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The objective of this research is to investigate the influence of material plastic anisotropy on ductile fracture
in the strain space under the assumption of plane stress state for sheet metals. For convenient application, a
simple expression is formulated by the method of total strain theory under the assumption of proportional
loading. The Hill 1948 quadratic anisotropic yield model and isotropic hardening flow rule are adopted to
describe the plastic response of the material. The Mohr-Coulomb model is revisited to describe the ductile
fracture in the stress space. Besides, the fracture locus for DP590 in different loading directions is obtained
by experiments. Four different types of tensile test specimens, including classical dog bone, flat with cutouts,
flat with center holes and pure shear, are performed to fracture. All these specimens are prepared with their
longitudinal axis inclined with the angle of 0�, 45�, and 90� to the rolling direction, respectively. A 3D digital
image correlation system is used in this study to measure the anisotropy parameter r0, r45, r90 and the
equivalent strains to fracture for all the tests. The results show that the material plastic anisotropy has a
remarkable influence on the fracture locus in the strain space and can be predicted accurately by the simple
expression proposed in this study.
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1. Introduction

In the field of sheet metal forming, the forming limit
diagram (FLD) is widely used for characterizing the extent to
which metal sheets can be deformed without localized necking.
However, since more and more materials with high strength but
less ductility, especially the high-strength steel (HSS) even the
ultra-high-strength steel (UHSS), have been employed in the
field of industrial production, ductile fracture becomes more
and more common in sheet metal forming process. The FLD
can be determined by corresponding plastic instability theory
based on the onset of through-thickness necking of sheet.
Because the fracture of AHSS often occurs without obvious
necking phenomenon, the conventional plastic instability
theories are no longer suitable for the failure prediction (Ref
1). Therefore, the prediction of ductile fracture for sheet metals
becomes more important.

Ductile fracture models have gained a lot of attention in the
past decades. Many ductile fracture models have been proposed
and extensively investigated in the mechanics community.
These ductile fracture models are classified into three groups:
physics-based models, phenomenological models and empirical
models by Bai and Wierzbicki (Ref 2). The physics models
include McClintock model (Ref 3), Rice-Tracey model (Ref 4),
Gurson�s model (Ref 5) and GNT models (Ref 6) and shear-
modified Gurson�s model (Ref 7, 8). These fracture models are
widely known as the so-called coupled damage model, in which

the elastic and plastic behavior is assumed to be affected by the
evolution of damage. The Lemaitre model (Ref 9), as a typical
example of continuum damage mechanics (CDM) models,
which considers the formation of macroscopic cracks as the
result of accumulation of damage, also belongs to this group.
The phenomenological models include maximum shear stress,
Cockcroft-Latham model (Ref 10), pressure-modified maxi-
mum shear stress and modified Mohr-Coulomb criterion (Ref
11). This kind of model is generally established based on the
understandings and assumptions of ductile fracture mechanism
learned from experimental phenomenon. The selected empirical
models are Johnson-Cook (Ref 12), Bao-Wierzbicki (Ref 13),
Xue-Wierzbicki (Ref 14), Wilkins (Ref 15), CrashFEM (Ref
16) and fracture forming limit diagram (FFLD). These models
are most in the form of empirical formulas, which are obtained
through the experimental data fitting. The last two kinds of
models can be considered as uncoupled damage models. The
elastic and plastic behavior of material is not affected by the
fracture models, which only define a fracture surface to predict
the onset of the fracture. However, most of these models are
established in the stress space and that makes it difficult for
engineering applications, because stress is more difficult to
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measure than strain in experiments. Moreover, all these models
are proposed for isotropic materials in the first place.

