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V element had positive effect in improving the strength of many alloys, so it was possible that V had
potential to strengthen CoCrCuFeNi high-entropy alloys (HEAs) with face-centered cubic (FCC) crystal
structure, which was relatively weak in strength and had outstanding ductility. In this paper, we studied the
alloying effect of V on the phase evolution, microstructure and the mechanical properties of the (CoCr-
CuFeNi) 99—V (x = 0-16, atomic ratio, hereafter in at.%) HEAs systematically. The results showed that V
element had capacity to induce sigma phase precipitation. The volume fraction of sigma phase increased
from 0 to 12%; the compressive yield stress of (CoCrCuFeNi) 99—V HEAs increased from 300 to 613 MPa
with V content increasing from 0 to 16% (atomic ratio, hereafter in at.%). However, the compression
fracture strain decreased from 50 to 28%. V addition was beneficial in improving the strength of CoCr-
CuFeNi HEA, and the increase in sigma phase volume fraction was the key factor for the improvement of

the (CoCrCuFeNi);o9—.V, HEAs in yield stress.

Keywords high-entropy alloys, mechanical properties, phase
precipitation, V element

1. Introduction

High-entropy alloys (HEAs) were firstly proposed by Yeh
and Cantor in 2004 (Ref 1, 2). They had been a new hot topic in
metal material field because of their excellent mechanical
properties (Ref 3-23). It was an important breakthrough in the
traditional metallic materials field; it also opened a new path to
study and develop new metal material with outstanding
mechanical properties.

For traditional alloy materials, one or two elements were
selected as the major component based on the primary property
requirement, and other alloy elements were added in the matrix
for conferring the secondary properties without altering the
primary properties of the matrix (Ref 2). Some similar methods
were also used in HEAs field, and some studies had revealed
that the addition of alloying elements had positive effect on the
microstructure and mechanical properties. For example,
Stepanov et al. (Ref 24) had studied the effect of V element
on microstructure and mechanical properties of the CoCr-
FeMnNiV, HEAs and they found that the sigma phase was
generated in the matrix, the volume fraction of sigma phase
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increased with increasing V content, and the strength increased
with increasing volume fraction of sigma phase. Wang et al.
(Ref 25) investigated the microstructure and mechanical
properties of CoCrCuFeNiTi, HEAs. They found that the
compression strength increased and the magnetic conversion
changed from paramagnetism to superparamagnetism as Ti
content increased. The correlation between the microstructure
and mechanical properties of the (FeCoNiCrMn);¢_.Al, HEAs
also was presented by He et al. (Ref 26). They found that the
phase structure transformed from the FCC to BCC structure and
the mechanical properties increased in strength but reduced in
ductility with increasing Al content (Ref 26). Li et al
concluded the effect of the Mn, Ti and V addition on
microstructure and mechanical properties of AICrFeCoNiCu
HEA, and they found that these three elements had positive
effect on phase evolution and performance optimization. The V
element showed the best strengthening effect and the lowest
decreases in the ultimate strain on AlCrFeCoNiCu HEA (Ref
27). The effect of V element on microstructure and mechanical
properties of AICoCrFeNiV, was reported by Dong et al. (Ref
28). They found that the Vickers hardness increased with an
increase in the V content and the fine nanoscale spinodal
decomposition microstructure had a major contribution to the
high fracture strength of the AICoCrFeNiV,, HEA. Wang et al.
reported the effect of Al addition on the microstructure and
mechanical properties of Al,CoCrFeNi HEAs. The research
showed that the hardness was increased by generating BCC
phase, and the volume fraction of BCC phase increased as the
Al content increased (Ref 29). Table 1 summarizes the alloy
effect of some reported alloy elements on the phase structure
and mechanical properties of some HEAs. These reports (24-
38) focus on the effect of some alloy elements on phase
precipitation, microstructure and mechanical properties of some
HEAs. They indicated that some elements had positive effect in
improving the strength of HEAs. CoCrCuFeNi high-entropy
alloys (HEAs) possessed face-centered cubic (FCC) crystal
structure, which was relatively weak in strength and had
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Table 1 Effect of some reported alloy elements on the phase structure and mechanical properties of some HEAs

