was varied from 10 up to 40
in steps of 2. Two models are obtained for each parameter set,
one for each variable selection method (that is, forward and
backward). For comparison purposes, linear regression analysis
(LM) was also applied in this work (Ref 18).

3. Case Study

The case study concerns the heat treatment plant of a
Vallourec unit in Brazil that produces seamless steel tubes.
Their main equipments are the quenching tank and the
tempering furnace, as shown in Fig. 2. In the quenching
operation, the tube is heated and then cooled abruptly for
hardness increasing. Next, in the tempering operation, this tube
is reheated during a certain time interval for adjusting internal
stresses that arose in the previous operation.

Two data sets were used for modeling, namely the
Quenching and Tempering Material Tracking System, and the

Laboratory Information Management System, as previously
mentioned. They consist of around two years of laboratory
analysis. The variables sampled from them were based on
literature and process expertise. Table 1 shows this initial
selection containing twenty-seven variables. All are related to
the heat treatment unit. Besides the inputs often associated with
quenching and tempering processes, related to time, tempera-
ture and chemical composition, the Tsuchiyama parameter was
also considered. According to Gomes et al. (Ref 21), it presents
good correlations with mechanical properties of heat-treated
materials. By providing more information than the soaking time
index, in conjunction with the average tube temperature at the
furnace exit, it is more suitable for more complex thermal
cycles, as in this work. The Tsuchiyama parameter can be seen
as an improvement of the Hollomon-Jae parameter. In short, it
is obtained by dividing the entire thermal cycle into small
intervals for which an equivalent time is calculated at the
reference temperature (Ref 4). Also, the input for the heat
treatment process is delivered by the factory itself in an
integrated manner. That is, it is in line with a steel refining
plant, a casting unit and a hot rolling mill line. Given the
knowledge of their quality control policies, mechanical or
chemical analyses of this input material were not considered in
modeling.

The predicted mechanical properties are also shown in
Table 1. They usually reflect the material behavior in response
to physical forces, which are measured through a series of
standardized mechanical tests. Yield strength (in MPa) and the
ultimate tensile strength (in MPa) are obtained by a tensile test.
Whereas the former is the stress at which a material starts to
suffer plastic (permanent) deformation, the latter is given by the
maximum stress it can withstand before failing. Hardness (in
HRC; Rockwell C scale) is obtained from a hardness testing.
The smaller the indentation given an indenter and a constant
load on material surface, the harder the material (Ref 2, 22).
Hardness is not an intrinsic property of a material, but a
measure of resistance concerning plastic deformation. This
property often obeys a relationship with yield strength, which
depends on material structure. Song et al. (Ref 23), Hashemi
(Ref 24) and Zhu and Xuan (Ref 25) reported a linear
correlation between these properties for steels in general.
Figure 3(a) shows the relationship between yield strength and
hardness found in this work, from which an approximate linear
behavior is also verified (Ref 26). The ranges for yield strength
and hardness considered in this work are equal to [550,
640] MPa and [14.5, 21.0] HRC, respectively.

The steelmaking plant of the case study produces three
grades of steel (that is, steel families 1, 2 and 3) that serve
distinct specifications of the oil and gas industry. They differ
from each other by combining the chemical composition of the
steel and the external diameter and wall thickness of the tube.
This segmentation, which may vary from plant to plant, is
adopted in the unit of the case study. Table 2 shows the number
of samples for each mechanical property, extracted for each
steel grade. Due to a low number of samples, no models were
obtained for hardness in family 2.

Since the steel grades have their proper modes of operation
in the process, the operation data in the Quenching and
Tempering Material Tracking System (section 2) were used to
investigate them. Given problem dimensionality, with fifteen
out of the twenty-seven variables, by disregarding chemical
compositions and design variables (Table 1), this was accom-
plished using principal component analysis (PCA). PCA is a
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Fig. 2 Main equipments of the heat treatment plant of the case study

Table 1 Variables collected for each tube

Input Unit

Pipe diameter mm
Pipe wall thickness mm
Chemical composition (a total of 14 elements) %
Equivalent carbon content %
Outlet temperature at hardening furnace �C
Soaking time at hardening furnace s
Tsuchiyama parameter for hardening furnace �
Outlet temperature at tempering furnace �C
Soaking time at tempering furnace s
Tsuchiyama parameter for tempering furnace �
Retreatment index �
Immersion time in the quenching tank s
Water flow rate in the quenching tank l/s
Water pressure in the quenching tank bar

Output (mechanical properties of the steel pipes) Unit

Yield strength (YS) MPa
Ultimate tensile strength (UTS) MPa
Hardness (H) HRC (Rockwell C scale)