Sheet metals generally exhibit a significant anisotropy of
mechanical properties due to their crystallographic structure
and the characteristics of the rolling process. As an example,
it is found that the equivalent strains to fracture of specimens
with the same shape, which means that the specimens undergo
the same stress state during the deformation process, are
different when the specimens are pulled at 0�, 45�, and 90� to
the rolling direction for aluminum alloy 6061-T6 (Ref 17).
Zhao et al. (Ref 18) studied the anisotropic damage evolution
in warm stamping process of magnesium alloy sheets. It is
found that both the damage evolution and failure locations in
the AZ31Mg alloy sheets during warm stamping process at
different temperatures can be predicted accurately if the
anisotropic damage model is adopted. Therefore, the effect of
material plastic anisotropy needs to be considered in the
ductile fracture model for sheet metals. Recently, some studies
on modeling anisotropic ductile fracture were proposed. A
Gurson-like model incorporating the direction-dependent void
growth was developed by Steglich et al. (Ref 19). Khan and
Liu (Ref 20) proposed an uncoupled stress-based criterion,
which was extended from an isotropic one based on the
magnitude of stress vector with a modified Hill anisotropic
function. Luo et al. (Ref 21) developed an anisotropic damage
indicator model to predict the ductile fracture of the extruded
sheets of 6260-T6 aluminum alloy. Gu et al. (Ref 22)
proposed an anisotropic extension of the Hosford-Coulomb
fracture model. The material anisotropy is introduced into the
originally isotropic formulation by the linear transformation of
the stress tensor. These anisotropic fracture models can predict
the onset of ductile fracture under the three-dimensional stress
state. However, the application of these models is relatively
difficult, especially for the finite element technology. In the
field of sheet metal forming, the plane stress assumption is
usually adopted, which means that the stress state is two-
dimensional. Therefore, the fracture model should have a
more simplified form for the sake of convenient application.

The present work proposes a simple expression of
anisotropic ductile fracture model for sheet metals under the
assumption of proportional loading and plane stress state. The
expression is established in the strain space for the convenient
application. Material plastic anisotropy is described by Hill
1948 yield criterion (Ref 23). Ductile fracture in the stress
space is described by Mohr-Coulomb model. Furthermore,
experimental method is presented to obtain the material
parameters in the expression proposed in this study. Four
different types of specimens, prepared with their longitudinal
axis inclined with the angle of 0�, 45�, and 90� to the rolling
direction, are stretched to fracture. The displacement field is
captured by using a 3D DIC system, and the strain tensor is
obtained by the DIC software ARAMIS. The fracture locus
predicted by the proposed model and the experimental data are
compared.

2. Ductile Fracture Model in the Stress Space

The Mohr-Coulomb (M-C) fracture criterion, which con-
siders the effects of hydrostatic pressure and the Lode angle
parameter, has been widely used for predicting the fracture of
brittle materials. These two factors have been proven to be

critical for controlling ductile fracture by many researchers (Ref
11). Therefore, the M-C model has been extended to the
spherical coordinate system, where the axes are the equivalent
strain to fracture ef , the stress triaxiality g and the normalized

Lode angle parameter h by Bai and Wierzbicki (Ref 11) to
predict the ductile fracture, which is well known as the MMC
criterion. In this paper, the M-C model is chosen as the fracture
criterion in the stress space as well.

According to the M-C fracture criterion, fracture occurs
when the combination of normal stress and shear stress at an
arbitrary cutting plane reaches a critical value, which can be
expressed as:

ðsþ c1rnÞf ¼ c2 ðEq 1Þ

where c1 and c2 are material constants.
This expression should be transformed to the space of

principal stress r1, r2 and r3 for the purpose of convenient
application. The M-C criterion expressed by the principal
stress, which is in the form of Eq 2, can be obtained through the
transformation and solution of the maximum value problem.
The detailed deducing can be found in the research of Bai and
Wierzbicki (Ref 11).

