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The utility of different constitutive models describing high-temperature flow behavior has been evaluated
from the perspective of alloy development. Strain compensated Arrhenius model, modified Johnson–Cook
(MJC) model, model D8A and artificial neural network (ANN) have been used to describe flow behavior of
different model alloys. These alloys are four grades of SS 316LN with different nitrogen contents ranging
from 0.07 to 0.22%. Grades with 0.07%N and 0.22%N have been used to determine suitable material
constants of the constitutive equations and also to train the ANN model. While the ANN model has been
developed with chemical composition as a direct input, the MJC and D8A models have been amended to
incorporate the effect of nitrogen content on flow behavior. The prediction capabilities of all models have
been validated using the experimental data obtained from grades containing 0.11%N and 0.14%N. The
comparative analysis demonstrates that �N-amended D8A� and �N-amended MJC� are preferable to the
ANN model for predicting flow behavior of different grades of 316LN. The work provides detailed insights
into the usual statistical error analysis technique and frames five additional criteria which must be con-
sidered when a model is analyzed from the perspective of alloy development.

Keywords alloy development, artificial neural network, evalua-
tion criteria, flow behavior, mathematical models

1. Introduction

Ever since the invention of mechanical testing machines,
prediction of flow behavior of materials has captured the
fascination of material scientists. This fascination has yielded
many constitutive models over the years (Ref 1). A current
review of literature indicates that even today, the subject is as
captivating as it was in the 1980s (Ref 2-4). This may be
attributed to the inability of a single model to connote the
influence of all imposed parameters on material response, as
well as the difficulty in depicting the flow behavior of different
materials using a common model. In this scenario, researchers
either modify the existing suitable models or propose new
models to portray the behavior of new materials. Some of the
popular models are Cheng–Zhang model (Ref 5), Kobayashi–
Dodd model (Ref 6), Wang–Jiang model (Ref 7), SK-Paul
model (Ref 8), KH model (Ref 9) and physically based models
(Ref 10-12). In many cases, the new model is a modification or
extension of an existing theory, as exemplified by modified
Zerilli–Armstrong (MZA) (Ref 13-16), modified Johnson–
Cook (MJC) (Ref 17-21), mechanical threshold stress (MTS)
(Ref 22-24), etc. models.

An alternate approach to predict flow behavior over a very
large domain is to combine several models with the help of
computer codes as described by Lindgren et al. (Ref 25). This
approach has been effective in modeling the flow response of SS
316L steel over a large range of temperatures and strain rates (Ref
25). However, this complex process may not appeal to the alloy
designer who simply wishes to make minor variations in
composition and then study the change in flow behavior. Such
necessities frequently arise during optimization of element content
in an alloy during its development stage. This is best exemplified
by addition of interstitial elements to different grades of steels.
One such example is addition of carbon to alloy D9, which
improves creep properties and irradiation resistance by forming
compound with Ti (Ref 26). Though the variation of carbon
content is minor, it significantly alters the workability of the steel
(Ref 13) (Ref 27). Another example is addition of nitrogen, which
aims to improve creep strength and corrosion resistance of SS
316L (Ref 28, 29), yet it simultaneously influences the deforma-
tion characteristics by changing work hardening behavior and
flow softening mechanisms. Therefore, the alloy designer tries to
optimize the interstitial content by simultaneously monitoring
workability and in-service properties of the alloy. In these
situations, users may prefer mathematical or phenomenological
models which are less complex and do not require a high level of
programming skill. However, this composition-dependent facet of
constitutive modeling is less explored and often gets neglected in
popular discourse. Hitherto, ANN has often been recommended
for such uses as it readily accommodates the composition in its
input parameters (Ref 30-32).

This paper aims to highlight the different factors which must
be considered before selecting a constitutive model to predict
the flow behavior of alloy when minor alloying additions are
varied. For this purpose, four grades of 316LN, an austenitic
stainless steel, have been used to generate experimental data.
Using the experimental result of two variants of the above-
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mentioned steel (i.e., with 0.07%N and 0.22% N), some
frequently used phenomenological constitutive equations such
as modified Johnson–Cook (MJC), strain compensated Arrhe-
nius (SCA) and model D8A have been assessed in relation to an
artificial neural network (ANN) model, taking into consideration
the respective capabilities for flow prediction. Along with the
usual statistical error analysis, five additional factors from the
perspective of alloy development have also been used to assess
the suitability of the model. The models which fulfill these six
criteria have been amended to predict flow stress of other two
variants of the steel (i.e., with 0.11%N and 0.14% N), and the
predictions have been validated with the experimental data.

2. Materials and Method

Four grades of 316LN have been chosen as model alloys. The
base alloy has nominal chemical composition (in wt.%) Fe-
17.6Cr-12.3Ni-2.5Mo-1.7Mn-0.028C-xN,where x = 0.07, 0.11,
0.14 and 0.22 for the four grades designated as 7 N, 11 N, 14 N
and 22 N, respectively. These grades were received in rolled
plate form. In order to ensure similar grain size in 7 N, 11 N and
22 N steels, cylindrical bars machined from the plates were
subjected to a common solution annealing treatment at 1373 K
for 30 min. Subsequently, cylindrical specimens of 15 mm
height and 10 mm diameter were machined from the solution
annealed bars for compression testing. However, neither the bars
machined from the 14 N plate nor the specimens fabricated
thereof were subjected to any heat treatment. This was done
consciously to determine the effect of small grain size variations
on the capability of constitutive models. This is relevant because
some degree of grain size variation across different heats is
unavoidable during practical alloy development.