Fig. 3 (a) Yield strength and hardness relationship in this work and (b) steel families grouping by principal component analysis

Table 2 Number of samples for each mechanical property, extracted per steel family

Steel family Yield strength Ultimate tensile strength Hardness

1 833 833 792
2 407 407 –
3 162 162 134
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multivariate statistical technique commonly used for dimen-
sionality reduction. This is achieved by an orthogonal rotation
of the original coordinate system of the original variables. The
axes of this resulting system are given by the called principal
components (PC), which are linear combinations of the original
variables. The more correlated these variables are, the greater
the problem reduction (Ref 27). Figure 3(b) depicts the score
plot for the first two principal components that explain almost
50% (35.9% by PC1 + 12.9% by PC2) of the total variation of
the operation data. Given the two reference lines (x ¼ 0 and
y ¼ 0), it can be seen that each operating condition, that is,
grade of steel, is located in a particular quadrant of the plot.
Thus, it can be seen that these grades differ considerably with
respect to operating conditions. Besides, data imbalance can be
verified for all mechanical properties (Table 2). This condition
generally favors the majority class, impairing the overall model
performance in case of considering all of them together
(Ref 28). Thus, to achieve greater performance, the predictive
models were obtained separately, one for each steel family.

4. Results and Discussion

Predictive models for each mechanical property, namely
yield strength (YS), ultimate tensile strength (UTS) and
hardness (H), were obtained and evaluated. Firstly, the forward
and backward variable selection methods were applied to
reduce the initial subset of twenty-seven candidate predictors
(Table 1). Dimensionality reduction is usually applied to reduce
computational processing and to mitigate the numerical impact
of redundant information. For instance, chemical compositions
are not independent of each other since they are extracted from
a common specimen. This aspect can even worsen model
performance. By combining steel family, mechanical property
and variable selection method, different subsets of predictors
were obtained. As an example, Table 3 summarizes the selected
groups of variables for steel family 1. In this case, there are 14
and 16 variables for yield strength, 17 and 12, for ultimate
tensile strength, and 19 and 10, for hardness, given the forward

Table 3 Variable selection (number of variables in parentheses) according to the stepwise methods (forward (For.) and
backward (Back.)), for each mechanical property, given steel family 1
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and backward procedures, respectively. These relatively smaller
sizes corroborate with the high redundancy in the initial
variable subset. Also, it can be noted that the subset sizes and
the variables themselves vary for a property and steel family in
particular. However, both subsets yielded to similar prediction
performances (Tables 4, 5, 6). Thus, obtaining association
between statistically based results and physico-chemical phe-
nomena is usually not easy. However, a general map can be
obtained.

Despite the differences between the variable subsets, there
are variables that commonly appear in most of them. For
instance, it is known that carbon, manganese, silicon and
vanadium are positively correlated with resistance, while all of
them, except vanadium, with hardness. This first group of
chemical elements usually appeared for yield strength and
ultimate tensile strength, whereas the second one, without
vanadium, for hardness. Redundant information is critical for
chemical elements considering the proper specifications of a
steel family in particular. This fact may explain the selection of
less expected variables. The design variables, namely pipe
diameter and wall thickness, were selected for all subsets. This
may be due to the fact that the definition of a steel family is a
function of them, as previously mentioned (section 3). This is
also the case for the tube outlet temperatures and process
parameters, namely soaking time and Tsuchiyama index, which
may vary between steel families. These variables are related to
the hardening and tempering furnaces. The water flow rate in
the quenching tank also appears in all subsets. This variable is
responsible for the sudden cooling of the tubes, whose resulting
difference in temperature affects tube mechanical characteris-
tics (Ref 1, 2). Thus, in general lines, the selected subsets make
sense in a practical point of view.

For simplification purposes, next step shows the results
obtained for steel family 1. The analysis for families 2 and 3 is
similar.

4.1 Yield Strength (YS)

A key point is the definition of the acceptable prediction error
for model estimates in relation to laboratory results. This was
carried out jointly by the process team and the laboratory experts.
Given a steel family and a mechanical property in particular,
differences in laboratory measurements between tubes presenting
very similar operating conditions were calculated. After evalu-
ating the distribution of a set of such differences, the 95th per-
centile of the maximum one was used as a measure of accuracy
for the (steel family, mechanical property)-combination. This

threshold can be seen as an inherent variability, as a result of all
uncertainties involving laboratory tests and plant sensors. For
yield strength, it is equal to 20 MPa.