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c21

q

þ c1Þr1 � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c21

q

� c1Þr3 ¼ 2c2 ðEq 2Þ

Equation 2 is the expression of M-C criterion in the three-
dimensional stress state. It can be seen from the formula that
fracture is only affected by the maximum and minimum
principal stress in M-C model. However, in the plane stress
state, the principal stress in the thickness direction is supposed
to be zero. That is to say that one of the three principal stresses
r1, r2 and r3 will be zero. In Eq 2, the three principal stresses
are constrained by r1 ‡ r2 ‡ r3, which means that r1 is the
maximum principal stress and r3 is the minimum principal
stress. Therefore, in the plane stress situation, the principal
stress in the thickness direction, which is zero, should be either
r2 or r3 in Eq 2. In this study, another way of expression is
used. Assuming that r1 and r2 are the principal stress in plane,
Eq 2 should be expressed in two parts according to positive or
negative sign of the minor stress r2, which can be expressed as
follows:

ar1 � 1
a r2 ¼ b for r2 � 0

ar1 ¼ b for r2 > 0

�

ðEq 3Þ

where a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ c21
p

þ c1, b = 2c2 for the purpose of simplifi-
cation. Apparently, a and b are also material constants. Equa-
tion 3 is the expression of M-C criterion in the plane stress
assumption.

In the MMC model, the 3D fracture locus can be represented

in the space of (ef , g, h), where ef denotes the equivalent strain
at fracture and g; h denotes the stress triaxiality and Lode angle
parameter defined, respectively, by

g ¼ �p

q
¼ rm

r
ðEq 4Þ

h ¼ 1� 2

p
arccos

r

q

� �3

ðEq 5Þ

where rm and r are the hydrostatic pressure and equivalent
stress. p, q, r are the three invariants of a stress tensor [r] de-
fined, respectively, by

3286—Volume 26(7) July 2017 Journal of Materials Engineering and Performance



p ¼ �rm ¼ � 1

3
tr r½ �ð Þ ¼ � 1

3
r1 þ r2 þ r3ð Þ ðEq 6Þ

q ¼ r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2
r1 � r2ð Þ2þ r2 � r3ð Þ2þ r3 � r1ð Þ2

h i

r

ðEq 7Þ

r ¼ 27

2
r1 � rmð Þ r2 � rmð Þ r3 � rmð Þ

� �1=3

ðEq 8Þ

In plane stress, the fracture locus can be established in the
space of (ef , g), since only one parameter g can be used to
characterize the loading path.

In order to facilitate the derivation, plane stress ratio b is
employed with the form of

b ¼ r2
r1

: ðEq 9Þ

Since the assumption r1 ‡ r2, the range of b is b £ 1. g
and b have the relation of

g ¼ 1þ b

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� bþ b2
p : ðEq 10Þ

So the fracture locus can be established in the space of (ef ,
b), which is employed in this research.

Given that the Mohr-Coulomb criterion is an isotropic
function, the fracture criterion in the stress space remains
isotropic in this study. For example, the material will fail at the
same stress for uniaxial tension along the RD and TD
directions. However, it will fail at different strains. This is
not due to the anisotropy in the fracture criterion but due to the
anisotropy of the plasticity model. The objective of this work is
to investigate the influence of material plastic anisotropy on the
ductile fracture in the strain space.

3. Modeling of Material Anisotropic Plasticity

In this research, the plastic behavior of the material is
modeled using a standard plasticity featuring: (Ref 2) the
anisotropic Hill 1948 yield function, (Ref 3) an associated flow
rule and (Ref 4) an isotropic hardening law.

In the process of material preparation of sheet metals, such
as aluminum alloy (Ref 24) and high-strength steels (Ref 25),
the development of the microstructure and texture is signifi-
cantly affected by the rolling process. These facts make sheet
metals generally exhibit a significant anisotropy of mechanical
properties. In fact, the rolling process makes the sheet
orthotropic, which means that the material can be characterized
by the symmetry of the mechanical properties with respect to
three orthogonal planes. And the intersection lines of the
symmetry planes are the orthotropy axes. In the case of the
rolled sheet metals, their orientation is usually defined as
follows: rolling direction (RD), transverse direction (TD),
normal direction (ND), shown in Fig. 1 (Ref 26).

