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Variations in chemical compositions can lead to changes in the mechanical properties during friction stir
welding (FSW). To facilitate control over the final mechanical properties of the friction stir weld, the
relationship between the chemical compositions and final mechanical properties must be investigated. An
artificial neural network was used for a data-driven analysis of the effects that chemical compositions have
on the mechanical properties of FSW. A precipitate evolution model was implemented to examine the
detailed contributions of different elements to the final mechanical properties. Experiments with different
chemical compositions were conducted to validate the established models. Through both numerical and
experimental analyses, it was determined that the yield strength in the stir zone increased with an increase
in Mg/Si owing to the formation of Mg2Si. The mechanical properties also increased with Si, Mg, and Cu
contents in the solid solution. The mechanical properties decreased with an increase in the Fe and Mn
contents owing to the formation of an intermetallic compound a-Alx(MnFe)ySiz. The final mechanical
properties were determined by both the welding temperature and chemical compositions. By utilizing a
physical model based on a data-driven analysis, the mechanical properties could be optimally controlled.
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1. Introduction

The final quality of a friction stir weld is controlled by many
factors, including the rotational speed, transverse speed,
penetration depth, tool geometry, and tilt angle (Ref 1-7). A
higher rotational speed or lower transverse speed in friction stir
welding (FSW) can lead to an increase in the welding
temperature (Ref 8-10). An increase in the welding temperature
can lead to a higher solution of precipitates for aluminum alloys
during the heating process (Ref 11). During the cooling
process, the precipitates can nucleate and grow. A higher
volume fraction of precipitates with small average particle sizes
(in nanoscale) can lead to an increase in the hardness, as well as
the yield strength, of the final friction stir welds (Ref 12, 13).
Although the design of welding parameters can optimize the
weld quality in FSW, experimental tests reveal that the
mechanical properties of friction stir welds can vary even
under the same (or similar) welding parameters. Abdulstaar
et al. (Ref 14) found that when the rotational and transverse
speeds are 1200 rpm and 0.8 mm/s, respectively, the hardness
is approximately 60 HV in the stir zone during the FSW of
AA6061. When the rotational and transverse speeds are
1200 rpm and 0.7 mm/s, respectively, Fadaeifard et al. (Ref
15) found that the average hardness in the nugget zone is 59.85

HV. Liu and Ma (Ref 16) demonstrated the effect of rotational
speed on the hardness in the stir zone during the FSW of
AA6061. When the rotational speed is 1200 rpm and the
transverse speed is 3.3 mm/s, the hardness in the stir zone
ranges from 59.6 to 76.6 HV. However, when the rotational and
transverse speeds are decreased to 1000 rpm and 1.7 mm/s,
respectively, the hardness in the stir zone during the FSW of
AA6061 is only 47 HV in the as-weld state (Ref 11). For
AA6063, the hardness in the stir zone ranges from 40 to 45 HV
when the rotational speed is changed from 800 to 1220 rpm
(Ref 17). As evidenced, the hardness in the stir zone during
FSW can vary depending upon the welding conditions. Even
under the same or similar welding conditions, the hardness of
the welded material can vary because of changes in the
chemical compositions. It is essential to investigate how
chemical compositions affect the final mechanical properties
of elements that undergo FSW. The determination of these
internal relationships relies on statistical and theoretical anal-
yses.

An artificial neural network (ANN) is an efficient tool to
analyze the effects of the chemical compositions during FSW.
Through a data-driven analysis, the correlation between the
chemical compositions and final mechanical properties can be
established. This method has been successfully applied to
processing techniques. Wang et al. (Ref 18, 19) constructed
multilevel data-driven surrogate models based on extensive
computational data with limited experimental data to predict
microstructural evolutions in additive manufacturing. Big data-
based analytics were used by Majeed et al. (Ref 20) to optimize
the production performance in additive manufacturing. Yan
et al. (Ref 21) optimized numerous influential factors to present
a comprehensive material model of the process–structure–
property relationships present in additive manufacturing.