Table 4 presents the best result obtained for each machine
learning technique (RF: random forests; XGB: gradient boosting
trees; MLP: neural network; and LM: linear regression), given
the parameter set combinations (section 2). It shows the RMSE
(Eq. 1) and the MAE (Eq. 2) values for the residues, given by
the differences between laboratory analyses and corresponding
model estimates. The best average (avg) and standard deviation
(std) values, for each variable selection method (forward and
backward), are highlighted in bold. From MAE, it can be
observed that all models meet the acceptable prediction error
(20 MPa). Indeed, they perform similarly, and anyone could be
initially chosen. However, most accurate models, with lower
MAE values, should be adopted in practice. Also, the backward
procedure resulted in less complex models (fourteen inputs) in
relation to the forward one (sixteen variables), without loss of
generalization. This strategy was then more efficient in gener-
ating a compact and relevant input variable subset. Moreover, the
MLP neural network models provided greater generalization
capacity. Figure 4(a) and (b) show the parity relations between
targets and model estimates for yield strength. The dashed lines,
parallel to the line defining perfect correlation, comprise the
acceptable prediction error. As desired, the distribution of the
residues is approximately normal with zero mean.

4.2 Ultimate Tensile Strength (UTS)

The performance of all selected models for the ultimate
tensile strength is also very similar (Table 5). All also meet the
acceptable prediction error of 20 MPa, which was set in the same
way as before for yield strength. The MLP models also resulted
in the best generalization results (Fig. 4c and d). Regarding
variable selection, the forward procedure, with twelve inputs,
was more efficient in relation to the backward strategy, with
seventeen variables, without loss of generalization capacity.

4.3 Hardness (H)

A prediction error less than 2 HRC was considered satis-
factory for hardness. This threshold was set in the same way as
before for yield strength. Table 6 shows that all models present
similar results for MAE complying with this target. The results
for RMSE are also very similar overall, mainly with respect to
MLP, XGB and LM. Figure 4(e) and (f) shows the parity

Table 4 Selected models for yield strength (MPa), given
steel family 1 (avg.: average, std.: standard deviation)

Model RMSE avg. RMSE std. MAE avg. MAE std.

Forward alg. (16 variables)
RF 12.22 1.34 9.44 1.00
XGB 11.05 1.30 8.51 0.90
MLP 10.86 0.74 8.50 0.52
LM 11.06 0.92 8.62 0.80

Backward alg. (14 variables)
RF 12.30 1.30 9.37 0.96
XGB 11.26 1.02 8.76 0.56
MLP 10.91 0.82 8.43 0.69
LM 10.90 0.87 8.50 0.58

Table 5 Selected models for ultimate tensile strength
(MPa), given steel family 1 (avg.: average, std.: standard
deviation)

Model RMSE avg. RMSE std. MAE avg. MAE std.

Forward alg. (12 variables)
RF 10.26 0.90 7.91 0.60
XGB 9.31 0.88 7.10 0.64
MLP 9.06 0.57 6.94 0.40
LM 9.49 0.47 7.31 0.42

Backward alg. (17 variables)
RF 10.17 0.89 7.75 0.60
XGB 8.91 0.94 6.74 0.67
MLP 8.64 0.92 6.62 0.75
LM 9.06 0.53 7.02 0.46
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relations between the targets and the MLP model estimates.
Finally, it can be verified that the forward procedure, with ten
variables, led to much less complex models in comparison with
the backward strategy containing nineteen variables, without
loss of performance.

Lastly, considering the results obtained for all mechanical
properties, it can be verified the importance of investigating a
set of machine learning techniques, in conjunction with variable
selection methods, since none of the combinations is the most
appropriate for all cases.

Table 6 Selected models for hardness (H), given steel
family 1 (avg.: average, std.: standard deviation)

Model RMSE avg. RMSE std. MAE avg. MAE std.

Forward alg. (10 variables)
RF 0.66 0.09 0.49 0.06
XGB 0.64 0.07 0.48 0.05
MLP 0.64 0.07 0.48 0.06
LM 0.65 0.06 0.49 0.05

Backward alg. (19 variables)
RF 0.67 0.09 0.50 0.07
XGB 0.64 0.06 0.49 0.04
MLP 0.63 0.07 0.48 0.05
LM 0.62 0.06 0.48 0.05

Fig. 4 Parity relations between targets and MLP estimates for (a, b) yield strength, (c, d) ultimate tensile strength and (e, f) hardness, given
steel family 1 (dashed lines comprehend the region of acceptable prediction error)
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5. Process Optimization

Data-driven modeling has become more and more relevant
in process industries worldwide for more rational decision
making. After model identification and validation (section 4),
an optimization problem is illustrated. Before that, a general
framework is presented.