Basis material Alloy element

Second phase

Yield strength Fracture strain

CoCrFeMnNi (Ref 24) v Sigma Up Down
CoCrCuFeNi (Ref 25) Ti Laves Up Down
CoCrFeMnNi (Ref 26) Al BCC Up Down
AlCoCrFeNi (Ref 28) v Nanoscale decomposition Up Down
CoCrFeNi (Ref 29) Al BCC Up Down
CoCrFeNi (Ref 30) Mo S Up Down
CoCrFeNi (Ref 31, 34) Nb Laves Up Down
AlCoCrFeNi (Ref 32) Nb Laves Up Down
AlCoCrFeNi (35) Zr Leave Up Down
AlCoCrFeNi (Ref 38) Si ) Up Down
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Fig. 1 XRD patterns of (CoCrCuFeNi) g9V, (x =0, 4, 8, 12 and
16) HEAs

outstanding ductility (Ref 25). V element had positive effect in
improving the strength of some HEAs (Ref 24, 28), so it was
possible that V had potential in strengthening this CoCrCuFeNi
HEA. However, the effect of V addition on the microstructure
and mechanical properties of CoCrCuFeNi HEA had not been
reported based on the previous reports (Ref 5, 24-39) and this
gap should be filled.

In this paper, the CoCrCuFeNi HEA (all elements in equal
atomic proportions) with a single FCC phase solid solution was
selected as matrix. The alloying effect of V element on the
phase evolution, microstructure and mechanical properties of
the (CoCrCuFeNi)jgg_,V, (x = 0-16, atomic ratio, hereafter in
at.%) HEAs was studied systematically. Furthermore, the
relationship between the microstructure and mechanical prop-
erties was investigated and the strengthening mechanism of V
element on CoCrCuFeNi HEA was also revealed.
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The ingots of (CoCrCuFeNi) g0V, (x = 0-16 at.%) HEAs
were prepared by arc melting in a copper mold under high-
purity argon atmosphere. The metal powders (Co, Cr, Cu, Fe,
Ni and V) with purity more than 99% were selected to be the
raw material. For the chemical composition uniformity, each
ingot was smelted seven times. We used electric discharging
machining to cut the ingots into several shapes for detecting.
The x-ray diffraction (XRD) using Cu K, radiation
(MXP21VAHF) scanning from 20° to 100° in 20 at a scanning
rate of 4°/min identified the phase structures of the HEAs. The
specimens were observed by scanning electron microscopy
(SEM) using a Zeiss Supra 55 instrument operated at 15 kV and
equipped with an energy-dispersive spectrometer (EDS) to
analyze the chemical composition distribution. The SEM
samples were grounded, polished and electro-polished in the
corrosive liquid of 90% acetic acid and 10% perchloric acid
mixture at room temperature and an applied voltage of 27 V for
15 s. The diameter and the height of the compression samples
were, respectively, 4 and 6 mm. Compression tests were carried
out on an AG-X Plus 250-kN electronic universal material
testing machine at a strain rate of 0.5 x 10> m/min at room
temperature; for each specimen, at least 3 samples were
measured to acquire an accurate value.
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Fig. 3 SEM images of the as-cast (CoCrCuFeNi)jgy_V, alloys. (a—e represent the SEM images of CoCrCuFeNi (CoCrCuFeNi)osVy,
(CoCrCuFeNi)g, Vg, (CoCrCuFeNi)ggVis, (CoCrCuFeNi)s,Vis HEAs, and (f) represents the image of (CoCrCuFeNi)ssVis HEA with high
magnification), (g) represents the high-magnification image of the interdendritic region in CoCrCuFeNi HEA

3. Results and Discussion

The XRD patterns showed that the sigma phase precipitated
in the (CoCrCuFeNi);oo_,V, HEAs with increasing V content.
The duplex-phase structure had better solid-solution strength-
ening effect than single-phase structure (Ref 40). As shown in
Fig. 1, only patterns related FCC phase structure was detected
when V content was 0-12%. The sigma phase precipitated until
V content reached 16%. It implied that V addition had positive
effect on phase precipitation from FCC phase to sigma phase in
the (CoCrCuFeNi) ooV, HEAs. As shown in Fig. 2, the

Journal of Materials Engineering and Performance

lattice constant showed a rising tendency when V content
increased from 0 to 12%, while the lattice constant decreased
when V content increased from 12 to 16%. The main factor was
that some atoms were dissolved in this matrix when V content
increased from 0 to 12%, which contributed to the increases in
lattice constant. When V content reached 12%, the sigma phase
was precipitated, which released the lattice distortion energy, so
the lattice constant was decreased (Ref 16-18, 36).

