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It is now possible using digital-image correlation techniques to precisely measure deformation within a
developing necking instability, during forming-limit experiments. However, the current standards for
measuring limit strains rely only on data outside of the instability. We propose exactly the opposite, to use
just those deformations from the material where the instability will develop. Marciniak and Kuczynski
experiments were performed on a drawing-quality steel and the entire deformation history recorded with a
high-resolution photographic camera. The strain fields from these image were analyzed with the digital-
image correlation program NCORR, concentrating on where the necking instability would form. The
Merklein et al. (CIRP Ann Manuf Technol 59:295-298, 2010) and Hotz et al. (Key Eng Mater 549:397-404,
2013) temporal analyses were modified through an original smoothing technique to uniquely identify,
through a correspondence of results, when the deformation acceleration rate begins to rapidly increase
within the developing instability. This defines a limit strain. These results were compared to the standard
Bragard-type determination specified in the norm International Standard ISO 12004-2:2008 (Metallic
materials—sheet and strip: determination of forming-limit curves. Part 2—determination of forming-limit
curves in the laboratory, International Organization for Standardization, Geneva, 2008). We found a close
agreement in balanced-biaxial tension between our proposed technique and the standard Bragard-type
analysis. However, in plane-strain and uniaxial deformation the standard analysis appeared to be exces-
sively conservative, by as much as 40% for our steel.
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1. Introduction

The forming-limit diagram (FLD) is a popular graphical
method that quantitatively shows a sheet-metal’s ability to
deform during forming operations. Keeler and Backofen (Ref
11) and Goodwin (Ref 4) were the first to devise this concept
and to demonstrate its utility. Their ideas were based on early
biaxial-bulge and plane-strain experiments by Gensamer (Ref
3).

Over the years, the measurement of the FLD has been
refined until a norm, ISO 12004-2:2008 (2008) now specifies
experimental loading techniques, matrix and punch geometries,
and the data analysis procedure. The norm lists two accept-
able punch geometries: a semispherical rounded-nose punch
(Nakazima et al. Ref 17); and a blunt-nose punch that loads the
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sample through a carrier blank that contains a center hole,
Marciniak and Kuczynski (Ref 13).

Traditionally, sheet deformation in FLD experiments was
measured with circle grids either etched into or deposited on the
specimen surface. Deformation would typically fall into three
categories: uniform, without any evidence of a plastic-necking
instability; deformation including the necking instability; and
fracture. Circle measurements gave the deformations associated
with these particular phenomena. Different techniques were
proposed by various researchers for converting these deforma-
tions into an FLD. The practice that has the greatest acceptance
today is that based on Bragard et al. (Ref 2), and it is described
in the ISO norm. Bragard et al. (Ref 2) proposed examining the
measured strain profile across the necking instability. They
found that the principle strain normal to the developing
instability increased dramatically at the instability and dis-
counted this region from their analysis. They then fitted the
remaining data with a polynomial, whose center value was the
limit strain. It is clear that how the border is defined between
the discounted data and those used for the fitting will
dramatically affect the calculated limit strain. This is particu-
larly important for data obtained with the semispherical punch
technique as an important strain gradient is present in the
principal strain normal to the plastic-necking instability. This
gradient is not nearly as strong for the Marciniak and
Kuczynski (MK) specimen, which has a planar test sec-
tion. Currently, the ISO norm specifies the calculation of the
second derivative of the strain with respect to position on the
sample surface. The maximums in the second derivate define
the boundary for discounting or including data points.
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Ghosh and Hecker (Ref 6) and Ghosh (Ref 7) noted many
years ago that after the development of a diffuse instability a
positive strain rate-sensitive material can continue to sustain
deformation within the developing necking instability. For a
tensile test the Considéré criterion is well known, which states
that the diffuse instability occurs at a strain equal to the
Hollomon work hardening exponent: ¢ = n. These authors
observed that as the strain rate increases due to nonuniform
deformation the induced positive strain rate sensitivity stress
increase is sufficient to postpone necking until a value of at
least ¢ = 2n is reached. Ghosh (Ref 7) states that even after the
diffuse instability is reached deformation ‘‘is quasi stable in
nature, it is practically ‘uniform’ and useful,”” and he reported
that for tensile tests steel can experience nearly 40% of its total
elongation after the diffuse instability.

Thus, for positive strain rate-sensitive metals the ISO
criterion could be overly conservative, as it relies on the strains
outside of the necking instability to determine the material’s
limit strains. This could be particularly important in the case of
the Marciniak and Kuczynski experiment because there are
practically no strain gradients. The deformation outside the
instability is at the value of the diffuse instability.

In the past, circle grid measurement, providing only
millimeter length-scale resolution, was the only technique
available to measure limit-strain deformations. Thus, it was
impossible to measure deformations occurring just within a
necking instability. Now, the digital-image correlation tech-
nique (DIC) gives nearly micron scale resolution for high-
quality images and the ability to study the necking instability
specifically. Vacher et al. (Ref 19) and Sutton et al. (Ref 18)
have applied DIC to measure sheet-metal forming-limit strains.
Digital-image correlation gives not only full-field deformation
data and much greater resolution than the traditional grid
technique, but a temporal history of deformation. For image
correlation, a random pattern of fine dark spots is applied over a
uniform white background, i.e., a speckle pattern. As defor-
mation of the sample proceeds, successive images of the
speckle pattern are recorded, and distortions, expansions and
contractions in the pattern give deformations and subsequently
strains, through commercial, e.g., GOM (Ref 5) or open-source
Blaber et al. (Ref 1) digital-image correlation programs.

A popular method of determining limit strains, based on
digital-image correlation data, is to compare strains and strain
rates in the area of uniform deformation with those in the
necking instability. This takes advantage of the time history and
full-field data available from the DIC technique.

In their paper, Martinez-Donaire et al. (Ref 14) examined a
profile of points perpendicular to the formed instability for an
AA7075-O aluminum alloy. Within the zone that developed
into an instability (local neck) the major strain rate increased
monotonically with time, whereas outside of it, the strain rate
tended to first increase and then decrease. They were able to
identify a singular point (time-history curve) on the shoulder of
the instability where the major strain rate first increases and
then decreases to zero. The time step at which the maximum
occurs for this curve defined the limit strain. Wang et al. (Ref
21) compared the through-thickness strain inside and outside of
the necked zone and then defined the strain limit in terms of a
difference between these two values. Iquilio et al. (Ref 10) used
the Marciniak and Kuczynski geometry to measure limit
strains. Their results for a 430 stainless steel were based on the
time variation of the thickness strain identified at the center and
the edge of the necking zone.
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Merklein et al. (Ref 15) were some of the first to propose
using a statistical method to identify the point at which a plastic
flow localization develops in a deforming sheet. While not
stated with an explicit equation in their paper, they proposed
using a correlation coefficient to determine when the time
history of the second derivative of the major plastic strain
deviates from linearity. Their analysis has the advantage that it
can be applied to only the deformations within the necking
instability. Analyzing experimental data, they showed a peak in
the correlation coefficient that is associated with a rapid rise in
the strain-acceleration/time curve—the development of the
necking instability. And finally, they took the strains from the
image associated with this peak as the limit strains.