The objectives of the heat treatment process in steelmaking
plants can be summarized in tube quality, defined by mechan-
ical properties; production cost, associated with raw materials
and process conditions; and in productivity, given by the
processing time for tube production. In short, the challenge
concerns the search for lower production cost and higher
productivity, subject to mechanical property specifications for
the tubes. The general framework for this optimization problem
can be formulated according to the objective function (Fobj) in
Eq. 3, and a set of restrictions, namely inequality equations
(Eqs. 4-7), lower and upper bounds (Eq. 8) and equality
equations (Eqs. 9-10), where~x is the design variable vector.

minFobj ¼ b� C ~xð Þ þ c� P ~xð Þ ðEq 3Þ

subject to

YSmin � YS ~xð Þ � YSmax ðEq 4Þ

UTSmin � UTS ~xð Þ � UTSmax ðEq 5Þ

Hmin � H ~xð Þ � Hmax ðEq 6Þ

d ~xð Þ � dmax ðEq 7Þ

~xmin �~x �~xmax ðEq 8Þ

PTemp ¼ TTemp � cþ log tSoakð Þ½ � ðEq 9Þ

PAust ¼ TAust � cþ log tSoakð Þ½ � ðEq 10Þ

In Eq. 3, C ~xð Þ describes the raw material costs, relative to
the steel alloy elements, and the production costs, given by
energy consumption. It can be obtained by ~x�~x, where ~x is a
vector of weights. P ~xð Þ represents line productivity, which
refers to the time to heat each tube at the heat treatment
furnaces. In other words, it concerns the cycle time between
pipes or the quantity of pipes produced per hour. The shorter it
is, the lower the energy consumption and the greater the
productivity. This productivity term can be described by
max ~xp

� �

, where~xp represents the entire cycle time of the heat
treatment furnaces, for which the shorter the better. These
cycles are correlated with raw material and energy use. For
instance, distinct combinations between steel alloying elements
have different effects on furnace setup. Also, furnace cycle time
can vary with the type of gas, whether LHV (lower heating
value) higher or lower, air–fuel ratio and with the steel
temperature at the furnace outlet. All these aspects are related to
energy consumption. Thus, this optimization problem formu-
lation seeks to minimize production costs in general while
keeping quality control. Parameters b and c are the weights for
the cost and productivity terms, respectively. Equations 4 up to
6 are given by process models, one for each mechanical
property, namely yield strength (YS), ultimate tensile strength
(UTS) and hardness (H).

Equation 7 seeks to keep the design variables close to the
usual operation. Besides avoiding infrequent, or even infeasible
values, it helps to control the error in the predictive models
(Eqs. 4–6). This becomes worse when only partial knowledge
is available, which is the case of this work. The Manhattan

metric, given by d a; bð Þ ¼k a� b k¼
P

p

i¼1
ai � bij j, was adopted

for this purpose. It computes the shortest distance (d) between a
new sample (a) and the closest observation in the training set
(b), where p is the number of variables (Ref 29). The candidate
design variable vector (~x) is then discarded if d > dmax.
Equation 8 preserves the operating ranges of the design
variables by setting lower and upper bounds for them, and
Eqs. 9 and 10 are necessary to keep consistency concerning
process variables� relationships. They refer to the pressure (P)
and temperature (T ) of the tempering (Temp) and austenization
(Aust) processes, a parameter c and the soaking time index
(tSoak).

The previous framework was employed to illustrate an
optimization problem in the heat treatment furnaces of the
steelmaking plant of the case study. For visualization purposes,
two design variables were employed, namely the percentage of
the molybdenum chemical element (Mo) (x1) and the tube exit
temperature after the tempering furnace (x2) (Table 1). The
greater this temperature, the greater the energy consumption.
The objective was to define set points for both while keeping
the remaining variables in their respective nominal values. The
plant involved in this work is itself the raw material supplier for
its heat treatment unit. That is, the factory is integrated by a
steel refining plant, a casting unit, that produces steel cylindri-
cal bars and a seamless tube rolling mill. The next operation is
exactly the quenching–tempering line. This arrangement
involving the entire steel production chain facilitates process
changes, which explains the use of an alloying element as a
design variable. Thus, the objective function (Eq. 3) was based
on material and operation costs, with b ¼ 1. Only the term
relative to these costs, C ~xð Þ, was used in this example. In short,
the objective regards to achieve lower material costs, by using
lower contents of alloying elements (in this case, molybde-
num), and lower production costs, in relation to energy
consumption.