To analyze the microstructure, the polished samples were
observed by SEM and the elements distribution maps were also
attained by EDS. Figure 3 shows the microstructures of the
(CoCrCuFeNi);g9_.V, HEAs. When V content was 0%, as
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Table 2 Compositions (at.%) of various phases in the as-cast (CoCrCuFeNi);g9—V. (x =0, 4, 8, 12 and 16) HEAs

HEA Region Co Cr Cu Fe Ni \Y%
CoCrCuFeNi Nominal 20 20 20 20 20 0
Dendritic 21.86 22.72 10.62 18.71 26.08 0
Interdendritic 4.45 3.67 76.85 3.91 11.12 0
(CoCrCuFeNi)gsV4 Nominal 19.2 19.2 19.2 19.2 23 4
FCC phase 23.31 22.19 9.09 21.02 19.71 4.46
Cu-rich phase 3.52 3.22 81.12 3.25 8.89 0
(CoCrCuFeNi)g, Vg Nominal 18.4 18.4 18.4 18.4 18.4 8
FCC phase 21.80 21.49 8.97 18.65 20.86 7.79
Cu-rich phase 2.94 3.17 80.42 2.83 9.88 0
(CoCrCuFeNi)ggV o Nominal 17.6 17.6 17.6 17.6 17.6 12
FCC phase 21.34 17.31 9.09 14.71 22.25 15.30
Cu-rich phase 3.79 3.08 81.81 2.94 6.79 1.06
Sigma phase 7.53 15.24 16.09 5.91 5.58 49.65
(CoCrCuFeNi)g4V 16 Nominal 16.8 16.8 16.8 16.8 16.8 16
FCC phase 21.71 20.89 8.46 16.15 20.38 12.42
Cu-rich phase 8.16 9.69 62.26 6.00 8.44 5.02
Sigma phase 2.56 8.79 36.66 1.84 3.09 55.86
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3004 Fig. 6 Effect of the volume fraction of the sigma phase (attained
by Grid Statistic Method) on the yield stress and the fracture strain
. of (CoCrCuFeNi);g9_.V HEAs
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engineering  stress—strain  curves  of
(CoCrCuFeNi);gg_,V, (x = 0-16) HEAs
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shown in Fig. 3(a), it showed that the matrix possessed a
typical dendritic structure, and Cu was found precipitated as
second phase in the interdendritic region. The Cu-rich phase
changed to the spherical morphology from strip shape when V
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Fig. 7 Microstructural features of the deformation HEAs. (a) The microstructural features of the deformation (CoCrCuFeNi)y,Vg HEA
(backscatter signal), (b) the microstructural features of the deformation (CoCrCuFeNi)gsV > HEA (backscatter signal), (c¢) the high-magnification
microstructural features of the deformation (CoCrCuFeNi)ggV i, HEA (backscatter signal), (d) compression fracture features of the deformation

(CoCrCuFeNi)g, Vs HEA (secondary electron signal)

(@ pcc

@ Matrix atoms

© V atoms

V content

Fig. 8 Atomic diffusion model for sigma phase formation in (CoCrCuFeNi) ooV, HEAS

content increased from 4 to 8% as shown in Fig. 3(b) and (c).
When V content reached 12%, the sigma phase was found in
(CoCrCuFeNi)ggVi, HEA (see Fig. 3d). However, the sigma
phase was not tested by XRD for its thin volume fraction. The
volume fraction of sigma phase increased with V content
increase as shown in Fig. 3(e). Figure 3(f) shows the image of
(CoCrCuFeNi)g4 V16 HEA with high magnification; it shows the
sigma and Cu-rich phases clearly.

Figure 4 shows the elements distribution images of
(CoCrCuFeNi)g4Vi6 HEA by EDS. Table 2 shows the compo-
sitions (at.%) of various phases in as-cast (CoCrCuFe-
Ni)jooxVy (x=0, 4, 8, 12 and 16) HEAs by EDS. They
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showed that sigma phase was V-rich region and the spheroidal
particles were present Cu-rich region, which indicated that V
was added in CoCrCuFeNi HEA, which had positive effect in
sigma phase precipitation.

Figure 5 shows the engineering stress—strain curve of
(CoCrCuFeNi);g9_»V, HEAs measured by compressive text.
As shown in Fig. 5, the yield stress of the alloy gradually
increased from 300 to 613 MPa with V content increasing from
0 to 16%, while the compression fracture strain decreased from
50 to 28%. When V content was 0, 4, 8 and 12%, respectively,
the compressive specimens had no fracture when the strain
reached 50%.
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Fig. 9 (a) VEC of (CoCrCuFeNi);p9_,V, HEAs. (b) y of (CoCrCuFeNi);p9_.V. HEAs