The work of Merklein et al. (Ref 15) was expanded upon by
Hotz et al. (Ref 8). They proposed adding a linear function to
the strain-acceleration data and passing a band with a finite
number of points, for example seven points, through these data.
The correlation coefficient for the point in the center of the
band is calculated using just those data within the band. In
essence, this gliding analysis examines the curvature of the
strain-acceleration versus time/image number curve. Contrarily,
Merklein et al.’s technique sums all the data up to the point for
which the correlation coefficient is being calculated. In
addition, Hotz et al. examined the ‘‘linear best fit method”’
that uses the first time-based derivative of the thinning rate,
proposed by Volk and Hora (Ref 20).

Recently, Min et al. (Ref 16) examined a number of time-
dependent methods for several materials, including two high-
strength steels (DP600 and MP980) and an aluminum alloy
(AA6022-T4). Some of the techniques they studied over-
predicted limit strains, and some appeared to give excessively
conservative values. The techniques of Hotz et al. (Ref 8) were
intermediate in their findings.

Despite these studies, an accepted technique to define a
material’s limit strain based on the deformation within the
necking instability has not emerged, and the community
continues to rely on the Bragard-type analysis. Many of the
temporal techniques compare deformation outside of the
instability to that within. They thus suffer from uncertainties
of geometry and how the instability profile might change for
particular strain paths. In addition, it is necessary to calibrate
the comparison of deformations and that has routinely been
done to match results from the standard Bragard-type analysis.
Other analyses have been based on achieving a strain rate of
zero outside of the instability. From our experiments on steel,
even as the material fails the strain rate outside of the instability
never drops to zero. The analysis proposed by Merklein et al.
(Ref 15) is one of the most promising. It can be based on only
the deformation within the necking instability and is purely
mathematical in nature, removing investigator interpretations
and prejudices. However, from our experience, it is inconsistent
from experiment to experiment, producing inconsistent results
between experiments and over different strain paths. We have
had better results applying the gliding correlation coefficient
analysis of Hotz et al. (Ref 8), but experimental noise in the
calculated gliding correlation coefficient has cast uncertainty in
the exact location of the maximum curvature in the strain-
acceleration curve.

To date most all the research using digital-image correlation
to measure limit strains has focused on developing a particular
new technique for using temporal strain-field data for deter-
mining a limit strain. The equivalencies in the early days of
metal forming were the discussions on how to specify which
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circles in the grid pattern had experienced post uniform
deformation and which had not, or whether to use actual
deformations to determine the limit between safe and unsafe
forming strains or the maximum of a curve fitted to the
deformation gradients away from the necking instability, the
Bragard approach. Considering that Bragard et al.’s original
paper was published in 1972 and it was not until 2008, 36 years
later, that this criterion was specified in an ISO norm, it is not
surprising that no accepted digital-image correlation, temporal
analysis has yet emerged.

What is unique and novel about this work is that we are not
attempting to develop a completely new analysis, but rather we
are seeking to understand the differences of what happens
outside and inside of a necking instability and how the
measurement of these differences, if there are any, might lead to
a more accurate forming-limit diagram.

Because the techniques of Merklein et al. and Hotz et al. can
examine only the deformation within the developing necking
instability and are purely mathematical in nature we believed
they were the most promising. We thus first undertook a
theoretical study to determine why results were inconsistent and
to see how the DIC data could be treated to yield unique and
consistent limit strains from the correlation coefficients. Such
limit strains would generate a FLD based on solely the
deformation within the zone that would become the necking
instability, thus providing a complement to the standard
Bragard-type analysis.

2. Theoretical Considerations

The techniques of Merklein et al. (Ref 15) and Hotz et al.
(Ref 8) employ only the strain fields measured by digital-image
correlation and the time or image number. Both of these
quantities are known unequivocally. In addition, if the identical
procedure is used to analyze each limit-strain experiment,
variabilities due to sample geometry, instability profile and
specimen strain path should be minimized.

Pearson’s correlation coefficient, r, seeks a linear relation-
ship between two variables x and y:

D Y s N
VIl =02/ 97

whereas is usual, X and y are the means of the variables x; and
y;, respectively. The sum runs from i = 1 to N where N is the
number of pairs of the quantities (x;, ;).

Taking two points that define a nonhorizontal, perfect line,
clearly shows r = 1 for a line with a positive slope and r = — 1
for a negative slope. If the line is horizontal the coefficient r is
undefined, while in the case of a perfectly random or ordered
group of data that has no linear tendency, the coefficient r is
zero. The random noise associated with experimental data
provides such a characteristic. In Merklein et al.’s (Ref 15) and
Hotz et al.’s (Ref 8) analyses, the importance and effects of
experimental noise in the displacement measurements through
image correlation are greatly amplified by taking three
derivatives before calculating Pearson’s coefficient. The first
derivative of displacement gives strain, the next strain rate and
the final strain acceleration.

When working with a limited number of perfect points, it is
easy to see how Pearson’s equation functions. It is not nearly as

(Eq 1)
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clear for a collection of data, which contain inevitable exper-
imental scatter. This warrants a theoretical study using known
analytic functions to model an actual experiment.

2.1 Modeling Strain Versus Time/Image Number Data

If the experimental strain versus time (image number) curve
is modeled with a mathematical function, the effects of
experimental noise can be eliminated from the calculation of
Pearson’s coefficient. We selected the strain/time curve from a
plane-strain Marciniak and Kuczynski limit-strain experiment
and defined our function(s) to fit these data. It should be noted
that the experimental data consisted of a strain history from 150
points equally spaced in time and terminating with the final
image before fracture appeared. The complete strain/time curve,
up to and through image 150, was fitted with a double
exponential:

(-=10) (=10)

elli—1 0150 = €0 +A1e T+ Aze 2 (Eq 2)

where 7 is time or image number, ¢&; is the strain at time #, and
&0, 1o, A1, As, cy, and ¢, are constants, which are listed in the
Appendix—Part I Constants.

The work of Hotz et al. (Ref 8) demonstrated that once an
instability forms the strain acceleration within the instability
increases rapidly and again establishes a nearly linear relation
with time. Thus, the correlation coefficient of Hotz et al.’s (Ref
8) gliding band rises, to again approach a value of one. The
double-exponential description of strain/time never obtains
such linearity in strain acceleration after the instability forms.
Because of this, we replaced the double-exponential fit to the
strain data after the beginning of the instability, images 140 to
150, with a third-order polynomial:

€212 140 10 150 = @t — 140)3+b(’ - 140)2+C(f — 140)

+ €12 140- (Eq 3)

where a, b and ¢ are constants listed in the Appendix—Part |
Constants. The parameters a, b and c¢ are related to the first,
second and third derivatives of the double-exponential function
at a time of 140. Thus, the slopes of the two functions for strain,
strain rate and strain acceleration were spliced seamlessly.