Although many beneficial studies focus on a data-driven
analysis in various manufacturing industries, the combination
of a data-driven analysis with FSW is lacking. The problem lies
in the combination of a physical model with a data-driven
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analysis, which must be resolved to apply this method to FSW.
The internal relationships between the input welding parame-
ters and the output welding quality are already established
through many useful methods. The Monte Carlo model allows
the welding parameters to be linked to the recrystallized grain
morphologies (Ref 22-24). A precipitate evolution model
(PEM) allows the welding parameters to be linked with the
final mechanical properties, including the hardness and yield
strength (Ref 11, 25, 26). For defect-free FSW, it is necessary
to establish the direct relationship between the input variables
and the final mechanical properties, especially the effects of
various chemical compositions on the mechanical properties,
which should be studied in detail. Doing so will allow various
manufacturing industries to facilitate control over the final
quality of FSW.

2. Experimental Procedure

Three specimens of 6xxx aluminum alloys with different
chemical compositions were friction stir welded using an FSW
machine. Electron-dispersive spectroscopy (EDS) was used to
measure the chemical compositions of the specimens. The
chemical compositions are summarized in Table 1. The dimen-
sions of the specimens were 200 9 110 9 4 mm. H13 steel
was used, and it had a shoulder diameter of 12 mm and a
conical pin. The diameter of the pin ranged from 3 mm at the
tip to 4 mm at the top. The length of the pin was 3.8 mm,
which was slightly shorter than the weld thickness to ensure
defect-free welding. The rotational speed was 800 rpm, and the
transverse speed was 200 mm/min. An infrared radiation
thermometer (IRT) system was used to measure the welding
temperatures. A Vickers hardness tester was used to measure
the hardness distributions of different chemical compositions in
the friction stir weld. The equipment used for experiment is
shown in Fig. 1.

3. Model Descriptions

3.1 Moving Heat Source Model

At present, many numerical models can be used to simulate
FSW, e.g., fully coupled thermomechanical model (Ref 9),
adaptive re-meshing model (Ref 27, 28), CFD model (Ref 29,
30), and moving heat source model (Ref 31-33). The moving
heat source model was established with the ABAQUS subrou-
tine DFLUX to simulate the heat generated by friction between
the welding tool and the specimen. Both the introduction and
application of the moving heat source model have been
discussed in detail in previous studies (Ref 31-33). To calculate

the input power of the moving heat source model, we used the
following formula (Ref 34):

Ps ¼ g
2
3
plpx r3s þ 3lpr2p

� �
; ðEq 1Þ

where g is the frictional heat ratio flowing into the welded
components and was taken at 0.39, l is the friction coefficient
(0.5), p is the contact pressure that was lower than the actual
flow stress of the material at the working temperature (Ref 35),
x is the rotational speed of the welding tool, rs is the radius of
the shoulder, rp is the radius of the pin at the top, and lp is the
length of the pin. The values of x, rs, rp, and lp were identical to
the experimental settings. The boundary conditions for the
convective heat transfer were as follows:

k
@T
@n

¼ h T � Tað Þ; ðEq 2Þ

where k is the thermal conductivity and h is the convective heat
transfer coefficient, as stated in the literature (Ref 36). Ta is the
ambient temperature (20 �C). Using the moving heat source
model, the temperature history of each point (mesh point) on
the specimen was calculated under various conditions.

3.2 PEM

During FSW, the microstructure changed with a variation in
temperature, leading to a change in the mechanical properties.
The strengthening mechanism of the Al alloys originated from
four items, which were grain size, dislocation density, precip-
itates, and a solid solution. The direct contribution from grain
size was insignificant in comparison with those of the other
three items (Ref 26). The precipitates provided the main
contribution to the calculation of the yield stress (Ref 11). The
PEM included the nucleation, dissolution, and coarsening of the
precipitates. The nucleation rate was expressed as follows (Ref
11):

j ¼ j0exp � A0

RT

� �3 1
ln �C=Ceð Þ

� �2
" #

exp � Qd

RT

� �
; ðEq 3Þ

Table 1 Chemical compositions of specimens (wt.%)