The variation of their plastic behavior with direction can be
assessed by a parameter called Lankford parameter or
anisotropy coefficient r. Experimental results show that r
depends on the in-plane direction. If the tensile specimen is cut
having its longitudinal axis inclined with the angle h to the
rolling direction, the coefficient rh is obtained, shown in Fig. 2.
The subscript specifies the angle between the axis of the

specimen and the rolling direction (Ref 26). In Hill 1948s yield
model, r0, r45 and r90 are usually used to describe the material
plastic anisotropy.

The Hill 1948 expression for the equivalent stress is
expressed as

r2 ¼ Fðr22 � r33Þ2 þ Gðr33 � r11Þ2 þ Hðr11 � r22Þ2

þ 2Lr223 þ 2Mr231 þ 2Nr212:

ðEq 11Þ

The parameters F, G, H, L and M can be determined by
Lankford�s coefficients.

F ¼ r0
r90ðr0 þ 1Þ ; G ¼ 1

r0 þ 1
; H ¼ r0

r0 þ 1
;

M ¼ L ¼ N ¼ ðr0 þ r90Þð1þ 2r45Þ
2r90ðr0 þ 1Þ

ðEq 12Þ

In the case of plane stress (r33 = r23 = r31 = 0), the Hill
1948 expression for the equivalent stress is of the form:

r2 ¼ r211 �
2r0

r0 þ 1
r11r22 þ

r0ð1þ r90Þ
r90ðr0 þ 1Þ r

2
22 þ

ðr0 þ r90Þð1þ 2r45Þ
r90ðr0 þ 1Þ r212

ðEq 13Þ

When the Lankford parameters have the relationship of
r0 = r45 = r90 = r, the sheet only exhibits through-thickness
anisotropy. The corresponding expressions for the yield func-
tion and the equivalent stress become:

r2 ¼ r21 �
2r

r þ 1
r1r2 þ r22 ðEq 14Þ

A simple power law representation of the hardening rule will
be used in this paper:

r ¼ Aen ðEq 15Þ

where A is a material constant; n is the strain-hardening expo-
nent. The present model is based on the assumption of isotro-
pic hardening, which means that the initial yield function
depends on material direction, but the hardening rule is not
affected by the material anisotropy.

4. Influence of Plastic Anisotropy on Ductile
Fracture in the Strain Space

4.1 Planar Isotropy (Through-Thickness Anisotropy)

In the situation of planar isotropy, the sheet only exhibits
through-thickness anisotropy, which means that the Lankford
parameters have the relationship of r0 = r45 = r90 = r. The

Fig. 1 Orthotropy axes of the rolled sheet metals: RD, rolling
direction; TD, transversal direction; ND, normal direction (Ref 26)
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material behavior will be the same if the load is along different
direction in the plate plane. In this situation, Eq 14 is used to
describe the yield function.

Substituting Eq 3, 9, and 15 into Eq 14, the Mohr-Coulomb
fracture criterion can be transformed from the stress-based form
into the space of (ef , b).

ef ¼ a2b2ð1þr�2rbþb2þrb2Þ
A2ða4�2a2bþb2þra4�2ra2bþrb2Þ

n o 1
2n

for b � 0

ef ¼ ðb2ð1þr�2rbþb2þb2rÞ
A2a2ð1þrÞ

n o 1
2n

for 0< b � 1

8

>

<

>

:

ðEq 16Þ

The results show that the equivalent strain to fracture ef is a
nonlinear function of stress ratio b and the Lankford parameter
r. The expression of Eq 16 can be geometrically represented in
the 3D space of (ef , b, r), see Fig. 3. Here, parameters of 2024-
T351 aluminum alloy, reference to Bai and Wierzbicki�s work
(Ref 11), are used: A = 740 MPa, n = 0.15, c1 = 0.0345,
c2 = 338.6 MPa, that is a = 1.035 and b = 677.2 MPa.