A servo-hydraulic, constant true strain rate compression
testing machine with special quenching facility was used for the
hot isothermal compression testing of the 7 N, 11 N and 22 N
specimens. The uniaxial compression tests were performed in
the temperature range of 1123-1423 K (at 100 K interval) and
at constant true strain rates of 0.001, 0.01, 0.1, 1 and 10 s�1.
Each specimen was deformed to a nominal strain of 50%.

However, the 14 N grade was tested using a Gleeble
thermomechanical simulator in temperature domain 1123-
1423 K at a strain rate of 0.1 s�1. All the tests were carried
out in accordance with the ASTM E209 standard.

Before imparting the deformation, each specimen was
heated at a rate of 5 K s�1 to the desired deformation
temperature and soaked at that temperature for 2 min to
achieve homogeneous temperature distribution throughout the
specimen. The temperature of the specimen during the
deformation was recorded using K-type thermocouples. To
minimize the friction during deformation, graphite foils and Ni
paste were used between specimens and the platens. As a result,
no significant barreling of the specimen was observed after
deformation. The load-stroke data recorded during the exper-
iments were used to generate true stress–true plastic strain
curves following the standard procedure recommended (Ref
33). The flow curves were corrected using the method
suggested by (Ref 34), incorporating the adiabatic temperature
rise measured during high strain rates, mostly at 1 and 10 s�1.

Experimental data obtained for 7 N and 22 N were used for
the development of constitutive models describing the effect of
nitrogen content on flow stress. Experimental data generated
from the testing of 11 N and 14 N were used to verify the

capability of various constitutive models. These two sets of data
generated using two different machines (i.e., computer-con-
trolled servo-hydraulic machine and Gleeble� 3500), have been
chosen consciously for the purpose of validation, in order to
study the effect of machine bias (if any) on predictability of the
model. This is particularly important for application to
industrial deformation practice. The utility of a constitutive
model increases when the model is machine-independent.

3. Deformation Behavior of Different Variants
of 316LN

The flow curves shown in Fig. 1 represent true stress-strain
behaviour of 7 N, 11 N and 22 N grades of SS 316LN,
respectively. These representative flow curves reveal the effects
of strain and strain rate on flow stress of the three grades at 1223 K.
The flow curves of these grades at the common deformation
condition of 1123 K, 0.001 s�1 strain rate are compared in
Fig. 1(d), which shows that nitrogen enrichment enhances the
resistance to deformation. The effect of nitrogen on work hardening
of the material, as shown in the inset image of Fig. 1(d), is in good
agreement with the observations by other researchers (Ref 35-38),
who, however, used different deformation modes and conditions.
While nitrogen content enhances the strain hardening in the steel
till the peak stress, no prominent effect on strain softening could be
discerned beyond this point in the present study.

Figure 1 also indicates that, at a given temperature and strain,
increasing strain rate causes an increase in the flow stress up to
the strain rate of 1 s�1. This effect of strain rate on flow behavior
is known as �strain rate hardening� or �positive strain rate
sensitivity�. However, when the strain rate increases from 1 to
10 s�1, this behavior begins to reverse at higher strain levels, for
example at true strain of 0.65. This softening behavior is known
as �negative strain rate sensitivity� and is often cited as a
signature of flow instability. This behavior of 316LN has been
reported and discussed in the literature (Ref 39-41). It is
believed that the addition of nitrogen leads to increase in pinning
of dislocation and multiplication of dislocation. These clusters
of dislocations lead to flow localization. Adiabatic temperature
rise causes combination of these localized regions to form shear
bands and contribute to negative strain rate sensitivity (Ref 40).

The combined influence of strain rate and temperature on flow
stress is demonstrated in Fig. 2. It is revealed that all the three
grades exhibit negative strain rate sensitivity in the high strain
rate (1-10 s�1) domain. However, this behavior also depends on
temperature. The strain rate softening is more prominent at lower
deformation temperatures. As the temperature increases, the rate
sensitivity gradually reverses and the steels eventually show
positive strain rate sensitivity. The temperature where the strain
rate sensitivity transits from negative to positive depends on the
chemical composition of the steel. The domain of negative strain
rate sensitivity is marked as the �unstable� domain in Fig. 2. In the
stable domain, the phenomena of work hardening, flow satura-
tion and eventual thermal softening have been seen in 7 N, 11 N
and 22 N variants.