2.2 Application of Pearson’s Goefficient to the Analytic
Functions

Four curves are plotted in Fig. 1. Figure 1(a) shows strain
versus image/time. The experimental strain data obtained from
the forming-limit test are plotted versus image number/time.
Colored curves from the two analytic functions lie in turn over
these data. One can see that the analytic functions merge
seamlessly and give an accurate description of the experiment.
It is important to remember that the two functions represent a
case of zero experimental noise.

The first and second derivatives of the strain/time functions
are plotted in Fig. 1(b) and (c). It is apparent that the elbow in
the curves, indicative of a deformation instability, sharpens
with each derivative. No discontinuities appear where the
functions were merged. A second curve appears in Fig. 1(c)
that applies to the analysis of Hotz et al. (Ref 8). In this case, a
linear function passing through zero with a slope of 5 x 1077
was added to the strain acceleration.

We have plotted the correlation coefficients in Fig. 1(d), for
the two strain-acceleration curves in Fig. 1(c). It must be
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Fig. 1 Double-exponential and third-order polynomial curves: (a) strain, (b) strain rate, (c) strain acceleration and strain acceleration summed
with a linear function and (d) correlation coefficients based on the analyses of Merklein et al. (Ref 15) and Hotz et al. (Ref 8). The gliding and
full correlation coefficients are shown for both the double-exponential and third-power polynomial and simple double-exponential functions

remembered that the two curves result from different applica-
tions of Pearson’s correlation coefficient. In the case of
Merklein et al.’s (Ref 15) analysis all of the data is summed
up to the data point where the correlation coefficient is
calculated. For Hotz et al.’s (Ref 8) analysis a band of a fixed
number of points is passed over the data. Only the data within
the gliding band are used to calculate the correlation coefficient
for the data point at the center of the band. In the case of our
analysis with a total of 150 images, we selected a band width of
seven points.

For the double-exponential and third-power polynomial
function, the correlation coefficient has a value of one as the
band glides over the points dominated by the linear function.
The coefficient dips into a valley that bottoms at a value just
below 0.98 for image 137—the point of maximum curvature in
the strain acceleration—and then rises again with the linearity
of the rapidly increasing strain acceleration. This acceleration
would be from deformation within an actual necking instability
in the case of an experimental limit-strain test. This ideal
behavior matches that seen in experiments reported by Hotz
et al. (Ref 8).

Figure 1(d) also shows the gliding correlation coefficient
curve calculated for only the double-exponential function, the
light gray curve. One sees that as the strain-acceleration elbow
is reached, this curve drops but then continues to decrease and
never recovers to one as it does for Hotz et al.’s (Ref 8) data and
the double-exponential and third-power polynomial function.

In the case of Merklein et al.’s (Ref 15) analysis, the ideal
function also begins with a correlation coefficient of r = 1. As
deformation proceeds, r begins to slowly decrease, from the
curvature of the double exponential and then falls rapidly as the
plastic instability develops. Again, both the spliced and simple
double-exponential correlation coefficient curves are shown.
They are equivalent to time/image number 142 and then begin
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Fig. 2 The results presented by Merklein et al. (Ref 15) in their
original paper. Reprinted from CIRP Annals—Manufacturing
Technology, Vol 59, Ed 1, M. Merklein, A. Kuppert, M. Geiger,
Time dependent determination of forming limit diagrams, pp 295-
298, Copyright 2010, with permission of Elsevier

to diverge. The simple double-exponential curve, light gray,
continues to drop from point 142, while the correlation
coefficient of the spliced double-exponential, third-power
polynomial curve begins to increase slightly. We attribute this
slight rise to the perfect linearity of the second derivative of the
third-power polynomial.

The form of either curve is completely different from that
documented in Merklein et al. (Ref 15), for actual experimental
data (Fig. 2).

Merklein et al. (Ref 15) show both the strain acceleration
(time derivative of strain rate) and the correlation coefficient
(coefficient of determination) in their figure. The correlation
coefficient advances from a zone of uniform deformation with a
value of nearly zero. The curve then begins to rise, encounters a
maximum and falls. Merklein et al. take the strain associated
with the maximum as the limit strain.
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The notable difference between our functional model and
Merklein et al. (Ref 15) is that our functions are perfectly
smooth, while Merklein et al. (Ref 15) report data from an
actual experiment. As with any experiment, these data
inevitably exhibit a degree of experimental noise. There is a
precision involved in any displacement measurement including
that by digital-image correlation, and after that measurement,
three derivatives are taken to obtain the strain acceleration. This
greatly amplifies any slight noise that might be present in the
initial measurement.

How might noise affect our perfect analytic functions and
the two correlation coefficient analyses?

2.3 The Addition of Noise to the Functional Correlation
Coefficient Analyses

The strain, Fig. 1(a), ranged between 0.15 and 1.4. In order
to approximate experimental noise, a random value was added
to each individual data point. This value was taken from a
Gaussian distribution centered at zero with a standard deviation
of 0.01 and scaled by the factor 0.001. The time/image
numbers, from 1 to 150, were left exact and unchanged.

A practical method to smooth experimental data is to define
a band of experimental points, much like in the Hotz et al. (Ref
8) analysis, and to fit a polynomial to this band. The value of
the polynomial at the central point becomes the experimental
value of this point. If a fourth-order polynomial is used, it can
be easily differentiated to obtain acceleration, also at the bands
central point. The band is then passed over the complete data
set. It should be noted that for a fourth-order polynomial a
minimum band width of five points is needed. In this theoretical
analysis, we adopted this technique to examine how different
amounts of noise and smoothing, imposed on the perfect
functions, would affect the correlation coefficients. Thus, the
results of the theoretical analysis can be applied directly to
actual data.

Figure 3(a) and (b) shows the strain-acceleration and its
Pearson correlation coefficient curves after the addition of the
scaled, random noise and polynomial smoothing. Nine points
were used in the polynomial smoothing. Again, for Hotz’s
analysis, a linear function with a slope of 5 x 107> was
summed with the standard strain-acceleration curve. Now, a
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slight waviness from the random noise appears in the strain-
acceleration curves, see Fig. 3(a). The effect of this slight noise
on the correlation coefficients is dramatic. The correlation
coefficient curve in Fig. 3(b) now has the form shown in
Merklein et al. (Ref 15). The curve rapidly descends from one
(two data points) to zero and tracks there until the time/image
number of about 110. The curve then rises to a maximum of
r =0.245 at image 133. After this, it descends again. Two
curves are shown after the maximum at time/image number
133: the heavy green for the spliced double-exponential, third-
power polynomial function; and the light gray for the simple
double exponential. Here, as shown in Fig. 1(d), the simple
double-exponential curve continues to decrease, while for the
spliced double-exponential and third-order polynomial curve
there is an upward tail. As stated earlier, we believe this tail is a
result of the perfect linearity of the second derivative of the
third-order polynomial, and we regard it as an artifact of the
spliced function, which should be discounted.