Specimen Mg Si Cu Fe Mn Al

No. 1 0.85 0.64 0.26 0.54 0.00 97.42
No. 2 0.88 0.61 0.23 0.17 0.04 97.93
No. 3 0.82 0.82 0.51 0.71 0.15 96.8

Fig. 1 Friction stir welding (FSW) machine and Vickers hardness
tester. (a) Friction stir welding machine, (b) Vickers hardness tester
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where j0 is a pre-exponential term and was taken at
9.66 9 1034 s/m3. A0 is a parameter related to the energy
barrier for nucleation (16.22 kJ/mol). R (8.314 J/K/mol) is the
universal gas constant, T is the temperature, �C is the mean
solute content in the matrix, and Ce is the equilibrium solute
content at the particle/matrix interface. Qd is the activation
energy for diffusion and was taken at 130 kJ/mol. The rate of
growth, or dissolution of the precipitates, was calculated as
follows:

v ¼
�C � Ci

Cp � Ci

D
r
; ðEq 4Þ

where Ci is the solute concentration at the particle/matrix
interface, Cp is the concentration of the element within the
particle and was taken at 63.4 wt.%, D is the diffusion
coefficient, and r is the particle radius. The relationship
between Ci and Ce was the following:

Ci ¼ Ceexp
2cVm

rRT

� �
; ðEq 5Þ

where c is the particle/matrix interfacial energy (0.2) and Vm is
the molar volume of the precipitates (3.95 9 10�5 m3/mol).

The contribution to the yield strength from the hardening
precipitates was calculated as follows:

rP ¼ M
b�r

2bGb2
� ��1=2 3f

2p

� �1=2
P
i
NiFi

P
i
Ni

0
@

1
A

3=2

; ðEq 6Þ

where M is the Taylor factor (3.1), b is the magnitude of the
Burgers vector (2.84 9 10�10), and �r is the mean particle
radius. b is a constant representing the dislocation line tension
and was taken at 0.36. G is the shear modulus of the aluminum
matrix (2.7 9 1010 N/m3), f is the volume fraction, and Ni is
the number density of particles that belonged to a given size
class (ri). Fi is the function of the particle radius ri. When ri was
smaller than the critical radius rc,

Fi ¼ 2bGb2
ri
rc

� �
: ðEq 7Þ

When ri was larger than the critical radius rc,

Fi ¼ 2bGb2: ðEq 8Þ

Some of the Mg, Si, and Cu elements existed in the solid
solution as solutes. Therefore, the contribution from the solid
solution to the yield strength was expressed as follows:

rss ¼ kMg C
2=3
Mg þ kSi C

2=3
Si þ kCu C

2=3
Cu ; ðEq 9Þ

where CMg, CSi, and CCu are the concentrations of Mg, Si, and
Cu, respectively, in the solid solution. The corresponding
scaling factors are kMg, kSi, and kCu and were taken at 66.3, 29,
and 46.4 MPa/wt.%2/3, respectively.

In the 6xxx series aluminum alloys, a portion of the Si
elements can be combined with Fe and Mn to form a-
Alx(MnFe)ySiz (Ref 37, 38). The formation of this intermetallic
compound is frequently affected by the processing technology
and chemical composition of the matrix. Unlike Mg2Si, the

Fig. 2 Back-propagation (BP) artificial neural network (ANN) model workflow
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larger size of a-Alx(MnFe)ySiz indicates it cannot directly
contribute to the calculation of the yield strength. Myhr et al.
calculated the effect of this compound on the mechanical
properties in the form of a-Al15(MnFe)3Si3 (Ref 39). However,
other experiments (Ref 40) show that the yield strength is
reduced when the Fe content is increased. This phenomenon is
supported by the concept of effective Si content in the solid
solution (Ref 39):

Ceff
Si ¼ CSi � 0:33 � CFe þ CMnð Þ; ðEq 10Þ

where CFe and CMn are the concentrations of Fe and Mn,
respectively, in the solid solution.

The yield strength was expressed as follows:

ry ¼ r0 þ rss þ rp; ðEq 11Þ

where the contribution from the grain size of pure Al to the
yield strength (r0) is taken as 10 MPa (Ref 25, 26).

