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Intelligent computing tools such as artificial neural network and fuzzy logic are used as predictive modeling
tools. The use of these methods, combined with model experimental results, may be an excellent predictive
tool, allowing us to forecast the microstructure of the tested cast iron at the level of computer simulation. In
this study, the reference training cases collected in one database were used to determine the parameters of
the neuro-fuzzy ANFIS model. They mainly include the results of observations and measurements of the
content of individual microstructural constituents of the compacted graphite iron, examined as a function of
the content of individual alloy additives (molybdenum, nickel and copper introduced in various propor-
tions). The training process of such a fuzzy inference system is done by constantly changing its parameters
(parameters of the membership function) and determining new rule conclusions as a result of presenting
individual case examples from the training sample. The conducted research has shown the possibility of
applying the ANFIS model as a tool to control the chemical composition of compacted graphite iron in the
production of castings with high-strength parameters.
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1. Introduction

Compacted graphite iron (CGI) having a specific graphite
morphology with a large contact surface with the matrix is a
unique casting material. It is characterized by a tensile strength
range of 300-500 MPa at corresponding elongation of 2-0.5%,
respectively. Compared to gray cast iron, this material demon-
strates higher strength properties and higher elongation. The
matrix microstructure is less dependent on the casting wall
thickness. In comparison with spheroidal graphite cast iron,
cast iron with compacted graphite exhibits lower coefficient of
thermal expansion, higher thermal conductivity, better resis-
tance to thermal shocks, higher vibration damping capacity and
better castability. The representative microstructure of the
spheroidal graphite cast iron as well as CGI is presented in
Fig. 1(a) and (b).

It results from Fig. 1 that CGI has a greater tendency to form
ferrite in comparison with nodular cast iron.

All above-mentioned advantages predestine the material for
a variety of applications. CGI is mainly used for the construc-
tion of combustion engine blocks, exhaust manifolds, etc.
Interesting properties of this type of cast iron are the reason for
intensive research and numerous publications (Ref 1-10). There
are few publications, however, concerning the influence of
alloy additives on the microstructure and properties of CGI
(Ref 11-13). By changing the chemical composition of this cast
iron, it is possible to modify its microstructure and conse-
quently its properties. There are many available publications
which describe how to obtain an ausferrite in CGI. Then the
resulting cast iron grade is referred to as austempered
vermicular iron (AVI) or carbidic austempered vermicular iron
(CAVI) (Ref 14-17). The ausferrite is a mixture of bainitic
ferrite and high-carbon stabilized austenite. To produce ausfer-
rite, an austempering process is required. There is also an
alternative way to obtain this constituent, i.e., by modification
of the cast iron chemical composition, using for this purpose
molybdenum, copper and nickel added in appropriate propor-
tions.

The typical matrix microstructure of the non-alloyed CGI
consists of ferrite and pearlite. The large contact surface of
graphite with matrix promotes the ferrite formation in this type
of cast iron. In order to increase the tendency toward pearlite
formation, copper is usually added to the cast iron, sometimes
in combination with nickel (Ref 18). Further increase in the
concentration of nickel promotes the formation of martensitic
microstructure due to a significant increase in hardenability
(Ref 19). Increasing the concentration of nickel above 20%
results in the formation of stable austenite in the matrix. In
compacted graphite iron, an ausferritic matrix can also be
obtained. It is usually produced as a result of the heat treatment
of castings consisting in hardening with isothermal holding.
This cast iron is called AVI—austempered vermicular iron. It is
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also possible to obtain an ausferritic microstructure in as-cast
condition in the cast iron with flake, spheroidal or vermicular
graphite (Ref 20-22). This can be achieved by the addition of
alloying elements increasing austenite stability but only in the
pearlitic range. One of such alloying elements is molybdenum
which, added together with nickel or copper, promotes
ausferrite formation when the casting is solidifying in the
mold. Chromium allows controlling the amount of carbides. At
concentrations above 1.5%, it makes cast iron crystallize only
in a metastable system, producing the so-called ‘‘white cast
iron.’’

As part of many research works carried out by the authors of
this work, numerous material experiments were carried out to
examine the effect of the content of selected alloying elements
on the microstructure of compacted graphite iron. Many years
of studies have finally resulted in the development of a database
that integrates the results of these studies. In this paper, the
results of experiments are collected in a single database, along
with the results of observations and measurements of the
content of individual constituents of the microstructure of CGI,
depending on the content of alloy additives.