Interpreting Hotz et al.’s (Ref 8) gliding correlation coeffi-
cient is much more difficult. The effect of the imposed noise
begins from the first images and exhibits peaks and valleys
between correlation coefficients of 0.5 to 0.95, over the full
data range. There would be no way to identify the maximum of
curvature based solely on a minimum of r. If we look at the
gliding strain-acceleration data, it appears that the maximum in
curvature corresponds to the final valley in the gliding
correlation coefficient. The full correlation coefficient has a
maximum that corresponds to this final valley, as well. But,
identifying a limit strain based only on these two criteria is
neither rigorous nor satisfying.

Figure 4(a) and (b) shows the same calculations but for a
polynomial smoothing with 11 points, which further reduces
the noise we have imposed on the double-exponential and
third-power functions. There are still peaks and valleys in the
gliding correlation coefficient, but they are much reduced,
between one and 0.90 up to the point of maximum curvature.
Here, r has a value of 0.96, pointing to the elbow in the strain
acceleration. After the point of maximum curvature, the gliding
correlation coefficient again rises to one. The minimum in r
occurs at image 132. Considering these results for greater
smoothing confirms that the maximum curvature in strain
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Fig. 3 Strain accelerations and correlation coefficients for the full and gliding analyses after the addition of random noise and smoothing with a
polynomial fitted to nine points: (a) accelerations; (b) correlation coefficients
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Fig. 4 Strain accelerations and correlation coefficients for the full and gliding analyses after the addition of random noise and smoothing with a
polynomial fitted to 11 points: (a) strain accelerations; (b) correlation coefficients

acceleration for the gliding correlation coefficient indeed
coincides with the final valley in Fig. 3(b).

There is also a clear peak in the full correlation coefficient,
which is higher than for the less smoothed data and shifted to
smaller deformations. For the 11-point polynomial smoothing,
the peak is at image 126. Other analysis with different numbers
of smoothing points confirmed that the peak in the full
correlation coefficient moves to the left, a lower strain limit, as
the smoothing increases. Less smoothing causes the peak to
shift to higher limit-strain values.

Clearly, the limit strain predicted by Merklein et al.’s (Ref
15) correlation coefficient analysis is very dependent on
experimental noise, and it is not unreasonable to expect that
this noise might vary between experiments along different
strain paths or even between experiments covering the same
strain path. This would in turn produce the inconsistencies
observed in the limit-strain results. Hotz et al.’s (Ref 8) gliding
correlation coefficient result is practically independent of noise
and it is defined by a completely separate phenomenon in the
strain-acceleration/time curve from the Merklein analysis.
Figure 3 and 4 demonstrate that by varying the amount that
data are smoothed, here a theoretical and thus ideal data set,
coincidence between the two techniques can be obtained. The
image where such coincidence is obtained would define a
unique limit strain that is consistent between experiments.
Thus, by smoothing actual experimental data we can also
obtain a correspondence between the Merklein and Hotz
techniques. A limit strain obtained in this manner would be
unique and consistent between experiments and over different
strain paths, which is not now the case. And, such a limit strain
would be from that data taken directly from within the zone of
the necking instability. We performed an experimental FLD
determination for a cold-rolled steel in this way and with the
Bragard-type technique to directly compare limit-strain deter-
minations inside and outside of the necking instability.

3. Experimental Technique, Material and Analysis

We elected to use a scaled version of the MK sample
geometry, the digital-image correlation program Ncorr, Blaber
et al. (Ref 1), and a cold-rolled steel for the forming-limit
measurements. After the tests were conducted, both the
Bragard-based analysis ISO 12004-2:2008 (2008) (Ref 9) and
the statistically based, smoothed variation of the temporal
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Merklein et al. (Ref 15) and Hotz et al. (Ref 8) techniques were
used to analyze the experimental results.

3.1 Experimental Equipment and Technique

The MK experiment has a test section with a planar
geometry and no through-thickness stress. Thus, during a
forming-limit-strain experiment, temporal surface-strain data
can be recorded with only a single camera and analyzed using a
2-D digital-image correlation program. These characteristics led
to the design of a planar punch, die and camera support system
that could be mounted in a universal testing machine, for
conducting scaled MK laboratory tests, see Leonard et al. (Ref
12). Using the equipment, sample geometries and testing
techniques described in that work, we conducted MK limit-
strain experiments for a cold-rolled steel over the full range of
the forming-limit diagram, from uniaxial tension through plane
strain to balanced-biaxial tension.

In this design, the camera support is mounted to the test
punch and descends with it during the test. In this way, the
distance between the sample and camera, focus and magnifi-
cation is maintained during the experiment.

High-resolution images were recorded with a commercial
photographic camera, Nikon D3300, which had a 4500 x 3000
pixel CCD. This camera allowed us to photograph the
developing instability with greater resolution than would be
afforded with a high-speed video camera. This was important
because the correlation coefficient analyses of Merklein et al.
(Ref 15) and Hotz et al. (Ref 8) use only the parts of the image
within the necking instability. The Bragard-type analysis on the
other hand takes advantage of the full deformation field outside
the formed instability. An AF-S DX Micro NIKKOR 85-mm
equivalent lens allowed the camera to be focused over the short
distances associated with this experiment and filled the CCD
recording frame with the ~ 30 mm diameter planar specimen
surface.

We conducted the MK experiments at a punch velocity of
1.5 mm/min, which resulted in a typical strain rate at the time
of necking between 5 x 1072 and 5 x 102 s~ '. While this
strain rate is low for forming process, it is typical of plasticity
experiments. The lower rate afforded an isothermal experiment
with better control. This allowed us to pause the experiment at
half the limit strain to heat treat the carrier blank, which was
from the same steel sheet as the test specimens. Thus, cracking
in the blank’s center hole was avoided for all experiments. The
direction of the major strain was set to be perpendicular to the
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Rolling Direction

Rolling Direction

ion

Fig. 5 Optical micrographs of the steel’s microstructure in the in-
plane and longitudinal sections. The rolling direction is indicated for
these sections. A high-magnification micrograph has been inset on
the longitudinal section to show the carbide stringers

rolling direction of the sheet, as suggested in the ISO norm
(2008).