3.3 ANN Model

Data-driven methods can be applied to process mechanics
for the prediction of product quality in engineering (Ref 18, 19,
41). The classic response surface method, Gaussian process
model, and ANN are generally used in a data-driven design. In
this study, a three-layer back-propagation (BP) ANN was
employed to build the surrogate model. A traditional three-layer
BP ANN is composed of an input layer, a hidden layer, and an
output layer, as shown in Fig. 2. xli is the data related to the
input parameters, while yl is the data related to the output
parameters. L is the number of data groups, m is the number of
input parameters, n is the number of hidden layers, and k is the
number of output parameters. The input data from the input
layer are summed with the weight (xij) between the input layer
and the hidden layer. The calculated results of each neuron in
the hidden layer are shown as follows:

Hlj ¼ g
Xm
i

xlixij þ alj

 !
; ðEq 12Þ

where g is the activation function and alj is the threshold value.
Similarly, Hlj on the neurons in the hidden layer was further
transmitted to the output layer, and the calculation results (Olk)
were then obtained through the output layer as follows:

Olk ¼ g
Xn
j

Hljxjk þ blk

 !
; ðEq 13Þ

where xjk is the weight between the hidden layer and the output
layer and blk is the threshold value.

The data training was completed by updating the connection
weight between each layer. Only the adjacent neurons in the
two layers were influenced by one another. The weight
updating formula used was the following:

xijðnewÞ ¼ xijðoldÞ þ g
@E

@xijðoldÞ
xijðoldÞ

xjkðnewÞ ¼ xjkðoldÞ þ g
@E

@xjkðoldÞ
xjkðoldÞ

8>>><
>>>:

; ðEq 14Þ

where g is the learning efficiency. The update to the threshold
was the following:

aljðnewÞ ¼ aljðoldÞ þ g
@E

@aljðoldÞ
aijðoldÞ

blkðnewÞ ¼ blkðoldÞ þ g
@E

@blkðoldÞ
blkðoldÞ

8>>><
>>>:

: ðEq 15Þ

After updating the weights and thresholds, the above
process was repeated with a new dataset until all the data had
been trained. We calculated the performance indicators to
determine the end of the training:

E ¼ 1
L

XL
l¼1

1
2

� �XO
k¼1

ylk �Olkð Þ2 ðEq 16Þ

If E was less than or equal to the accuracy, the training was
completed. Otherwise, we retrained with updated thresholds
and weights until accuracy was met.

Table 2 Data for training ANN model of peak welding temperature

Rotational speed, rpm Welding speed, mm/min Thickness, mm Shoulder diameter, mm Peak temperature, �C Ref.

390 141.8 8.13 25.4 475 42
500 140 6 24 471 43
300 120 6.4 9.6 425 44
400 120 6.4 9.6 433 44
650 120 6.4 9.6 454 44
1000 120 6.4 9.6 472 44
1200 200 3 10 511.8 45
1500 118 5 15 496 46
900 200 6 24 439 47
1200 200 6 24 467 47
1400 200 6 24 482 47
1400 400 6 24 477 47
1400 600 6 24 472 47
800 30 8 24 481 48
1400 800 5 16 462.7 49
1200 600 5 16 435 50
1200 800 5 16 420 50
573 60 10 12.5 456 50
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To avoid data singularity, the input data of the neural
network needed to be normalized:

x0 ¼ x� xmin

xmax � xmin
; ðEq 17Þ

where x is the original data and xmax and xmin are the maximum
and minimum values of the data, respectively. Similarly, the
output of the trained neural network needed to be normalized:

l
0 ¼ l� lmin

lmax � lmin
; ðEq 18Þ

where l¢ is the normalized output value and lmax and lmin are the
maximum and minimum values of the original output data.