Due to the high cost of experimental melts, the use of the
adaptive neuro-fuzzy inference system (ANFIS) algorithm (Ref
23-25) has been proposed, by means of which it is possible to
predict the microstructural constituents based on the cast iron
chemical composition and casting wall thickness.

2. Source Data

The database contains the results of examinations and
measurements of the content of individual microstructural
constituents of the compacted graphite iron (ferrite, pearlite,
carbides, martensite, ausferrite and austenite). They are exam-
ined as a function of the content of individual alloy additions
within the studied range of the chemical composition, includ-
ing: Cu content (wt.%), Ni content (wt.%) and Mo content
(wt.%), for different casting wall thicknesses (mm). The
developed database contains 170 records; its fragment is
presented in Fig. 2.

With the integrated knowledge of selected process available
in the database, one can attempt to construct algorithms and
inference systems that enable automatic processing of this

knowledge. As a consequence, it is possible to build computer
systems that give the opportunity to create new knowledge
without the need to perform additional material experiments.

3. Research Methodology

Section 3.1 describes the results of materials research used
for the creation of a database which served as a basis for the
development of a computer system to examine and predict the
quantitative contribution of individual microstructural con-
stituents. Section 3.2 describes the characteristic features of the
ANFIS algorithm, which is a formal tool used to build the
system.

The decisive influence on the choice of this formalism
(which is a combination of fuzzy logic with the methods of
training artificial neural networks) had the character of the
obtained data, which are the results of experimental measure-
ments and microscopic observations. This information is only
representative of some specific cases, and as such is incomplete
and burdened with measurement errors, thus yielding only
uncertain data. Fuzzy logic finds particular application in the
processing of this type of knowledge.

3.1 Material Experiment

The chemical composition of the tested cast iron is shown in
Table 1. The chemical composition was tested using SPEC-
TROMAXx arc spark OES metal analyzer. Metal was melted in
an electric medium-frequency induction crucible furnace of
30 kg capacity. The vermicularizing treatment of cast iron was
done by an Inmold process. The schematic layout of elements
in the mold is presented in Fig. 3. For various combinations of
alloy additions, the chemical composition enabled obtaining
different types of cast iron metal matrix, i.e., ferritic, pearlitic,
martensitic, austenitic and ausferritic.

At 1480 �C, the cast iron was poured into a green sand mold
with the gating system comprising a spherical reaction chamber
of /85 mm diameter. In this chamber, Lamet� 5504 magne-
sium master alloy supplied by Elkem Norway was placed. The
composition of the master alloy is shown in Table 2. Behind the
reaction chamber, there was a mixing chamber. Next, a stepped
test casting with the wall thickness of 3, 6, 12 and 24 mm was

Fig. 1 The representative microstructure of the non-alloyed spheroidal graphite cast iron (a) and compacted graphite iron (b)
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made. All castings were knocked out after cooling to ambient
temperature.

Specimens for metallographic tests were cut out from the
central part of the stepped casting. Its shape and dimensions are
shown in Fig. 4.

The metallographic examinations were carried out under a
Nikon Eclipse MA200 optical microscope at a magnification of
5009. Specimens were etched with a 4% HNO3 solution in
C2H5OH. The microstructure examined using NIS-Elements
BR image analysis program.

3.2 Developed Models: ANFIS Algorithm

The ANFIS algorithm is one of the embodiments of neuro-
fuzzy systems (NFS), which are known as universal function
approximators, useful mainly when it is necessary to model
phenomena of strongly nonlinear nature and multi-dimensional
functional dependencies that are difficult to determine in a
purely analytical form (Ref 22, 23).

To determine the model of the phenomenon, fuzzy systems
require much less information than traditional probabilistic

Fig. 2 A fragment of the developed database

Fig. 3 Schematic layout of elements in the mold: 1—pouring cup,
2—downsprue, 3—reaction chamber, 4—mixing chamber,
5—control chamber, 6—stepped test casting and 7—flow off

Table 1 Chemical composition of the tested cast iron

Chemical composition, wt.%

C Si Mn Mo Cu Ni Cr Mg

2.91-3.82 2.28-2.71 0.03-1.31 0-2.44 0-3.80 0-21.04 0-2.81 0.017-0.019

Table 2 Chemical composition of the master alloy

Chemical composition, wt.%

Si Mg Ca La Al Fe

44-48 5-6 0.4-0.6 0.25-0.40 0.8-1.2 Rest
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models. The information may also be imprecise, which makes
ANFIS a tool for modeling very complex technological
processes in which the relationship between individual factors
is not known.