3.2 Material Properties

A common material typically formed using drawing or
stretching processes is advantageous for a basic study of data
analysis techniques. Thus, a cold-rolled, steel sheet was
selected. Although the supplier did not specify the steel’s
grade, A1008—0.10% C—is a standard specification for this
material. The steel sheet was 0.9 mm thick, sufficiently thin to
avoid bending or through-thickness strain gradients, for the
reduced-scale experiments.

The in-plane and longitudinal section microstructures of the
steel are shown in Fig. 5. The steel had a grain size between 30
and 15 pm. The grains were slightly pancaked in plane and
elongated in the rolling direction. Very fine carbide stringers
were also present and aligned with the rolling direction. These
stringers are shown running horizontally across the grains in a
high-magnification inset on the longitudinal section micro-
graph.

The steel’s engineering mechanical properties are listed in
Table 1. The sheet has nearly equal yield, hardening and
ultimate tensile strengths at 0°, 45° and 90°, as well as
approximately equivalent total elongations, between 35 and
38%. These properties are typical of drawing-quality steels with
the exception of the yield strength, which at 200 MPa is a bit
below what is considered common. The R values or Lankford
coefficients (plastic anisotropy coefficients) measured at 15%
strain were 1.75, 1.30 and 2.05 for 0°, 45° and 90°,
respectively, to the rolling direction. These values are again
typical of a drawing-quality steel. As with other steels, this
sheet was positive strain rate sensitive. In its standard form, the
strain rate sensitivity exponent m is expressed as:

. m 1
(] €1

In(& /%) ( )
where for our steel, m = 0.015. This result was taken at room
temperature for strain rate jumps between 10~%, 102 and 102

—1
S

3.3 Digital-Image Correlation Analysis

The open-source 2-D digital-image correlation program
Ncorr, Blaber et al. (Ref 1), was used to calculate the strain-
field histories for our MK forming-limit experiments. Ncorr is a
MATLAB program with an intuitive graphic user interface. We
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selected parameters within Ncorr to precisely resolve strains
within an actual deformation instability: subset radius = 50
pixels; subset spacing = 2 pixels; diff. norm cutoff = 10~°; and
number of iterations cutoff = 50. A digital-image correlation
program measures displacement and then performs what is in
essence a differentiation to calculate strain. Ncorr takes a region
containing a finite number of data points to obtain the strains at
a central point. If the region specified contains too many points,
fidelity at the instability is lost. Taking too few points might
result in excessive noise and numeric artifacts. We used a
radius of 5 points, 81 data points in total, for the Ncorr strain
calculation. In the Appendix—Part II Strain Radius, we show
that this number of points did not result in a loss of fidelity at
the plastic instability. As mentioned previously, this analysis
was applied to 4500 x 3000 pixel CCD images with the
deforming part of the MK specimen occupying nearly the
entirety of the camera’s full field of view.

Using aerosol cans, a speckle pattern of fine, random, black
spots was applied over a white background covering the MK
specimen surface. We used a slow drying (1 h before applying
a second coat) paint for both the background and spots. Thus,
the paint remained viscous throughout the experiment, and it
could support the very high deformations occurring within the
deformation instability, as the limit strain was approached.

3.4 Bragard and Merklein/Hotz Analyses

We based our Bragard analysis on the procedure detailed in
the ISO 12004-2:2008 norm (Ref 9). The norm states that the
final image before fracture is used for the calculation.
Obviously in this image, the strain within the deformation
instability is very high. The width of this region is defined by
the maximums of the second spatial derivative of the major
strain profile across the full specimen surface. The central
region bounded by the maximums is discarded, and the two
regions remaining are fitted with an inverse, second-order
polynomial function. The value of the polynomial at the center
of the discarded region is taken as the major limit strain.
Determining the minor limit strain is a three-step process.
Firstly, constancy of volume is used to calculate the through-
thickness strain, from the digital-image correlation results (&,,,
€yy). Secondly, the central region is again discarded and an
inverse polynomial again fitted to the remaining parts of the
through-thickness strain profile. Finally, from the central point
of the fit, constancy of volume is used to back calculate the
minor limit strain.

An advantage of the MK sample is that the strain profiles
outside of the deformation instability are very flat. Thus, the
outer limits selected for the fit had very little effect on the limit-
strain results. In the cases of deformation states between plane
strain and uniaxial tension, there was a small gradient between
the outer limits of the specimen and the discarded central zone.
In these cases, we selected an outer limit of the fitted points in
order to maintain coincidence between the fitted points and the
arc of the inverse, second-degree polynomial, see Fig. 6(b).

In the case of the Bragard analysis, experimental noise does
not seriously affect the limit-strain results. However, as we
have seen, noise and its magnitude are very important for the
correlation coefficient analysis of Merklein et al. (Ref 15). To
adjust the amount of noise present, as was done for the
theoretical analysis, we fitted a fourth-order polynomial to the
experimental strain/time data. Obviously, a single fourth-order
polynomial will not accurately describe the entire strain/time
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Table 1 Mechanical properties of the steel used in this study

Orientation wrt. 0.2% offset yield Ultimate tensile Total Lankford
the rolling direction, ° strength, MPa strength, MPa elongation coefficient
0 200 319 0.384 1.75
45 200 342 0.357 1.30
90 200 319 0.350 2.05

Quantities are given in terms of engineering stress and strain

Balanced Biaxial Deformation
Maximum Limit Strain = 0.446

Plane Strain Deformation
Maximum Limit Strain = 0.383
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Fig. 6 Profiles of true, logarithmic, maximum principal strain for
(a) balanced-biaxial, (b) plane strain and (c) uniaxial tension
deformation are shown. The points fitted with an inverse polynomial
to determine the limit strain are highlighted, and the limit-strain
values for these profiles are noted

(image number) curve. Thus, a band with a finite odd number
of points was passed over the data. The minimum number of
points the band can contain is five, and the maximum is only
limited by the number of images. From the fit, the value of
strain and its two time derivatives are known at the central point
of the band. The initial data points of the strain/time data are
not the most important, as they happen well before the
instability occurs. Thus, if for example a band of eleven points
was considered, we would begin evaluating the polynomial for
data point six, using five points before and five after. In the case
of the final strain values, data cannot be dismissed, as these
strains coincide with the deformation instability. In these cases,
the fitting was done using the coefficients of the final
polynomial calculated for all 11 points and the actual image
number/time of the final five points.

As discussed by Merklein et al., data from only a single-
pixel point of the digital-image correlation analysis are not
reliable. They assumed a circular region of points centered at
the point of maximum major strain (within the necking
instability) and took an average of this complete data set for
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each image. Their correlation coefficient is then calculated from
the strain/time history of this group of points. Clearly, the value
of the circle’s radius that is selected will change the results. The
bigger the radius selected the more points away from the center
of the instability, with smaller strains, that will be included in
the analysis.