The Levenberg–Marquardt algorithm was used for the
training in Eq 12. During the training process, the log-sigmoid
function was used for the activation functions between layers.
The log-sigmoid function formula is as follows:

g xð Þ ¼ 1
1þ e�x

: ðEq 19Þ

4. Physical Model Based on Data-Driven Analysis
and Experimental Validation

The combination of a physical model with a data-driven
analysis was a key component of this study. The data came
from both the PEM and the FSW experiment. Because the
variations in the mechanical properties were directly related to
the PEM, the mechanical changes under different conditions
could be explained in theory. A comparison of the experimental
and numerical results could validate the proposed physical
model based on a data-driven analysis. Because the welding
temperature determines the microstructural evolutions, both the
peak temperature and mechanical property were predicted by
the physical model based on the data-driven analysis. The
weight and thresholds in the ANN model of the peak welding
temperature were trained by experimental data from the
literature (Ref 42-50), as shown in Table 2. The weight and
threshold values in the ANN model of the mechanical property
were trained by both experimental data and the PEM results, as
shown in Tables 3 and 4.

Table 3 Input data for training ANN model of mechanical properties

No. Mg, wt.% Si, wt.% Cu, wt.% Mn, wt.% Fe, wt.% Peak temperature, �C Ref.

1. 0.9400 0.5300 0.2000 0.0061 0.4000 447.9356 51
2. 0.9400 0.5000 0.2000 0.0060 0.4000 482.6922 52
3. 0.9200 0.6500 0.2900 0.7000 0.3200 446.8285 53
4. 0.9910 0.5740 0.1990 0.0380 0.3500 426.4920 54
5. 1.0300 0.7400 0.3100 0.0800 0.1900 455.9699 55
6. 0.9200 0.5700 0.2100 0.0300 0.1700 491.5189 56
7. 0.8400 0.5400 0.2400 0.0100 0.4000 481.9583 57
8. 1.0000 0.7000 0.4000 0.1000 0.7000 563.3883 58
9. 1.0700 0.5800 0.2400 0.1000 0.3200 427.8641 59
10. 0.9900 0.5900 0.2300 0.0090 0.1200 501.8456 60
11. 0.9600 0.5800 0.2800 0.0300 0.4100 467.6291 61
12. 0.6900 0.9100 0.0620 0.5600 0.2300 481.9583 57
13. 0.7000 1.3000 0.1200 0.7000 0.5100 496.0129 62
14. 0.9200 1.3100 0.0430 0.5800 0.2400 406.2821 63
15. 0.7800 0.9500 0.0800 0.4800 0.3900 570.9107 64
16. 0.5900 0.9600 0.0100 0.4500 0.1900 499.4842 65
17. 0.8000 1.0500 0.0400 0.6800 0.2600 505.7730 66
18. 1.1800 0.8900 0.3100 0.4000 0.4000 444.3964 67
19. 0.7000 1.0000 0.0700 0.5100 0.0800 469.4877 68
20. 1.1100 1.2100 0.0958 0.4850 0.3780 423.5751 Calculated by PEM
21. 0.9300 1.1300 0.0965 0.6530 0.2270 423.5751
22. 1.0300 1.0100 0.0166 0.9490 0.4800 423.5751
23. 0.9000 0.8400 0.0971 0.8750 0.1140 423.5751
24. 0.6300 1.1800 0.0958 0.9760 0.2760 423.5751
25. 0.7800 1.1800 0.0491 0.4930 0.2530 423.5751
26. 0.7600 0.8000 0.0802 0.4210 0.4060 423.5751
27. 0.6000 0.8200 0.0747 0.5980 0.1690 423.5751
28. 0.8600 0.7500 0.3490 0.0990 0.2373 423.5751
29. 0.8500 0.6400 0.1970 0.0250 0.3294 423.5751
30. 0.8900 0.4500 0.2720 0.0190 0.1599 423.5751
31. 1.0200 0.4900 0.2610 0.0750 0.3471 423.5751
32. 1.1600 0.4400 0.3120 0.1440 0.1111 423.5751
33. 1.1300 0.7300 0.3270 0.0520 0.1969 423.5751
34. 0.8300 0.4530 0.2123 0.0989 0.2779 423.5751
35. 0.9700 0.4300 0.1653 0.0103 0.1268 423.5751
36. 1.0600 0.4400 0.2908 0.1388 0.3801 423.5751
37. 1.0900 0.5100 0.1553 0.0059 0.0138 423.5751
38. 1.1500 0.5700 0.2162 0.1486 0.1755 423.5751
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The contents of the Mg and Si in the 6xxx series Al alloys
are shown in Fig. 3. Under the same welding conditions, the
Mg, Si, and other elements could be different for the same

materials. This was the primary reason that the final mechanical
property could be different even after FSW for the same
material under the same welding conditions. Therefore, the
effects of the chemical compositions on the final mechanical
properties must be clarified.