Within the framework of the neuro-fuzzy ANFIS algorithm,
fuzzy inference systems (FIS) provide the scheme of inference,
and thus the way of constructing logic rules. In the presented
work, the Sugeno scheme was chosen for fuzzy inference. Its
rules are characterized by first-order successors (conclusions) of
the functional type (1):

If x isA1 then z ¼ f xð Þ ðEq 1Þ

where x and y are explanatory (input) variables, A1 is the name
of the fuzzy set representing the premise, z is an explanatory
variable whose value is represented by a functional linear
dependence.

Based on the Sugeno model, it is possible to build a fuzzy
system which, using the selected inference mechanism, makes
transitions between optimal linear functions representing a
narrow range of the system operation until a global system is
reached; in this way it is possible to build a system of strongly
nonlinear character.

Figure 5 shows a general scheme representing the mapping
of three rules (2), the conclusions of which are linear functions
operating within a narrow range of specific fuzzy sets. The
appropriate inference mechanism adopted for the Sugeno
system is able to determine the smooth transition of one
function into another for areas where the sets overlap:

If x is Small then y ¼ a1xþ b1

If x is Medium then y ¼ a2xþ b2

If x is Large then y ¼ a3xþ b3

ðEq 2Þ

The construction of the predictive model using the ANFIS
algorithm consists in determining the FIS parameters of the
system, i.e.,

Fig. 4 Shape and dimensions of the test casting

Fig. 5 General scheme illustrating the first-order SUGENO FIS
model

Fig. 6 Schematic representation of the ANFIS algorithm
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• fuzzy IF–THEN rules,
• parameters of the membership function of fuzzy sets for

input variables,
• coefficients for determining specific linear functions in

rule conclusions, based on the training data provided to
the model and the use of a training algorithm taken from
the theory of neural networks, the algorithm uses the opti-
mization process with backward propagation algorithms
and gradient algorithms.

The process of training such a system takes place by constant
changing of its parameters as a result of presenting individual
case examples from the training sample. NFS training is
iterative and its essence consists in adjusting the parameters of
membership functions (defining the coordinates of inflection
points) and determining new rule conclusions to best predict the
value of the dependent variable for the tested sample. The
output neuron calculates the error based on the difference
between the calculated response and the correct answer given.
The error is next sent to the previous layers, and the parameters
of the FIS system are modified. Training stops when the
average error has reached the preset minimum.

Fig. 7 List of variables in the system predicting the microstructure of compacted graphite iron

Fig. 8 AUSFERRITE—the structure of FIS model

Fig. 9 Gaussian function

Fig. 10 Training process using the ANFIS algorithm
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The structure of the NFS system in the ANFIS algorithm
consists of several layers. A schematic representation of the
individual layers is shown in Fig. 6.

The first layer (L1) is responsible for the process of entering
the values of explanatory variables from the training set (x1, x2,

…, xn), the second layer (L2) executes the process of blurring,
i.e., determining the membership coefficients of each input
vector xi into fuzzy sets Ai

k. This is done using the adopted
membership functions of the input vector components, e.g.,
Gaussian functions (3).

Fig. 11 Membership function plot for inputs: (a) Cu, (b) Mo, (c) Ni and (d) thickness

Fig. 12 The structure of the ANFIS model designed to predict the ausferrite content in a microstructure
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lAðx; �x; rÞ ¼ exp � x� �x

r

� �2
 !

ðEq 3Þ

The third layer (L3) is responsible for determining the
degree of activation of the k-th rule wk. Elements of this layer
implement the t-norm, e.g., in the form of product (4):

wkðxÞ ¼ PROD lAðxÞ; lBðxÞ½ � ðEq 4Þ

In the next layer (L4), linear combinations of the output
functions are calculated, based on the entered training data,
which are then weighted by the degrees of truth of the logical
rules (wk) and summed. At the output, the predicted value of the
dependent variable is obtained for the modeled sample. Here
the output from the model is compared to the pattern in the
training data.

4. The Developed Neuro-Fuzzy ANFIS System

The developed neuro-fuzzy ANFIS system is an algorithm
that enables automatic determination of parameters of the fuzzy
inference system (FIS) of Sugeno type based on the training
data.

In this study, the reference training cases are the results of
observations and measurements of the content of individual
constituents of the microstructure of compacted graphite iron
(ferrite, pearlite, carbides, martensite, ausferrite and austen-
ite) (Fig. 7). They are collected in one database and examined
as a function of the content of individual alloy additives in the
tested range of chemical composition, i.e.,

• Cu content (wt.%),
• Ni content (wt.%),
• Mo content (wt.%),
• wall thickness (mm).