The appropriate radius of points taken might change from
experiment to experiment and from strain path to strain path,
depending on the width and geometry of the deformation
instability. The ISO 12004-2:2008 (Ref 9) analysis uses the
maximums of the second derivative of strain versus distance
(i.e., the spatial derivative) to define a zone of excluded points,
points within the necking instability. We took half the width of
this zone as the Merklein radius. Thus, our Bragard-type
analysis was based only on data outside of the necking
instability and our temporal Merklein/Hotz correlation coeffi-
cient analysis relied exclusively on data within the plastic
instability.

Finally, we should state again that our temporal analysis is
based on Pearson’s correlation coefficient, Eq 1. This coeffi-
cient seeks a linear relationship between two variables, in this
case the second derivative, acceleration, of strain versus image
number or time. The analysis of Merklein et al. (Ref 15) sums
all points up to the point of interest, while the analysis of Hotz
et al. (Ref 8) calculates the correlation coefficient for a band of
points—typically five, seven or 11 points—that passes through
the data. Thus, Merklein et al. define a limit strain based on the
deviation from linearity in the strain-acceleration/time curve as
the necking instability forms. The analysis of Hotz et al. seeks a
maximum in curvature in the same strain-acceleration curve, to
which a linear function has been added.

4. Experimental Results

Both the Bragard and time-history methods of determining
limit strains were used in evaluating the MK forming-limit
experiments. The Bragard analysis, ISO (2008), has the
advantage that it has been transformed into an accepted norm
and thus serves as a reference for both the Merklein et al. (Ref
15) full correlation coefficient, and Hotz et al. (Ref 8) gliding
correlation coefficient analyses.

4.1 Bragard-Type Analysis

In Fig. 6, we show a true or logarithmic maximum principal
strain profile for three strain paths: balanced-biaxial tension;
plane-strain deformation; and uniaxial tension. The strain
measurement was taken from the final image before fracture
appeared. Thus, the plastic flow instability was fully developed.
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The highlighted points were used for fitting the inverse
second-order polynomial from which the limit-strain values
were taken. The peak in the center of the profile results from the
necking instability, and one can clearly see the inner limits of
the fitting window obtained from the maximums of the second
derivative of strain with respect to distance. The points within
these limits were discounted.

Outer limits of the fitting were selected to maintain a smooth
arc through the data in the fitted polynomial. It is notable that
the strain profiles are remarkably flat for all of the strain paths
and the outer fitting limit had little effect on the limit-strain
results.

The flat strain profiles are a distinct advantage of the MK
sample geometry. It was only in the case of the plane-strain
results that the outer fitting limits were shortened to maintain
the inverse polynomial’s arc.

Only a single strain profile is shown in Fig. 6, for each strain
state, but as suggested by the ISO standard, ISO (2008), an
average of results from five parallel strain profiles was taken
from each experiment to determine that experiment’s limit
strain. It should be noted that the MK specimen strains were
very uniform, and there was very little variation in the results
that were averaged from the five profiles.

4.2 Temporal Analysis

Figure 7 shows our results for the standard Pearson’s and
gliding correlation coefficient analyses for the plane-strain
specimen whose Bragard profile is plotted in Fig. 6(b). We
smoothed the strain/time (image number) data with a gliding
fourth-order polynomial as discussed. In this case, five and 11
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points were used to determine the polynomial’s value at each
point in the time history (for each image). In the case of the
Hotz analysis, we have indicated on the strain-acceleration
curves the bounds of the gliding band at the point of maximum
curvature. For the Merklein analysis the location of the peak in
the correlation coefficient is shown on the strain-acceleration
data.

Examining the acceleration curves, the reduction in noise
with additional smoothing points is clear. We selected seven
points for the calculation of the gliding correlation coefficient.
It can be seen in Fig. 7(a) and (c) that the positions of the
band’s end points are relatively consistent for the different
amounts of smoothing. The curvature maximums are centered
at time/image number 147 and 144 for a polynomial smoothing
with five and 11 points, respectively.

As seen in the theoretical analysis, contrary to the point of
maximum curvature, the gliding correlation-coefficient values
are extremely sensitive to noise in the strain/time (image
number) data, Fig. 7(b). When we smoothed the strain/time
data with only five points, the minimum number possible,
values of this correlation coefficient covered the full spectrum,
from one to zero. Based on these data alone we would not have
been able to identify the gliding correlation coefficient
associated with the maximum curvature. This minimum was
clear when the data were smoothed using 11 points, Fig. 7(d).

The location of the peak value of the full correlation
coefficient, the criterion used by Merklein et al. (Ref 15) to
identify the limit strain, was also very sensitive to smoothing.
Smoothing with 11 points resulted in a peak at image 134,
while the peak occurred for image 148 when smoothing with
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Fig. 7 The Merklein et al. (Ref 15) and Hotz et al. (Ref 8) correlation coefficient techniques applied to a plane-strain MK sample. We show
the strain-acceleration curves (a) and (c) as well as the correlation coefficient plots, (b) and (d). The experimental strain/time data were smoothed

with a five- and 11-point fourth-order polynomial
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five points, Fig. 7(b) and (d). This difference would give a
dramatic difference in measured limit-strain values. Hotz et al.
(Ref 8) refer to the full correlation coefficient analysis as
“‘unstable,”” but they do not specify exactly what they mean
with this terminology. It is perhaps this sensitivity to exper-
imental noise.

In our analysis following Merklein et al., if one looks at
where the time/image number point associated with the
correlation coefficient peak lies on the strain-acceleration
curves, one sees that it too is very sensitive to the amount of
smoothing, Fig. 7(a) and (c). When 11 points were used for
smoothing, the limit-strain image occurs where the strain-
acceleration curve is still nearly linear, before the elbow in this
curve associated with a developing instability. The limit strain
predicted from this image would appear to be excessively
conservative. When smoothing is with five points, Fig. 7(a), the
limit-strain image is well up the elbow of the strain-acceleration
curve, but still several images before fracture occurs. Obtaining
limit strains from this image would seemingly give a more
appropriate result.

In their paper, Hotz et al. (Ref 8) state that their gliding
correlation coefficient underestimates the limit strain, while the
analysis of Merklein et al. (Ref 15) overpredicts this value.
They show in a qualitative figure that when the two analyses
correspond the limit-strain value is appropriate. For the
example shown in Fig. 7, this would occur for a smoothing
with five points. In this case, the Hotz gliding correlation
coefficient minimum would be for image 147 and the Merklein
full correlation coefficient peak is at image 148. If we take the
circle-averaged principal strains from image 147, we find a true
maximum limit strain of 0.527. This is a limit-strain value for
within the instability, and it compares to the average Bragard-
determined maximum true limit strain of 0.373, obtained from
the diffuse instability strains outside of the necking instability.