The peak temperature measured by the IRT system is
430.3 �C, as shown in Fig. 4(a). The peak temperature
predicted by the ANN model is 423.6 �C, and the calculated
peak temperature by finite element model (FEM) is 426.3 �C.
Compared with the experimental data, the errors of the peak
temperature predicted by ANN model and FEM are 1.56% and
0.93%, respectively. The comparison shows the validity of the
FEM and ANN model.

We measured the chemical compositions of the three
specimens by EDS, as shown in Fig. 5(a-c). The test data
from the Vickers hardness tester were compared with the data
of the trained ANN model, as shown in Fig. 5(d). The locations
for the hardness measurements were 0 mm, D/4, and D/2 from
the centerline. The errors between the experimental data and the
ANN model ranged from 0.49 to 6.46%. The comparison
demonstrated the validity of both the established and trained
ANN models with respect to hardness.

Table 4 Output data for training ANN model of mechanical properties

Number Centerline, HV D/4, HV D/2, HV Ref.

1. 80.90 73.08 82.87 51
2. 80.34 82.24 65.59 52
3. 56.32 58.04 70.55 53
4. 66.28 69.64 54.65 54
5. 89.26 97.94 105.59 55
6. 74.75 75.33 65.33 56
7. 79.48 73.94 83.82 57
8. 62.59 60.84 70.45 58
9. 69.01 70.38 72.82 59
10. 77.76 83.48 70.45 60
11. 76.52 79.32 76.71 61
12. 77.38 83.67 73.19 57
13. 76.57 76.05 73.99 62
14. 72.06 74.12 87.53 63
15. 84.02 78.34 85.44 64
16. 71.82 73.79 84.85 65
17. 77.98 84.85 85.58 66
18. 83.04 83.53 77.06 67
19. 83.76 79.79 74.23 68
20. 83.94 85.80 99.86 Calculated by PEM
21. 78.07 79.44 90.64
22. 68.41 69.76 80.74
23. 68.60 69.72 83.17
24. 70.69 72.32 88.78
25. 74.58 76.64 96.86
26. 68.27 70.03 88.27
27. 65.20 66.77 82.48
28. 74.97 75.87 92.53
29. 68.85 69.64 87.55
30. 66.76 68.42 85.59
31. 63.50 65.04 80.65
32. 64.70 66.27 82.13
33. 81.08 82.94 97.03
34. 60.87 62.36 76.99
35. 64.44 66.08 82.95
36. 56.00 57.24 69.26
37. 68.70 69.67 84.91
38. 64.41 66.40 88.69

Fig. 3 Mg and Si contents in 6xxx series Al alloys

6596—Volume 29(10) October 2020 Journal of Materials Engineering and Performance



Fig. 4 Comparison of experimental and numerical temperature fields. (a) Experimental temperature field and (b) numerical temperature field

Fig. 5 Chemical compositions measured by EDS and comparison between experimental and numerical results
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5. Results and Discussion

The contribution of various elements in the solid solution to
the yield strength (rss) as well as the contribution of the
precipitates to the yield strength (rp) could be calculated using
the PEM. A linear relation between the hardness and yield
strength was found using the following equation (Ref 26):