It can be concluded that the equivalent strain at fracture is
determined by not only the loading path, the stress ratio b, but also
the material anisotropy, the Lankford parameter r. If the Lankford
parameter r in Eq 16 is fixed at some certain value, the expression
reduces to a nonlinear function of stress ratio b. An example plot is
shown in Fig. 4. It can be concluded from the figure that the fracture
locus in the space of (ef , b) is similar to the locus in the space of (ef ,
g) predicted by the MMCmodel when the Lankford parameter r is
not considered. They are both an ‘‘S’’-shaped curve. But the
material anisotropy parameter r will affect the shape of this locus
curve. The results also show that the influence ofmaterial anisotropy
on ductile fracture is reverse on the two side of the ‘‘S’’-shaped
curve. The demarcation point is the point of b = 0, the stress state of
uniaxial tension. Ifb is in the range of [�1 0], the equivalent strain at
fracture ef increases with the Lankford parameter r. Conversely, if b
is in the range of [0 1], the equivalent strain at fracture ef decreases
with the increase in Lankford parameter r. For the HSS, the
parameter r is usually less than 1, and the stress ratio b of the
material during the forming process is basically in the range of [0 1].
These facts make the fracture failure more serious for HSS during
the forming process based on the results of this research.

4.2 Orthotropy

If the Lankford parameters r0, r45 and r90 are not equal to
one another, the sheet exhibits planar anisotropy, which is

called orthotropy for rolled sheet metal. The material behavior
will be different if the load is along different direction in the
plate plane. Equation 13 is used to describe the yield function
in this situation. Assuming that the principal stress direction is
not consistent with the material orthotropy axes, the stress
components in Eq 13 can be expressed as:

r11 ¼ r1 cos2 hþ r2 sin
2 h

r22 ¼ r2 cos2 hþ r1 sin
2 h

r12 ¼ ðr1 � r2Þ cos h sin h

8

<

:

ðEq 17Þ

where the parameter h is the angle of the direction of major
principal stress r1 and the rolling direction.

Substituting Eq 3, 9, 15, and 17 into Eq 13, the Mohr-
Coulomb fracture criterion is transformed from the stress-based
form into the space of (ef , b, h).

ef ¼ 1
A2r90ða4�2a2bþb2þr0a4�2r0a2bþr0b

2Þ ða
2b2ðBþ Cbþ Db2Þ

n o 1
2n

for b � 0

ef ¼ 1
A2a2r90ð1þr0Þ ðb

2ðBþ Cbþ Db2Þ
n o 1

2n
for 0< b � 1

8

>

<

>

:

ðEq 18Þ

where

B ¼ r90 þ r90r0 þ 4r90r0 sin
4 h� 4r90r0 sin

2 hþ 2 sin2 hr0r45

þ 2 sin2 hr90r45 � 2 sin4 hr90r45 � 2 sin4 hr0r45

þ sin2 hr0 � sin2 hr90

C ¼ �2r90r0 � 8r90r0 sin
4 hþ 8r90r0 sin

2 h� 4 sin2 hr0r45

� 4 sin2 hr90r45 þ 4 sin4 hr0r45 þ 4 sin4 hr90r45

D ¼ r0 þ r90r0 � sin2 hr0 þ sin2 hr90 þ 4r90 sin
4 hr0

� 4r90r0 sin
2 hþ 2 sin2 hr0r45 þ 2 sin2 hr90r45

� 2 sin4 hr90r45 � 2 sin4 hr0r45 ðEq 19Þ

It can be found that if r0 = r45 = r90 = r in Eq 18, the
expression will reduce to Eq 16. This is another way to explain
that the material behavior will be the same if the load is along
different direction in the plate plane for the planar isotropy
situation.