4.3 Strain Fields

The strain-acceleration and correlation coefficient curves
shown in Fig. 7 are some of the best examples from these FLD
measurements. Based purely on the mathematics and corre-
spondence of the Merklein et al. (Ref 15) and Hotz et al. (Ref 8)
correlation coefficients, we could easily and unequivocally
identify the image corresponding to the time-history-dependent
limit strain. As is well known, a sheet sample deforming in
positive biaxial tension cannot theoretically develop a line of
zero extension, which in turn becomes a flow instability. It is
for this reason that Marciniak and Kuczynski (Ref 13) proposed
that a sheet must contain an initial linear imperfection for the
local neck to develop. Figure 8 shows the full-field Eulerian
strains present in a balanced-biaxial tension specimen imme-
diately before fracture.

Rolling
Direction

0.26

Rather than a single line of zero extension, individual
ellipses of high deformation are seen in both principal strains,
&y and é&,,. These zones are nearly aligned in several bands in
the sheet rolling direction. While the contrast in the strain fields
is dramatic, the difference in values is only between Eulerian
strains of 0.28 and 0.32. The scales are equivalent for both
principal strain fields. The shear strains, ¢,,, are also shown in
Fig. 8. They are nearly zero over the entire deforming section
of the MK sample, indicating that this is a valid balanced-
biaxial tension experiment. A point of slightly higher shear
appears in the deforming test section, marked with an arrow.
This sample point is also indicated in the &, principal strain-
field plot. Fracture initiated at this point a second later.

Although there was not a single line of zero extension
deformation that developed in the sample shown in Fig. 8, the
strain-acceleration curves were smooth. They appeared as
shown in Fig. 7, and it was straight forward to adjust the data
smoothing to obtain a correspondence between the Merklein
et al. (Ref 15) and Hotz et al. (Ref 8) techniques.

4.4 Forming-Limit Curves

The MK forming experiments covered the complete strain
range between uniaxial tension and balanced-biaxial tension,
and multiple experiments were performed along each particular
strain path. The results are plotted in Fig. 9 as true (logarithmic)
principal strains and points from both the Bragard type, ISO
12004-2:2008 (Ref 9) and temporal analyses are shown. Each
individual pair of points, Bragard and temporal, corresponds to
a separate experiment, and each symbol’s shape indicates a
different specimen geometry or width.

These loci of forming-limit data have the classic shape, with
a minimum at or just to the right of plane strain and maximums
in uniaxial and balanced-biaxial tension. There is a minimum
amount of experimental dispersion for both the Bragard and
temporal analyses in-plane strain and on the left-hand side of
the forming-limit diagram. However, experiment dispersion is
significant as one traverses from plane strain toward and
including balanced-biaxial tension. This dispersion is more
pronounced for the temporal analysis.

As would be expected, the results from the temporal analysis
lie above those calculated using the analysis of ISO 12004-
2:2008 (Ref 9). The Bragard-type criterion takes data outside of
the instability, while the temporal analysis averages data within
the plastic instability. In balanced-biaxial tension, results from
the two technique are nearly identical and with the experimen-
tal dispersion partially overlap. Moving from a balanced-biaxial
state to plane strain the results from the two techniques began to
diverge. In plane strain, the difference is about 40%. This
significant amount of spread continues through to uniaxial
tension.

-0.05

Eulerian Strain

Fig. 8 Eulerian strain fields for a balanced-biaxial MK experiment immediately before fracture
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Forming Limit Diagram
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Fig. 9 The true (logarithmic) limit strains for the cold-rolled steel
used in this study. Results from both the Bragard type and temporal
analyses are shown

5. Discussion

Two FLDs, inside and outside of the necking instability, for
cold-rolled steel sheet were obtained using the Bragard-type
analysis and the proposed correspondence of the correlation
coefficient techniques. We believe these results can be viewed
with confidence. The MK sample has minimal strain gradients
over its deformation zone, facilitating the Bragard-type analysis
and making it relatively insensitive to the boundaries set for
fitting the inverse polynomial. The temporal analysis is purely
mathematical and requires minimal interpretation. Our smooth-
ing analysis recognizes that experimental noise is a key feature
in digital-image correlation strain data, but we take advantage
of it to obtain a unique value for a temporal-based limit strain.

Our FLD results show that there is validity in considering
both the Bragard and temporal analyses. These very different
approaches, one based on strains outside of the necking
instability and the other strains inside, produce overlapping
results in biaxial tension but divergent limit strains in plane
strain and uniaxial tension. Depending on the application and
criticality of confidence in the forming operation, engineers
could consider data from the two approaches as upper and
lower forming-limit bounds. They could then design a forming
operation accordingly.

The full-field strain measurements showed that a line of zero
extension or MK defect never developed in balanced-biaxial
tension. Correspondingly, there was very little difference
between limit strains based on deformations inside and outside
of the instability. The absence of such a MK defect appears to
have limited the material’s ability to postpone failure by shifting
deformation outside of the developing neck. Once a diffuse
instability occurred the material quickly failed. On the other
hand, when a line of zero extension did form, in plane strain
and uniaxial tension, the material had the ability to resisted
necking failure as discussed by Ghosh (Ref 7). We measured a
forming limit within the necking instability that was 40%
higher than that from the Bragard analysis. Thus, the Bragard
analysis appears to be excessively conservative in these
deformation states.

It should be noted that neither Merklein et al. (Ref 15) nor
Hotz et al. (Ref 8) showed as great a difference between the
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Bragard profile method and their time-dependent analyses. This
could be attributed to several factors. This is possibly a result of
a difference in the material for which the data are shown. Our
cold-rolled steel was moderately strain rate sensitive, which, as
noted, will push the deformation away from the instability into
the bulk of the specimen and delay formation of an acute
necking instability. Merklein et al. and Hotz et al. also used a
Nakazima punch and die configuration. This geometry exhibits
steeper strain gradients than the MK sample geometry, which is
practically gradient free. The steep strain gradient could raise
the results of the Bragard fit and draw it closer to the results of
the time-dependent analysis.

There are other important observations that arise from our
theoretical analysis. It was performed using ideal functions and
demonstrated that Merklein et al’s (Ref 15) technique is
extremely dependent on experimental noise. Without it, the
analysis never exhibits the peak in correlation coefficient that
the authors use to define the initiation of the necking instability
and thus limit strain. With the addition of noise to the functions,
the peak seen experimentally appears, but we also found that
the time/image number at which it occurs depends on the extent
of the noise present. These results indicate that taken alone the
full correlation coefficient analysis would not be the most
reliable determinate of the forming-limit strain.

Hotz et al.’s (Ref 8) gliding correlation coefficient seeks the
maximum curvature in the strain-acceleration curve, and this
curvature appears to be largely independent of noise when
studied with the ideal functions. Although, if there is excessive
noise in the experimental strain/time data, many deep valleys
occur in the gliding correlation coefficient/time curve. This can
make it difficult to resolve which valley corresponds to the
maximum curvature.