The following set of restrictions were considered. The
inequality in Eq. 4 made use of a predictive model previously
obtained in this work for yield strength (section 4). The MLP
neural network with fourteen inputs, given by the backward
variable selection method (Table 4), was adopted. This choice
considered its lower MAE value (equal to 8.43) out of the eight
candidate models, when considering both selection procedures.
Due to process complexity, a purely mathematical description is
infeasible. As previously mentioned (section 4.1), the inherent
measurement uncertainty for this property can be of up to
20 MPa. To meet process conditions, a narrower range was
then adopted, with YSmin ¼ 640 MPa and YSmax ¼ 650 MPa.
More relaxed ranges, mainly for the lower bound, can be
applied. For inequality in Eq. 7, the maximum distance (dmax)
was set to 1. The lower and upper bounds for the design
variables in Eq. 8 considered typical values. Namely, ~x1 ¼
0; 0:45½ � for the molybdenum content (in %), and
~x2 ¼ 670; 740½ �, for the tube exit temperature after the temper-
ing furnace (in �C). These ranges may vary from customer to
customer. For the equality restrictions in Eqs. 9 and 10, it is
reasonable to consider simple cycles of heat treatments in the
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furnaces. In this case, the Tsuchiyama equivalent time can be
used as the soaking time index (tSoak), and the reference
temperature, as the tube exit temperature (TAust).

The use of neural models implies that no derivatives are
available, which is required for gradient descent-based opti-
mization techniques. Moreover, the current optimization prob-
lem involves continuous and discrete variables as well as a
nonconvex and discontinuous search space. According to Rao
(Ref 30), the use of conventional nonlinear optimization
techniques in this context is inefficient, computationally
expensive, and the final solution is generally close to the
starting point. According to the same author, genetic algorithm
(GA) is suitable in such cases. Thus, this work used a GA

package (Ref 31) to perform the search in the solution space.
Table 7 shows the parameter set adopted.

Figure 5 shows the (x1; x2)–search space after 1, 5, 10 and
50 generations. The level curves correspond to the yield
strength property (in MPa) calculated using Eq. 4. The color
map ([0.1 (green), 1.0 (gray)] scale) represents the distance of
every feasible solution from the training set domain, according
to Eq. 7. The red point in each plot highlights the best objective
function evaluation. As the number of generations increases,
the design variables converge to solutions that lead to lower
production costs according to the objective function (Eq. 3),
which is given by lower amounts of molybdenum (x1) and
lower tube exit temperatures (x2), while satisfying the set of
restrictions. The optimal solution found was equal to x1 ¼
0:047% and x2 ¼ 670 �C. The chance of using less alloying
elements and operating at lower temperatures is beneficial over
time.

6. Conclusions

The high complexity of industrial operations from one side
and the availability of massive amounts of data on the other
side have been supporting machine learning applications in
general. This work applied a set of data-driven techniques to

Table 7 Parameter set used for the genetic algorithm

Parameter Value

Population size 100 individuals
Probability of mutation 10%
Probability of cross-over 80%
Number of generations 50
Elitism 5 individuals
Encoding type Real

Fig. 5 (a–d) Optimization results given the number of generations, where level curves are given by restriction in Eq. 4, and colormap
([0.1 (green), 1.0 (gray)] scale), by restriction in Eq. 7. (x1 = Molybdenum chemical element (Mo; in %), and x2 = Tube exit temperature after
the tempering furnace (in �C) (Table 1)
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predict commonly used mechanical properties in steelmaking
plants, namely yield strength, ultimate tensile strength and
hardness, of steel tubes produced. The availability of this
information, commonly obtained from laboratory analysis, in
advance, can contribute to more stable operations and, ulti-
mately, to reduce rework and customer lead time. Two variable
selection procedures were employed, which favors data col-
lection, storage and processing, model interpretation and online
implementations. Satisfactory results concerning acceptable pre-
diction errors were achieved for all properties. Also, relatively
smaller input subsets were able to keep model generalization
capacity.

In this work, an optimization problem for minimizing costs
in general was also illustrated. One of the predictive models
previously obtained, for a mechanical property in particular,
was used in this application. Due to process complexity, its
description using a purely mathematical model does not look to
be feasible. The optimal solution resulted in less use of a
particular alloying element and in lower energy consumption,
while keeping quality aspects. Medium and large process
industries, and more specifically steelmaking plants, can greatly
benefit from data-driven approaches, mainly in the present
scenario, with more process data available and increased
computational capacity.
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