4. Prediction of Material Behavior

The flow behavior of the tested materials, as shown in Fig. 1
and 2, is governed by thermal softening, strain hardening/soft-
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ening, strain rate hardening/softening and compositional
strengthening. In order to predict or reproduce a stress–strain
curve, a constitutive model therefore needs to represent the
individual effects of all these phenomena, as well as the second-
order interactions between them. Varied efforts to incorporate
these phenomena have led to different types of models; however,
a fundamental distinction may be drawn between two major
types. The phenomenological type uses mathematical relation-
ships to express the variation of physical parameters, notable ex-
amples being SCA (Ref 42-47), MJC (Ref 17-21), MZA (Ref 13-
16), etc. Among these, the MJC and D8A models were
specifically developed to depict the flow behavior of special
grade steels (Ref 17, 48). The other type, namely the computa-
tional model, takes experimental data as input and uses algo-
rithms of varying sophistication to identify trends and patterns
between data points. These trends are used to predict flow
behavior at the same or at different conditions, as is often done
using ANN techniques (Ref 49, 50). A review of literature over
the past 5 years reveals that both types of model continue to be
actively use. Nearly 500 studies on SCA-based flow prediction
alone have been published in the past 5 years, as collated by
scientific databases such as Web of Science and ScienceDirect.

The equivalent number for ANN-based flow prediction is
approximately 160, with a rapid increase in the past 2 years.

It is also a fact that every constitutive model reported in the
literature is suitable for one or the other material. Therefore, from
the perspective of alloy development, the most suitable model
can be chosen only by a critical comparison of different models
using the same data base and common selection criteria. In this
study, a comparison between three phenomenological models
(SCA,MJC, D8A) and a computational model (ANN) is made so
as to cover the broad categories of constitutive models. The same
data sets are used to construct and assess all themodels in order to
eliminate any error due to imperfect sampling.

4.1 Strain Compensated Arrhenius Model (SCA)

The original form of the Arrhenius-type equation which is
used for the flow stress prediction is as follows (Ref 51):

r ¼ 1
a

sinh�1 exp Q=RT
� �

A

� �1=n
" #

ðEq 1Þ

The equation represents the combined effects of temperature
(T) and strain rate (_e) on the flow stress (r) at a constant

Fig. 1 True stress–strain curves at 1223 K of (a) 7 N, (b) 11 N, (c) 22 N and (d) variation of flow stress at 1123 K, 0.001 s�1 for differ-
ent variants
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strain. R is universal gas constant (8.314 J/mol K). A, a, n
and Q (kJ/mol) are the material constants represented by
polynomial functions of strain (e). Lin et al. (Ref 52) have
used fifth-order polynomials for the 42CrMo steel. Peng
et al. have used eighth-order polynomials for the titanium
alloy (Ref 53). Trimble et al. have used second-order poly-
nomials for the aluminum alloy (Ref 42). Samantaray et al.
(Ref 54) have used third-order polynomial for representing
a, Q and A, yet used zeroth-order polynomial to represent
n. This survey suggests that the order of these polynomials
depends on the choice of the user. The use of increasingly
higher-order polynomials may result in lesser error in pre-
diction. However, higher-order polynomials increase the
complexity by introducing a greater number of experimental
constants. Thus, the order of polynomials becomes a trade-
off between the error in prediction and the number of exper-
imental constants.

The constants n, a, Q and A, for 7 N and 22 N grades of the
steel, are calculated at strain intervals of 0.05 following the
iterative procedure described in Ref 41, 54. It has been found
that the n and a constants can be reasonably fitted with a fourth-
order polynomial fit for 7 N and fifth-order polynomial fit for
22 N, whereas the constants Q and ln A are satisfactorily fitted

with a third-order polynomial. These functions are listed in
Eq 2.

a ¼ a0 þ a1eþ a2e
2 þ a3e

3 þ a4e
4 þ a5e

5

n ¼ n0 þ n1eþ n2e
2 þ n3e

3 þ n4e
4 þ n5e

5

Q ¼ Q0 þ Q1eþ Q2e
2 þ Q3e

3

lnA ¼ A0 þ A1eþ A2e
2 þ A3e

3

ðEq 2Þ

The coefficients of these polynomial functions are given in
Table 1. The flow curves predicted using these coefficients are
shown in Fig. 3, along with the corresponding experimental
flow curves for comparative purposes.

4.2 Modified Johnson–Cook Model (MJC)

One of the recent modifications to the original Johnson–
Cook (JC) model by Lin et al. (Ref 17, 20) yield Eq 3:

r¼ðA1þA2eþA3e
2Þð1þA4 lne0�Þexp k1þk2 lne0�ð ÞðT�TrÞ½ �

ðEq 3Þ

where A1, A2, A3, A4, k1, k2 are material constants, e0� ¼ e0
�
e00

is a dimensionless parameter with e00 as the reference strain

Fig. 2 Variation of flow stress with temperature at (a) 7 N, (b) 11 N, (c) 22 N. Marked regions represent the unstable domain
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rate and e0 as the current strain rate, and Tr is the reference
temperature. The constants A1, A2 and A3 are obtained by fit-
ting a second-order polynomial to the experimental stress–
strain data at reference temperature (1123 K) and reference
strain rate (1 s�1) (Ref 17).

All the calculated material constants of MJC model for the
grades of 7 N and 22 N are given in Table 2. The flow curves
predicted using these constants are compared with the exper-
imentally obtained flow curves for the grades of 7 N and 22 N
in Fig. 4.