Thus, for the Merklein/Hotz techniques, experimental noise
is a double-edged sword. It is both necessary for the analyses
but also produces uncertainties in the results, which indicates
that our smoothing technique has benefits. Our experiments on
a cold-rolled steel very closely mimic the results obtain with the
ideal functions and superimposed Gaussian noise, lending
confidence to the experimental technique and analysis. By
varying the smoothing of the strain/time (image number) data,
we were able to identify the valley in the gliding correlation
coefficient due to the maximum in curvature in the strain-
acceleration curve and obtain a correspondence to the full
correlation coefficient. It is worth noting that contrary to the
result for the ideal functions in the actual experiments the limit-
strain result from Hotz et al.’s (Ref 8) analysis showed a slight
sensitivity to the amount of smoothing. This makes obtaining a
correspondence between the two techniques for determining a
limit strain necessary.

6. Conclusions

We developed a modified Merklein/Hotz analysis and used
it to obtain a complete forming-limit diagram for a cold-rolled
steel. This is an FLD made possible by the digital-image
correlation technique and is based solely on deformation in the
zone that will become the necking instability. This temporal
FLD stands in contrast to the standard FLD based on the 2008
norm, which relies on deformations measured outside of the
necking instability. From the differences in these two FLDs we
came to the following conclusions:
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1. Engineers should consider loci of limit data from both a
Bragard-type analysis, as discussed in the norm ISO
12004-2:2008 (Ref 9) and a temporal approach that relies
on strains within the necking instability. For our cold-
rolled steel sheet and our temporal analysis, the Bragard
technique appears to be excessively conservative in plane
strain and uniaxial tension, by as much as 40%.

2. Merklein et al.’s (Ref 15) computational, correlation coef-
ficient technique requires that experimental noise is pre-
sent in the strain versus time/image number data.
However, at the same time, the image number, ‘‘limit
strain,”” where Merklein et al.’s (Ref 15) correlation coef-
ficient peak occurs depends on the amount of experimen-
tal noise present.

3. When applying Hotz et al.’s (Ref 8) gliding correlation
coefficient analysis, it can be difficult to identify the glid-
ing correlation-coefficient valley associated with the
maximum curvature in the acceleration data. In this case,
it is necessary to compare results based on multiple sets
of analyses using various parameters.

4. A correspondence between Merklein et al. (Ref 15) and
Hotz et al. (Ref 8) techniques defines a unique image
and thus limit strain, as the two techniques are indepen-
dent and utilize different properties in the accelera-
tion/time (image number) curve. Thus, this approach is
consistent for multiple experiments over a variety of
strain paths and determines a reliable FLD with minimal
experimental scatter.
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Appendix—Part | Constants

A graphic representation of the two functions, Eq 2 and 3,
with which we fitted the plane-strain experimental strain
image/time curve is shown in Fig. 10. The experimental data
were taken from a Marciniak and Kuczynski limit-strain
experiment following a plane-strain deformation path. An
image/time of 140 is the final point of the double-exponential
function and the beginning of the third-power polynomial. The
slopes of these two functions, in strain, strain rate and strain
acceleration versus time (image number) were set equal at point
140 making the splice between the functions seamless.
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Fig. 10 A graphical representation of the two functions used to fit
the experimental strain vs. image/time curve

Values of the coefficients in Eq 2 and 3 are given in
Table 2.

Appendix—Part Il Strain Radius

For our measurement of limit strains, we used a strain radius
of five points in the Ncorr calculation. This number of points
was sufficient to minimize the noise that can result from the
differentiation of displacements, but it was necessary to verify
that we were not reducing the fidelity of the strain calculation
by using too many points. To this end, we repeated our analysis
of a plane-strain sample using a strain radius of three and two,
as well. Figure 11 shows the region of the sample studied with
Ncorr, which contains the line of zero extension, plastic-
necking instability. A sample point appears in the center of the
region of interest, as well as the accompanying points from
which the strains were calculated. For strain radii of five, three
and two, 81, 29 and 13 points, respectively, were used in the
strain calculation.

Figure 12 is a plot of the &, Lagrangian strain field
calculated using a strain radius of five. The plastic instability,
line of zero extension, is clearly visible in the center of the
region of interest. The sample point shown in Fig. 11 is seen to
lie within the instability, and the points associated with the
different strain radii appear to successfully capture the gradients
associated with the instability.

Figure 13 shows the results of the Merklein et al. (Ref 15)
and Hotz et al. (Ref 8) calculations for the different strain-radii
Ncorr calculations. We used a polynomial smoothing of five
points and a gliding Hotz et al. band of seven points, for all
cases. It can be seen that with the exception of very slight
variations in the noise profile shown by the gliding analysis the
results are equivalent, irrespective of the strain radius. In all
cases, we found a correspondence between the two techniques
at equivalent points in time, image number. The limit strains
that resulted from the calculations are tabulated in Table 3. The
results are for practical purposes the same. There was no loss in
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Table 2 Strain versus time (image number) fitting parameters
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Fig. 11 The region of interest, a sample point at which the strains will be calculated, and the points to be used in the strain calculation are
shown for strain radii of five, three and two points
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Fig. 12 The ¢, Lagrangian strain field associated with the region
of interest and displacements shown in Fig. 11, for the plane-strain
specimen. The calculation was performed for a strain radius of five

points
(a) Strain Radius of 5 points (b) Strain Radius of 3 points (c) Strain Radius of 2 points
= 10
5 ] 147 147 147
= 0.8 1
<
S 0.6
e |
2 044
= ]
g 0.2 148 148 144
S |
0.0
0 50 100 150 0 50 100 150 0 50 100 150
Image #/ Time [s] Image #/ Time [s] Image #/ Time [s]

Fig. 13 Results from the Merklein et al. (Ref 15) and Hotz et al. (Ref 8) correlation coefficient techniques applied to a plane-strain MK sample
for different strain radii in the Ncorr digital-image correlation analysis. (a) Strain radius of five points, (b) three points and (c) two points
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Table 3 Parameters used in the digital-image correlation analysis and the resulting temporal analysis

Ncorr strain radii

Five Three Two

Major log. limit Minor log. limit Major log. limit Minor log. limit Major log. limit Minor log. limit
Strain Strain Strain Strain Strain Strain

0.5272 0.0092 0.5277 0.0091 0.5280 0.0113

Plane-strain MK sample, Ncorr parameters: subset radius = 50; subset spacing = 2; diff. norm cutoff = 10~%; number of iterations cutoff = 50

Also listed are the calculated, logarithmic limit strains

fidelity when calculating the strains with a strain radius of five
and 81 points in total.
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