Due to the fact that in the course of one analysis the ANFIS
algorithm can accept only one explanatory variable at the

output, the process of implementing a prediction system
forecasting the content of individual constituents of the
microstructure as a function of the assumed concentration of
alloy additives and casting wall thickness was carried out in
several stages. The process involved six separate prediction
models determined separately for each microstructural con-
stituent. This study is specifically devoted to detailed presen-
tation of a model developed for the determination of the
ausferrite amount.

4.1 The Fuzzy Model Developed for Ausferrite Using ANFIS
Algorithm

At the input to the algorithm, four input variables were
given, i.e., Cu content, Ni content, Mo content and casting wall
thickness (Fig. 8).

The ranges of variables defining the content of individual
alloy additives have been divided into three fuzzy sets with the
names {Small, Medium, Large}. The variable defining the
casting wall thickness was divided into four fuzzy sets with the
names {3, 6, 12, 24}, representing wall thickness values that
the analyzed set of training data have. All fuzzy sets have a
Gaussian membership function, the formula of which is
presented in Eq 3, while its general form is shown in Fig. 9.

Initially, the parameters �x, r of fuzzy sets are determined in a
random manner. Then, in the later stages of the training
algorithm operation, they are tuned based on the feedback
information about the error value for the analyzed case of
training vector. Tuning is done using a hybrid gradient
combination of the method of the largest slope and the method
of least squares.

The FIS system developed with the ANFIS algorithm works
with a training error set at about 5%; training was carried out in
125 epochs (Fig. 10). With the learning process completed, the
testing process starts. It uses a test file that contains data not
previously used in the network training process. The FIS
system developed with the help of the ANFIS algorithm
operates with a test error of about 9%.

ANFIS training is iterative and its essence consists in
adjusting the parameters of membership functions (e.g., width
and position for the Gaussian function) to best predict the value

Fig. 13 Graphical representations of inference using the developed fuzzy model for inputs: (a) {Cu = 2.43, Ni = 0, Mo = 1.75, thickness = 6};
(b) {Cu = 1.02, Ni = 0, Mo = 1.4, thickness = 3}
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of the dependent variable for the tested sample. Figure 11
shows illustrations of fuzzy sets determined in the training
process for adopted input variables.

The developed structure of the neuro-fuzzy model inference
is shown in Fig. 12.

Altogether 108 subspaces were generated in the model, each
of them being represented by one fuzzy rule describing the
operation of the system in this sub-area. The general form of the
rule is presented in formula (5), while an example of the actual
rule generated by the system is given in (6).

Ri : IF x1 isA
i
1

� �
and . . . and xn is Ai

n

� �
THEN y ¼ bi

� �
ðEq 5Þ

where x ¼ ðx1 . . . xnÞ is the system input variable, Ai
j are fuzzy

sets, and y 2 R is the output variable of the system.

IF Cu is Sð Þ and Ni is Sð Þ and Mo is Mð Þ
and thickness is 3ð Þ THEN

ausferrite ¼ 822:8Cuþ 7:893Niþ 79:92Mo

þ 76:91 thickness� 90:33

ðEq 6Þ

4.2 Inference Using the Developed Fuzzy Model

The model developed in this article is applicable to the
whole range of input variables. Figure 13 presents graphical
representations of inference using the developed fuzzy model.
Figure 13(a) shows the inference scenario using the developed
model, where the following input variables were assumed:
{Cu = 2.43, Ni = 0, Mo = 1.75, thickness = 6}. The system

Fig. 14 The amount of ausferrite in cast iron predicted as a function of molybdenum and copper concentration in castings with the wall
thickness of: (a) 3 mm, (b) 6 mm, (c) 12 mm and (d) 24 mm
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determined the content of ausferrite at the level of 94.1%, while
in experimental data this value was at the level of 93%. For the
input values equal to {Cu = 1.02, Ni = 0, Mo = 1.4, thick-
ness = 3}, the system determined the content of ausferrite at the
level of 64.2% (Fig. 13b), while in experimental data this value
was at the level of 60%. All tested values are within the
accepted inference error of 9%.

The results in the form of 3D sub-models, taking into
account the influence of selected input variables on material
consumption, are presented in Fig. 14 and 15. Figure 14(a), (b),
(c), (d) and 15(a), (b), (c), (d) shows the amount of the
ausferrite in cast iron predicted as a function of the concen-
tration of molybdenum, copper and nickel in castings with the
wall thickness of 3, 6, 12 and 24 mm.