4.3 Model D8A

Model D8A mathematically expresses the flow stress as
(Ref 48):

r ¼ ðD1 þ D2ðerð1� expð�e=erÞÞÞnÞ
expf�ðD3 þ D4eÞðT � TrÞ þ ðD5 þ D6ðT � TrÞÞ ln _e�g

ðEq 4Þ

where D1 represents the yield stress, D2 is the strain hardening
coefficient, D3 represents the absolute effect of temperature, D4

represents the coupled effect of temperature and strain, D5 sig-
nifies the absolute effect of strain rate, D6 represents the cou-
pled effect of temperature and strain rate, n is the strain
hardening exponent, Tr is the reference temperature, _e* = _e/
_eo, and er signifies the average critical strain for recovery.

The eight material constants D1, D2, D3, D4, D5, D6, n and er
for three grades of 316LN have been obtained following the
procedure described in (Ref 41). The calculated constants are
listed in Table 3. The flow curves predicted using these

Table 1 Coefficient of the polynomial functions shown in Eq 2 for the grades 7 N and 22 N

a Coefficient n Coefficient Q Coefficient ln A Coefficient

7 N a0 = 0.01134 n0 = 6.5758 Q0 = 479.594 A0 = 34.725
a1 = 0.00774 n1 =� 24.992 Q1 =� 88.260 A1 = 10.281
a2 =� 0.1585 n2 = 157.190 Q2 =� 543.368 A2 =� 81.412
a3 = 0.4153 n3 =� 334.524 Q3 = 1482.473 A3 = 149.679
a4 =� 0.3107 n4 = 238.891

22 N a0 =� 0.000435 n0 = 10.018 Q0 = 488.767 A0 = 33.676
a1 = 0.334 n1 =� 125.875 Q1 = 817.789 A1 = 82.177
a2 =� 2.391 n2 = 865.083 Q2 =� 878.191 A2 =� 100.596
a3 = 7.0974 n3 =� 2497.50 Q3 = 836.548 A3 = 84.952
a4 =� 9.3391 n4 = 3232.51
a5 = 4.54502 n5 =� 1553.185

Fig. 3 Experimentally obtained and SCA-predicted flow curves for 7 N and 22 N grades of 316LN in the temperature domain of 1123-1423 K
at strain rate (a) 0.01 s�1 and (b) 1 s�1

Table 2 Material constants of MJC model for the grades 7 N and 22 N

Alloy A1 A2 A3 A4 k1 k2 (*10
24)

7 N 312.08 56.67 9.45 0.03419 -0.00297 3.9086
22 N 335.97 402.73 -480.18 0.03264 -0.00331 3.7783
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constants are compared with the experimentally determined
flow curves in Fig. 5.

4.4 Artificial Neural Network (ANN)

ANN model uses multilayer perceptron (MLP)-based feed-
forward network with back-propagation (BP) learning algo-
rithm (Ref 55) for prediction of data sets, where the relationship
between data elements varies frequently. This algorithm has

been used to predict complex flow behaviors of materials on
several occasions (Ref 30, 56, 57). Figure 6 illustrates the
schematic of the model where process variables such as strain,
strain rate, temperature and chemical composition are given as
the inputs to the model, and flow stress is predicted as the
output.

For the present problem, one hidden layer with 10 neurons
was chosen. The training process was optimized using Leven-
berg–Marquardt (L–M) algorithm as a back-propagation algo-

Table 3 Material constants of Model D8A for the grades 7 N and 22 N

Alloy D1 D2 D3 D4 (*10
24) D5 D6 (*10

24) n er

7 N 99 292 0.0028 6.34 0.038 3.67 0.077 0.3
22 N 175 288 0.0029 6.90 0.040 3.86 0.137 0.3

Fig. 4 Experimentally obtained and MJC-predicted flow curves for 7 N and 22 N grades of 316LN in the temperature domain of 1123-1423 K
at strain rate (a) 0.01 s�1 and (b) 1 s�1

Fig. 5 Experimentally obtained and model D8A-predicted flow curves for 7 N and 22 N grades of 316LN in the temperature domain of 1123-
1423 K at strain rate (a) 0.01 s�1 and (b) 1 s�1
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rithm and sigmoidal function as an activation function (Ref 49,
58, 59). Data points comprising 60% of the experimentally
generated data set were randomly selected. These data points
were used to train the neural network. To evaluate the quality of
the training, 10% of the data set was used. These 10% data
were not included in the 60% previously used for training.
Success of the training was verified by comparing the predicted
data against the aforementioned 70% of the experimental data.
Correlation coefficient of 0.99 was chosen as the criterion to
ensure good quality of training. Upon successful completion of
the training, the developed neural network was used to predict
the flow curves in the entire tested regime for 7 N and 22 N
grades. Figure 7 compares the predicted flow curves with the
experimental data obtained for representative test conditions.

5. Discussions

It is evident from the available literature that the efficiency
of a constitutive model is usually decided on the basis of
statistical parameters associated with the error in prediction
(Ref 54). However, this statistical analysis, while necessary, is
not always sufficient when a constitutive model is evaluated
from the perspective of alloy development. Therefore, five
additional factors along with the usual statistical error analysis
have been taken into account while assessing the efficiency of
the models. These six factors are

5.1 Statistical Evaluation

This criterion appraises the error in the prediction of data
as well as the ability to correctly reproduce the observed
trends. A qualitative comparison of the predicted flow stress
by different models with the experimental flow stress has
already been showcased in Fig. 3, 4, 5 and 7. Though these
figures provide a qualitative idea about the capability of a
model to track the flow behavior with progress of deformation
to certain strain level; from this pictorial presentation, it is
difficult to zero-in on the optimal model. This difficulty
invokes the necessity for quantifying the predictability of
different models. In the field of statistical analysis, there exist
many mathematical parameters which can quantify the
proximity or difference between two sets of data. These
parameters are described below.