Figure 6 shows the effect of sigma phase volume fraction
(attained by Grid Statistic Method) on the yield stress and the
fracture strain of (CoCrCuFeNi);o9_,V, HEAs. It showed that
the volume fraction of sigma phase increased gradually from 0
to 12% as the V content increased, the yield stress increased
from 300 to 613 MPa, and the compression fracture strain
decreased from 50 to 28%. It implied that V addition had
positive effect on promoting sigma phase precipitation and
improving the strength of CoCrCuFeNi HEA. According to the
formula: 6 = OgcVice + Osigma Vsigma (Ref 42), the plasticity and
strength of HEAs could be roughly estimated, where the J¢.
and Jgema represent the strength of the FCC phase and sigma
phase, respectively, and the Vi and Vggma represent the
volume fraction of the two phases, respectively. The volume
fraction of the sigma phase (attained by Grid Statistic Method)
gradually increased with V content increase in (CoCrCuFe-
Ni)j00_»Vy HEAs system. Therefore, V addition was beneficial
in improving the strength of CoCrCuFeNi HEA.

In order to reveal the effects of sigma phase on the
deformation and fracture process, the microstructural features
of the deformation and the fracture-compressed samples were
observed by SEM. Figure 7(a), (b) and (c) shows the microstruc-
tural features of the deformation (CoCrCuFeNi)y,Vg and
(CoCrCuFeNi)ggV i, HEAs, and Fig. 7(d) shows the compres-
sion fracture features of the (CoCrCuFeNi)g, Vs HEA. As shown
in Fig. 7(a), in the process of compression deformation, the Cu-
rich phases were pressed and deformed. However, the sigma
phases were not deformed (see Fig. 7b and c). It was indicated
that the sigma phases play a key role in improving the strength of
this CoCrCuFeNi HEA. As shown in Fig. 7(d), it showed the
compression fracture features of the (CoCrCuFeNi)g, V16 HEA.
The EDS result (Fig. 7d) showed the crack occurs on the V-rich
phase (sigma phase). In the process of compression deformation,
the Cu-rich phases and matrix phase were deformed; however,
the sigma phases do not have enough deformability, breakdown
and formation of the cracks. These cracks as a starting point lead
to the fracture of the compression specimen.

For describing the process of sigma phase precipitation
more clearly, an atomic diffusion model was established. As
shown in Fig. 8, when V content was 0% in (CoCrCuFe-
Ni)j00_»Vy HEAs, the matrix of the HEA formed FCC phase
structure, as shown in Fig. 8(a). When V content was low, V
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atoms could be dissolved in the matrix, as shown in Fig. 8(b),
which caused a large lattice distortion and improved the effect
of solid-solution strength. As the V element further increased,
more and more atoms were dissolved in the matrix and replaced
the matrix atoms. When V content exceeded the limits of it
could be dissolved in the matrix, a part of V atoms would be
separated out from FCC matrix and formed sigma phase with
some matrix atoms as shown in Fig. 8(c).

Valence electron concentration (VEC) and electronegativity
() were important physical parameters for phase formation in
HEA field based on these papers (Ref 6, 41-50). Figure 9 shows
the VEC and electronegativity () of (CoCrCuFeNi) oo .V,
HEAs. VEC could be attained by this formula:
VEC = >""_, ¢;(VEC),, where the VEC of the ith component
element is presented by (VEC); and the atomic percentage of the
ith component element is represented by ¢; (Ref'5, 38, 45-47). As
shown in Fig. 9(a), the VEC of (CoCrCuFeNi);¢o_,V, HEAs
decreased with increasing V content. The electronegativity (y)
could be calculated by this formula: y = >~ _, ¢:(y),, where y of
the ith component element is represented by (), and the atomic
percentage of the ith component element is represented by ¢; (Ref
6, 39). As shown in Fig. 9(b), the value of electronegativity (i)
also decreased with increasing V content. The results indicated
that the decreases in VEC and electronegativity (y) played a
positive role in promoting sigma phase formation.

4. Conclusions

The microstructure and mechanical properties of (CoCrCu-
FeNi);go_.V, HEAs had been studied in this paper. Based on
the experiment and subsequent analysis results, several con-
clusions could be attained as follows:

1. Vaddition played a positive role in sigma phase precipita-
tion. The volume fraction of sigma phase increased from 0
to 12% with increasing V content from 0% to 16 at.%.

2. The compressive yield stress of (CoCrCuFeNi)jgo_,Vy
HEAs increased from 300 to 613 MPa with V content
increasing from 0 to 16%; the compression fracture strain
decreased from 50 to 28%.
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3. The increases in the sigma phase volume fraction played
a key role in increasing the yield stress of (CoCrCuFe-
Ni)log_xvx HEAs.
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