Figure 14 and 15(a), (b), (c), and (d) shows that molybde-
num has the greatest influence on the formation of ausferritic
microstructure in compacted graphite iron. At a concentration
of about 2%, it allows the formation of about 80% ausferrite in
the matrix. Further increase in the amount of ausferrite is

possible by adding nickel or copper into cast iron. In castings
with the wall thickness of 6-24 mm, increasing the copper
concentration to about 1-1.5% results in the amount of
ausferrite close to 100%. In thin-walled castings, the reduction
in the amount of this phase may be caused by a stronger
tendency of cast iron toward crystallization in the
metastable system, which means a stronger tendency to form
carbides. The situation is similar as regards the addition of
nickel (Fig. 15), but in this case to increase the amount of
ausferrite in the matrix of cast iron to about 100% it is
necessary to add Ni in an amount of about 1.5-2.0%. The
representative microstructure of CGI containing about 2% Mo
and 1.5% Cu obtained according to the ANFIS algorithm is
presented in Fig. 16(a) and (b).

Figure 16 shows that as a result of the introduction of about
2% Mo and 1.5% Cu into the compacted graphite iron, a
completely ausferritic matrix was obtained in castings with a
wall thickness of 24 mm (Fig. 16b). In thin-walled castings, the
content of ausferrite in the matrix is lower. This is due to a

Fig. 15 The amount of ausferrite in cast iron predicted as a function of molybdenum and nickel concentration in castings with the wall
thickness of: (a) 3 mm, (b) 6 mm, (c) 12 mm and (d) 24 mm
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higher cooling rate and crystallization of cast iron partly in a
metastable system. The consequence is precipitation of a small
amount of carbides visible in the form of light-color precip-
itates (marked with red arrows) (Fig. 16a). The representative
microstructure of CGI containing about 2% Mo and 1.5% Ni
obtained according to the ANFIS algorithm is presented in
Fig. 17(a) and (b).

From Fig. 17, it follows that in the compacted graphite iron
containing about 2% Mo and 1.5% Ni, the microstructure of the
matrix is very similar to that shown in Fig. 16(a) and (b). It
consists of ausferrite and, in the case of thin-walled castings, also
of carbides (markedwith red arrows) (Fig. 17a). Compared to the
cast iron containing copper, the content of carbides is slightly
higher, which is due to the stronger graphitizing effect of copper.
The data presented in Fig. 15 and 16(a) and (b) confirm the
simulation results shown in Fig. 14 and 15(a) and (b).

5. Summary and Conclusions

Based on the collected experimental data and using the
ANFIS algorithm, it was possible to develop a predictive model
that allows forecasting the content of selected constituent in the

microstructure of compacted graphite iron. The FIS system
developed with the help of the ANFIS algorithm operates with
a test error of about 9%. The results have confirmed that the
proposed ANFIS model has the potential to select the chemical
composition for castings made from the compacted graphite
iron with high-strength properties. This will allow in the future
reducing the expenditures on experimental research that mainly
aims at demonstrating the possibility of producing cast iron
with ausferritic microstructure of the matrix without the use of
heat treatment but only by modification of its chemical
composition taking into account the thickness of the casting
wall. Four variables were used, i.e., Mo, Cu, Ni and casting
wall thickness. The developed algorithms in the form of a
ready-made program should be used in foundries producing
castings made of compacted graphite iron with increased,
relative to the standard grade, strength parameters and resis-
tance to abrasion.

The conducted research also allows for a more detailed
examination of the specific character of the adaptive neuro-
fuzzy inference system (ANFIS). It enables the optimization
(tuning) of fuzzy model parameters based on measurement data
and allows for correction of the inaccurate fuzzy models
formulated by experts. Its structure and parameters are
understandable to humans (linguistic expressions, a record of

Fig. 16 The microstructure of CGI containing about 2% Mo and 1.5% Cu obtained according to the ANFIS algorithm in castings with the wall
thickness of 3 mm (a) and 24 mm (b): compacted graphite, ausferrite and carbides (only (a)) (Color figure online)

Fig. 17 The microstructure of CGI containing about 2% Mo and 1.5% Ni obtained according to the ANFIS algorithm in castings with the wall
thickness of 3 mm (a) and 24 mm (b): compacted graphite, ausferrite and carbides (only (a)) (Color figure online)
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knowledge in the form of inference rules). It enables general-
ization of knowledge contained in noisy measurement data and
presenting it in a human-understandable form.
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