For an ideal constitutive equation the difference between the
predicted values and the experimentally obtained values is
expected to be zero. However, this cannot be achieved in
practice as no model can represent the physical behavior
completely. Therefore, a constitutive model is considered a
good model when the difference between experimentally
obtained flow stress and predicted flow stress is close to zero.
This difference is frequently quantified by the �Average
Absolute Relative Error (AARE),� which is mathematically
defined as (Ref 41):

AARE ¼ 1
N

Xi¼N

i¼1

riexp � ripre
riexp

�����

�����
� 100 ðEq 5Þ

where rpre is the predicted flow stress, rexp is the experi-
mental flow stress, and N is the total number of experimen-
tal data points. In addition to minimizing AARE, the
predicted stress–strain curve should bear geometrical simili-
tude to the experimental stress–strain curve without scaling.
This congruence can be verified by visual inspection and
quantified by the �correlation coefficient (R),� which is de-
fined as:

Fig. 6 Artificial neural network architecture used in the present
study

Fig. 7 Experimentally obtained and ANN-predicted flow curves for 7 N and 22 N grades of 316LN in the temperature domain of 1123-1423 K
at strain rate (a) 0.01 s�1 and (b) 1 s�1
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R ¼
Pi¼N

i¼1 riexp � rexp
� 	

ripre � rpre
� 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi¼N

i¼1 riexp � rexp
� 	2 Pi¼N

i¼1 ripre � rpre
� 	2

r ðEq 6Þ

where rpre and rexp are the mean predicted stress and mean
experimental stress values.

A value of R equal to 1 implies that there exists a perfect
linear relationship between the experimental and predicted data,
while a value of 0 implies that there is no linear correlation
between the two sets of data. Therefore, a higher value of R
often connotes better predictability of the model, yet is not the
absolute parameter to measure it. The linear correlation
between the experimental stress and predicted stress, if one
exists, can be mathematically represented as

rpre ¼ I þ Srexp ðEq 7Þ

where I is the intercept and S is the slope of the correlation
line. Ideally, the value of I should be 0 and the value of S
should be 1. Either over-prediction or under-prediction is
indicated by I „ 0 and S „ 1. In addition, standard deviation
(SD) must also be considered as this quantifies the deviation
of data points from the correlation line. A lower SD always
connotes better predictability of a model compared to others.
Considering these facts all the above described parameters
have been monitored for different models and compared to
identify the most suitable one among them. The values of the
parameters are enlisted in Table 4. On the basis of the num-
ber of parameters for a model closer to their ideal values, a
model can be recommended for the use. In order to represent
this recommendation graphically, the four models have been
assigned scores based on the parameters of Table 4. The plot
shown in Fig. 8 represents these parameters in three dimen-
sions; the standard deviation of the model, average of ARRE
and intercept (I), and average of R and slope (S) of correla-
tion line.

The scores of each model are assigned by normalizing each
axis variable (for, e.g., standard deviation) with the maximum
value of the variable (example highest standard deviation).
Subsequently, these normalized values have been used to find
the magnitude of the vector joining the ideal model and the
concerned model; a higher magnitude indicating greater
deviation from an ideal model. The significance of vector
magnitude is described as follows. For an ideal model,
correlation coefficient (R) associated with the prediction and
slope (S) of the correlation line should be � 1. AARE, intercept

(I) and standard deviation should be � 0. Considering the
similar magnitude of the values, while R and S are represented
by one axis, AARE and intercept (I) are represented by another
axis of the three-dimensional space (Cube) represented in
Fig. 8. For both the cases 50% weightage has been assigned to
each value by taking average. The point with coordinate
(R + S)/2 = 1, (AARE + I)/2 = 0 and SD = 0 is marked as
�ideal condition� in Fig. 8. With increasing deviations from
ideality, the coordinate changes. The position vector beginning
from the ideal point and ending at the coordinates of a specified
model would be longer. Therefore, shorter is the vector, more
accurate is the model. The scores indicated in Fig. 8 show that
ANN is closer to the ideal model compared to all other models;
hence, ANN is scored highest on statistical evaluation.

5.2 Ability to Correctly Represent Flow Instabilities
in the Tested Domain

Instability of various forms can occur during hot deforma-
tion under certain conditions. In these cases, local variations in
material flow are not representative of the bulk material flow
characteristic. The manifestations of such instability could be
strain rate softening rather than strain rate hardening, anoma-
lous thermal softening, etc. In the tested grades of the material,
flow instability is manifested by negative strain rate sensitivity
and is confined to the domain of high strain rate and low
temperatures, while in rest of the domain, the flow behavior
shows positive strain rate sensitivity. The addition of alloying
components can change material behavior and lead to flow
instabilities through mechanisms like segregation, boundary
decohesion, local strain variations, etc. (Ref 60). An optimal
constitutive model should correctly represent the flow charac-
teristic during the flow instability as well as stable flow
conditions.