ry ¼ 3:03HV - 48:48: ðEq 20Þ

Because of this linear relation, the yield strength could be
calculated based on the predicted hardness by the data-driven
model. Moreover, the yield strength could be predicted by the
PEM, according to Eq 11. This allowed for the opportunity to
connect data with the physical model. As indicated by Eq 11,
the yield strength included contributions from pure aluminum
(r0), precipitates, and other elements in the solid solution,
among which the latter two were the main contributors to the
yield strength in the 6xxx series Al alloys. The yield strength
corresponded with different Cu contents in which the contents
of Mg, Si, Fe, and Mn remained unchanged in the 6xxx series
Al alloys, as shown in Fig. 6. The yield strength that was
calculated based on the data-driven model was the same as the
yield strength calculated by the PEM. The contributions of the
pure aluminum and two strengthening mechanisms to the yield
strength are shown in Fig. 6(b). With a 0.2 to 0.4 wt.% increase
in the Cu content, rSS increased from 39.56 to 48.80 MPa, and
rp remained unchanged. The contribution of the solid solution
to the yield strength increased from 24.67 to 28.78%. On the
other hand, the contribution of the precipitates to the yield
strength decreased from 69.09 to 65.33%. The Cu element only
existed in the solid solution and did not affect the nucleation or
dissolution of the Mg2Si. Increasing or decreasing the Cu
content only affected a change in CCu of Eq 9.

The effects of the Mg and Si contents on the mechanical
properties in higher Si contents are shown in Fig. 7. With a 1.0
to 1.2 wt.% increase in the Si content, rp remained unchanged,
as shown in Fig. 7(b). The contribution of the solid solution to
the yield strength increased from 21.81 to 27.06%, and the
yield strength increased 7.18%. Under ideal conditions in
which the relationship between the Mg and Si in the 6xxx series

aluminum alloys was CMg

.
Ceff
Si ¼ 1:732, the Mg and Si could

completely react to form Mg2Si, and no separate Mg and Si are
remaining in matrix. When the Si content was higher, a part of
the remaining Si existed in the solid solution after all the Mg
combined with the Si to generate Mg2Si particles. The
relationship between the Mg and Si contents was
CMg=Ceff

Si < 1:732. This was the reason that rp remained
unchanged when the Si content increased, as in the case of
higher Si content.

Figure 7(d) shows the corresponding rp and rss when the Si
content remained unchanged and the Mg content was increased
from 1.0 to 1.2 wt.%. With an increase in Mg, the formation of
Mg2Si led to a decrease in the Si content in the solid solution,
and rss decreased from 40.32 to 29.31 MPa. Throughout this
process, the nucleation rate was frequently affected by the
temperature and mean solute content in the solid solution, as
shown in Eq 3. With an increase in Mg, the mean solute
content of Mg in the solid solution increased accordingly, and
the nucleation rate also increased. This typically caused further
generation of precipitate Mg2Si particles. Figure 7(e) shows the
particle number distribution of the Mg2Si particles correspond-
ing to the different contents of Mg. The particle number
distribution corresponding to the three contents was notably
similar from approximately 0 nm to 5 nm. These particles
prevented dislocation motion by dislocation shear. From 5 to
12.5 nm, we observed that the number of particles correspond-
ing to the different radii increased with an increase in Mg
content. Because of the large sizes of these particles, when the
dislocations interacted with the particles, the dislocations
followed the Orowan mechanism and produced dislocation
rings around the particles. Additionally, rp increased from
134.54 to 154.23 MPa when larger particles were produced
with an increase in Mg content.

The effects of Mg and Si on the mechanical properties in
higher Mg contents are shown in Fig. 8. When the Mg content
increased, rp remained unchanged. However, rss increased
slightly owing to the increase in Mg content in the solid
solution. The contribution of the solid solution to the yield
strength increased from 44.74 to 46.28%, and the yield strength
increased 2.88%. When the Mg remained unchanged at
1.0 wt.% and the Si increased from 0.4 to 0.6 wt.%, rss

Fig. 6 Effect of Cu on mechanical properties. (a) Comparison of yield strength in different Cu contents predicted by ANN model and PEM. (b)
Effect of Cu content on r0, rs and rp
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Fig. 7 Effects of Mg and Si on mechanical properties in higher Si contents
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Fig. 8 Effects of Mg and Si on mechanical properties in higher Mg contents
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Fig. 9 Effect of Fe on mechanical properties