From Table 4, it can be noticed that the prediction capability
of ANN model is better than SCA, MJC and D8A. The
prediction by ANN shows SD and AARE almost half of the SD
and AARE associated with the predictions by other models.
From the analysis of the data obtained by prediction, it is
observed that predictions by SCA, MJC and D8A largely fail in
the domain of instability, which is shown in Fig. 2.

Fig. 8 Statistical evaluation of different models using the same
data set. Numbers on arrows indicate deviation from ideal model

Table 4 Statistical parameters obtained for predictions
by various models

Model Parameters SCA MJC D8A ANN

7 N AARE 9.22 8.25 7.63 4.61
R 0.978 0.9788 0.977 0.995
I 12.27 � 1.86 � 1.24 1.58
S 0.93 0.96 1.032 0.98
SD 18.11 18.64 20.65 9.14

22 N AARE 6.84 6.85 6.88 3.36
R 0.985 0.983 0.981 0.996
I 12.48 � 0.014 6.41 3.704
S 0.945 0.986 0.973 0.98
SD 18.0 20.192 20.973 9.111
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In constitutive models such as D8A, MJC and SCA, the
absolute strain rate sensitivity is usually characterized by a
material constant. This constant either carries a positive or
negative numerical value, which mostly depends on the flow
behavior of the material manifested over a larger part of the
experimental domain. As example, in the present case, the
material shows positive strain rate sensitivity over strain rate
domain 0.001-1 s�1 at all temperatures. The data corresponding
to this domain accounts for approximately 80% of the entire
data population. Therefore, during optimization of the constant
which represents strain rate sensitivity, the local characteristic
of negative strain rate sensitivity gets suppressed. Conse-
quently, when this constant is used for prediction, local
behavior of the material is not perfectly depicted (which can
be seen from Fig. 9), though the model predicts the global
behavior satisfactorily.

In cases of ANN, 60% of the experimentally generated data
set are chosen randomly for training, comprising data from both
stable and unstable domains. Again, this algorithm does not use
a logical constant or a specific equation to predict the flow
behavior. As a result, the prediction in both stable and
unstable domains remains equal, which is not possible with
the models having constrained mathematical forms.

5.3 Provision for Easy Integration of Additional Variables

Hot deformation is a complex process which depends on
several, often inter-related variables. With continuous improve-
ments in alloying and processing methods, it is increasingly
necessary to incorporate more variables and factors into the
prediction of flow stress. It is desirable that these additional
variables can be incorporated in a modular fashion, i.e., without
changing the entire equation. Formulation of SCA model is a
classic example of such a case. The effect of strain on flow
behavior was not considered in the original form of Arrhenius-
type equation. The equation was later modified to incorporate
the effect of strain without compromising the original form of
the equation. The modified model (SCA) is quite useful for
flow prediction though the number of constants increases

significantly. This provision in a model can greatly facilitate
alloy development and related studies, if the number of
constants can be kept limited. In the present case, the nitrogen
content of the steel has been taken as a new variable since it
significantly modifies the flow behavior.

It has been seen from Fig. 2 that the nitrogen significantly
affects the yield stress and strain hardening behavior of the
material; therefore, the effect of the nitrogen content can be
expected on the parameters which represent these properties. A
close examination of the constants given in Tables 1, 2 and 3
reveals that the material parameters which represent the effect
of strain on deformation vary with change in nitrogen content.

In case of model SCA, all the coefficients of the polyno-
mials, used to represent n, a, Q and ln A as functions of strain
change with variation of nitrogen content. To incorporate the
effect of nitrogen, all the coefficients have to be expressed as
functions of nitrogen. While the coefficients of Q and ln A
readily give scope for the incorporation of nitrogen content due
to presence of similar number of coefficients for variants 7 N
and 22 N (i.e., four coefficients), coefficients of n and a do not
give any scope for it. This is because there are five coefficients
each for Q and ln A for 7 N variant and six coefficients each for
Q and ln A for 22 N variant. Therefore, it can be concluded that
SCA is not a suitable model for further amendment. This
observation implies that any model which includes a polyno-
mial (of no fixed order) form is not suitable for further
amendment. However, in cases where the coefficients are
similar in number, there always is a chance of increase in the
number of material constants after the amendment, which may
not be always acceptable due to added complexity.

In D8A, the parameters D1 and n are found to vary with
nitrogen content in the steel. Therefore, to incorporate the effect
of nitrogen on flow stress these parameters are presented as
linear functions of nitrogen.

D1 ¼ E1 þ NE2

n ¼ m1 þ Nm2
ðEq 8Þ

where N is the nitrogen content of the steel in wt.%. With the
above modification Eq 4 can be rewritten as

Fig. 9 Comparison of experimentally obtained and predicted flow curves by various models in unstable domain for (a) 7 N and (b) 22 N
grades of 316LN
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r ¼ ðE1 þ NE2 þ ðE3ðerð1� expð�e=erÞÞÞðm1þm2NÞÞ
expf�ðE4 þ E5eÞðT � TrÞ þ ðE6 þ E7ðT � TrÞÞ ln _e�g

ðEq 9Þ

where E3, E4, E5, E6, E7 are average values of D2, D3, D4, D5

and D6, respectively, calculated at various nitrogen contents.
Similarly, in model MJC, the material constants A1, A2, A3

and k1 show strong dependency on nitrogen content. Therefore,
these constants have been modified as

A1 ¼ B1 þ NB2

A2 ¼ B3 þ NB4

A3 ¼ B5 þ NB6

k1 ¼ l1 þ Nl2

ðEq 10Þ

With the use of Eq 10, Eq 3 can be rewritten as �N-amended
MJC� as follows

r¼ððB1þNB2ÞþðB3þNB4ÞeþðB5þNB6Þe2Þð1þB7 lne0�Þ
exp ðl1þNl2Þþl3 lne

0�ð ÞðT�TrÞ½ �
ðEq 11Þ

where B7, l3 are the average values of A4 and k2, respec-
tively, calculated at various nitrogen contents. After modifica-
tion, both the equations have equal number of material
constants. The material constants of N-amended MJC and N-
amended D8A are shown in Tables 5 and 6, respectively.
There is no necessity for further modification to ANN model
as material composition are given as input at the beginning.

5.4 Possibility of Usage of the Model for Extrapolation

The need to modify an existing model frequently arises from
the inability of the original model to predict the flow behavior
in a domain much larger than the experimentally tested domain.
The process of prediction of flow behavior at finer intervals in a
domain where the applicability of model has been validated by
experiments is called interpolation. The process of prediction of
flow stress beyond the validated domain is called extrapolation.
When minor changes in alloy composition are made, it may not
be convenient to test each alloy variant at each deformation
condition. The ability to extrapolate a model can greatly reduce
time, material requirement and expenditure, which are crucial
for industry. In the present study, this factor has been used to
predict the flow stress behavior of two variants, i.e., 11 N and
14 N having different chemical composition.

The extrapolation of any trend beyond the experimental
conditions is inherently risky since the actual material behavior
may vary significantly outside the tested conditions. However,
within allowable limits, the material behavior may be assumed
to follow broadly similar trends. In such cases, a constitutive
model should be able to extrapolate/interpolate the flow stress
behavior with reasonable accuracy. This ability can be a factor
to distinguish between different constitutive models. To verify
the abilities of the constitutive models which have been
developed using the experimental data of 7 N and 22 N grades,
flow curves for 11 N and 14 N grades have been predicted. The
prediction is validated against the experimental data generated
for 11 N and 14 N. Comparison of the experimentally gener-
ated flow curves at some selected conditions and predicted flow
curves by N-amended MJC, N-amended D8A and ANN are
shown in Fig. 10. The statistical data for the prediction are
given in Table 7. It can be noticed that both N-amended MJC
and N-amended D8A are able to interpolate the flow behavior
of 316LN successfully for the other grades of steel. However,
the error associated with the prediction by ANN model is
significantly higher than the error associated with the other two
models. This finding contradicts the general belief in interpo-
lation capability of ANN model. The large deviation can be
attributed to the lack of training of the model at such
conditions. This finding demonstrates that when the required
ratio of data needed for training to the data needed for
prediction (which is usually 7:3) reduces, the prediction
capability of the model declines. Therefore, ANN model is
not reliable when a large data set has to be predicted by using a
smaller available data set.

5.5 Ease of Usage

The advent of high-performance computing has enabled the
development of highly accurate and complex models in various
fields. However, this complexity may often become a burden
for production engineers in an industrial environment. For the
constitutive model to be industrially relevant, the physical
inputs should be few, there should be minimum requirement of
special modeling/computational skills, and most importantly,
the model should be robust. The robustness of the model is not
only determined by the range of processing conditions which it
can represent, but also by high repeatability and high repro-
ducibility of the predicted results. The ease of usage of a model
determines its acceptability in an environment where time and
productivity is of essence. A model which is easy to use can be
rapidly deployed for different alloy compositions, whereas a

Table 5 Material constants for N-amended D8A

E1 E2 E3 E4 E5 (*10
24) E6 E7 (*10

24) m1 m2 er

63.53 506.67 290 0.029 6.62 0.039 3.76 0.049 0.4 0.3

Table 6 Material constants for N-amended MJC model

B1 B2 B3 B4 B5 B6 B7 l1 l2 l3 (*10
24)

300.90 159.26 � 104 2307 237.94 � 3264 0.0033 � 0.0028 � 00023 3.843
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computation-intensive and knowledge-intensive model may be
cumbersome to use.

A model which is system-specific or which produces
different results in different runs can potentially complicate

operations by introducing variations, whereas standardization
and consistency are the demands of industrial production. Both
N-amended MJC and N-amended D8A fully satisfy these
criteria as these two models are presented in simple mathe-

Fig. 10 Comparison of experimentally obtained and predicted flow curves by N-amended MJC, N-amended D8A and ANN model for (a) 11 N
at 0.001 s�1 and (b) 11 N at 1 s�1 and (b) 14 N at 0.1 s�1

Table 7 Statistical parameters obtained for predictions by various models

Model N-amended MJC N-amended D8A ANN Remarks

11 N
AARE 7.22 6.82 9.64 N-amended D8A is the best

Followed by MJC
R 0.98 0.98 0.99
I 2.20 � 1.39 � 16.41
S 0.95 0.99 1.17
SD 17.04 17.91 15.99
14 N
AARE 8.5 10.4 19.62 N-amended MJC is the best

Followed by D8A
R 0.99 0.99 0.99
I 25.32 28.58 16.20
S 0.91 0.91 1.10
SD 6.82 8.57 14.37
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matical form and the calculation of flow stress is not system- or
operator-dependent. On the contrary, ANN model demands
some computational skill and the results are highly system- and
operator-dependent.