Table 5 Summary of chemical composition effects on mechanical properties

Element
Element content,

wt.%
Contribution of solid solution to yield

strength, %
Contribution of precipitates to yield

strength, %
Yield strength

changes

Cu 0.2 fi 0.4 24.67 fi 28.78 69.09 fi 65.32 › 5.76%
Si (excessive Si

content)
1.0 fi 1.2 21.81 fi 27.06 72.78 fi 67.89 › 7.18%

Mg (excessive Si
content)

1.0 fi 1.2 21.81 fi 15.14 72.78 fi 79.69 › 4.70%

Si (excessive Mg
content)

0.4 fi 0.6 44.74 fi 24.64 48.31 fi 69.91 › 27.56%

Mg (excessive Mg
content)

1.0 fi 1.2 44.74 fi 46.28 48.31 fi 46.95 › 2.88%

Fe (excessive Si
content)

0.1 fi 0.5 28.73 fi 25.49 66.02 fi 69.03 fl 4.35%

Fe (excessive Mg
content)

0.1 fi 0.5 25.72 fi 34.55 68.68 fi 59.03 fl 12.79%
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decreased from 64.31 to 45.18 MPa and rp increased from
69.44 to 128.20 MPa. As the Si content increased, additional
Mg2Si particles were generated, as shown in Fig. 8(e). With an
increase in Si, more precipitate particles were generated,
resulting in a decrease in CMg. The contribution of the solid
solution to the yield strength decreased from 44.74 to 24.64%,
and the contribution of the precipitates to the yield strength
increased from 48.31 to 69.90%.

When the Fe increased from 0.1 to 0.5 wt.% and the Si
content was higher, the yield strength decreased slightly, as
shown in Fig. 9(a). Furthermore, rss decreased from 54.76 to
46.47 MPa, and rp remained unchanged, as shown in Fig. 9(b).
When the Mg content was higher, rss increased from 45.92 to
53.80 MPa and rp decreased from 122.63 to 91.92 MPa, as
shown in Fig. 9(d). Increasing Fe promoted the generation of
the intermetallic compound Alx(FeMn)ySiz, which was ob-
served in Ref 69. Because of the relatively larger size of this
compound, it did not directly contribute to the material
strengthening. However, as indicated by Eq 10, the content
of effective Si in the solid solution was affected during the
formation process of the compound Alx(FeMn)ySiz. Moreover,
the formation of Mg2Si was affected because of a decrease in
the effective Si content. Therefore, the Mg content in the solid
solution could be increased, leading to an overall increase in the
contribution of the solid solution to the yield strength.

Table 5 is a summary of the effects of chemical composi-
tions on the mechanical properties. It was determined that the
precipitates played a key role in the yield strength within a
reasonable range of chemical compositions. Although an
increase in Mg improved the contribution of the precipitates
to the yield strength when the content of Si was higher, it also
reduced the contribution of the solid solution to the yield
strength. The yield strength was improved more effectively by
increasing the Si. When the Mg content was higher, an increase
in Si improved the yield strength by up to 27.56%. However,
when the Si was higher in content, an increase in Mg only
improved the yield strength by up to 4.7%.

6. Conclusion

1. In the 6xxx series Al alloys, increased Cu content im-
proved the contribution of the solid solution to the yield
strength. Meanwhile, the contribution of the precipitates
to the yield strength was not affected by a change in Cu
content.

2. When the Si content was higher, an increase in Si con-
tent improved the contribution of the solid solution to the
yield strength. With an increase in Mg content, the con-
tribution of the solid solution to the yield strength in-
creased and the contribution of the hardening precipitates
to the yield strength decreased.

3. When the content of Mg was higher, increasing the Si
content improved the contribution of the hardening pre-
cipitates to the yield strength and the contribution of the
solid solution to the yield strength decreased. The in-
crease in Mg content improved the contribution of the
solid solution to the yield strength; however, it did not
affect the contribution of the hardening precipitates to the
yield strength.

4. When the content of Si was higher, an increase in Fe
content reduced the contribution of the solid solution to

the yield strength. When the Mg content was higher,
increasing the Fe content reduced the contribution of the
hardening precipitates to the yield strength and increased
the contribution of the solid solution to the yield
strength.
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