5.6 Ability to Connote the Metallurgical Properties

During alloy development, it is often desired to interpret
mechanical/metallurgical response in terms of properties such
as strain rate sensitivity, strain hardening, yield stress, etc.,
while studying the deformation behavior of the alloy.

From the flow behavior analysis, it is observed that addition
of nitrogen content significantly affects the yield point of the
material and strain hardening behavior. This behavior should
also be reflected in the constitutive model, in order to identify
the effect of elements on yield point, strain hardening, thermal
softening, etc. On account of this, the effect of nitrogen
addition is clearly visible on these constants D1 and n of D8A
which signify yield point and strain hardening of the material,
respectively. Therefore, if required, N-amended D8A can
directly be used to identify the influence of nitrogen on yield
point and strain hardening at different temperatures and strain
rates. However, in MJC and SCA, though the effect of nitrogen
is visible on all the coefficients of strain, it is difficult to
logically distinguish the influence of nitrogen on any specific
material property. Therefore, N-amended MJC may not be as
useful as N-amended D8A to study the influence of nitrogen on
yield point and strain hardening at different temperatures and
strain rates. In such cases, ANN too will not be very useful, as
additional training is the prerequisite for any new prediction.
However, additional calculations on predicted flow stress can
give the required results.

A model whose constants can connote the physical prop-
erties is thus preferable to a �black-box� model where the sum of
parts is known, but the individual parts are hidden. Even if the
individual parts are known, it may not always be possible to
interpret them in terms of physical properties. Such a model is
limited to flow stress prediction and cannot be readily used for
material comparison or analysis of different responses at
different deformation conditions. In such cases, the ANN
model performs excellently, considering all the local variation.
However, performance of ANN deteriorates as the fraction of
data to be predicted slowly increases. In addition, the prediction
is highly dependent on system and computational skill of the
user. The model needs fresh training for every additional input.
In light of the above, ANN is not recommended for interpo-
lation and extrapolation, especially during alloy development.
On such occasions modified mathematical models such as N-
amended model D8A and N-amended MJC perform satisfac-
torily. These models give scope for addition of new parameters
which account for the effect of element addition on the flow
behavior, while also performing consistently during interpola-
tion. Though these models cannot depict divergent behavior at
specific deformation conditions, they effectively represent the
aggregate, global behavior of the material, which is necessary
knowledge for an alloy designer.

The above discussed points are schematically represented by
the radar chart shown in Fig. 11. A similar approach has earlier
been used by Holota et al. (Ref 61) for selection of material.
The six �spokes� of the chart each represent the six factors
discussed a priori, on the basis of which relative performance of
models can be assessed. Each model is represented by a closed
loop. The six radii of this loop represent how well the model

performs, with a higher radius indicating better performance
and thus a better model. For instance, in Fig. 9, it is seen that
ANN model performs well in instability prediction, but poorly
in ease of implementation. On the contrary, MJC model
performs well in ease of implementation but not as well in
predicting instabilities. In view of the above discussed points
and Fig. 11, it is clear that ANN model is a good choice when
large fraction of data (70% of entire data set) is available for
training and a comparatively small fraction of the data (30% of
entire data set) has to be predicted. However, when all six
criteria are considered, Model D8A is closest to the ideal
model, and hence, it is an optimal choice from the perspective
of alloy development.

6. Conclusions

In this study, the utility of constitutive equations for
prediction of flow behavior during alloy development stage
has been analyzed using experimental results obtained from
four grades of 316LN. For this study four commonly used
models such as SCA, MJC, Model D8A and ANN model have
been critically compared on the basis of six criteria. The key
outcomes of this study are summarized below:

1. ANN model is a good choice when a large data set is
available for training. If this condition is violated, the
model is not suitable for interpolation/extrapolation. The
prediction is operator and system-dependent. Therefore, it
is not a very good choice for flow behavior study with
varying alloying elements.

2. Models based on physical logic, such as SCA, D8A,
MJC, are not system-dependent and have good repro-
ducibility. However, these models do not represent local
divergence in flow behavior (such as instability) as satis-
factorily as a well-trained ANN model does.

3. SCA model contains four polynomial functions to repre-
sent the effect of strain. The orders of these polynomials
are not fixed and vary randomly with change in chemical
composition; therefore, the model does not give a scope
for addition of new variables.

Fig. 11 Radar chart comparing performance of different models on
the basis of six factors
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4. Both MJC and Model D8A are found suitable for their
ease of use and scope for addition of new variables for
alloy development. The modified versions of these two
models, namely N-amended MJC and N-amended D8A,
developed using experimental data of 7 N and 22 N
grades satisfactorily predict the flow behavior of 11 N
and 14 N grades of 316LN. N-amended D8A is preferred
to N-amended MJC as constants of the former model can
be directly used to represent the effect of nitrogen on
yield stress and work hardening. The material constants
can be suitably modified on the basis of experiments to
extend the model for use in different alloy systems.
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