The expression of Eq 18 can be also geometrically repre-
sented in the 3D space of (ef , b, h), see Fig. 5. Here, an
example group of parameters for DP590, which are obtained by
experiments in this research, is used: A = 970 MPa, n = 0.196,
r0 = 0.6, r45 = 0.95, r90 = 0.83, a = 1.265 and b = 1179 MPa
(c1 = 0.24, c2 = 589.5 MPa).

If the angle h in Eq 18 is fixed at some certain value, for
example h = 0, h = p/4 and h = p/2, the equation reduces to a
nonlinear function of stress ratio b. An example plot is shown
in Fig. 6.

Obviously, in the situation of orthotropy, the equivalent
strain at fracture is affected by not only the stress ratio but
also the loading direction, which can be indicated by the angle
of the direction of major principal stress and the rolling
direction.

The expression of Eq 18 is more important for application.
The fracture parameters a and b can be obtained by experiments
through fracture tests in only one direction, for example the
rolling direction. Then, the equivalent strain at fracture in other
directions can be calculated through this equation. The fracture
locus of DP590, which will be discussed below, is obtained by
this method in this study.

Fig. 2 Tensile specimen cut at the angle h (measured from the roll-
ing direction) (Ref 26)

3288—Volume 26(7) July 2017 Journal of Materials Engineering and Performance



5. Verification of the Proposed Expression

In order to verify the accuracy of the proposed expression,
the fracture data of 2024-T351 aluminum alloy in Ref. 11 are
used to verify whether this model can reduce to the MMC
fracture model when the material is considered to be isotropic.
The material parameters of 2024-T351 aluminum alloy
acquired from the reference are shown in Table 1. In order to
obtain the fracture locus of proposed expression, the Lankford
parameters r0, r45, r90 are set to 1 and h is set to zero in Eq 18.
The horizontal axis is transformed to g through Eq 10. The
fracture locus of MMC model is captured by getting the data
points on the curve in the reference, shown in Fig. 7(a) (the
blue full line), by using image processing software. Data points,
g range of �1/3 to 2/3, are used for the verification. Figure 7(b)

shows the comparison of these two fracture loci. The results
show that the proposed expression will reduce to the MMC
model if the material is considered to be isotropic. That is to say
that the derivation process and the expression are correct.

6. Fracture Locus of DP590

In this section, experimental method is presented to obtain
the fracture locus predicted by the expression proposed in this
study. The material used in this paper is dual-phase steel DP590
with thickness of 1.2 mm, which is already widely used in the
manufacture of car body. A total of seven parameters (A, n, a, b,
r0, r45, r90) need to be found in Eq 18. Experimental method of
parameters calibration is explained in details in this section.

Fig. 3 3D geometry representation of the propose expression for planar isotropy (A = 740 MPa, n = 0.15, c1 = 0.0345, c2 = 338.6 MPa, that is
a = 1.035 and b = 677.2 MPa)

Fig. 4 Influence of plastic anisotropy on ductile fracture for planar isotropy in the space of (ef , b) for planar isotropy situation (assuming
r = 0.7, 1, 1.2 and 1.5)
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6.1 Hardening Rule (Calibration of Parameters A and n)

The strain-hardening behavior of DP590 is determined from
uniaxial tensile tests on samples cut from the sheets. The
engineering stress-strain curves of all specimens prepared from
three directions are shown in Fig. 8(a). Tests in the same
direction are presented three times, and the results are very
repeatable. The true stress-strain curve is given in Fig. 8(b). It
is clear from Fig. 8(a) that the engineering stress-strain curves

are almost the same in 0� and 45� direction up to the point of
necking. Meanwhile, the curves are a little higher in the 90�
direction. This result demonstrates that the material anisotropy
for DP590 is relatively significant.

Equation 15 is used to represent the hardening rule, and the
parameters A and n are obtained by fitting the experimental
data. The results are shown in Table 2. The average value is
calculated by the following equation:

Fig. 5 3D geometry representation of the proposed expression for plane stress state (A = 970 MPa, n = 0.196, r0 = 0.6, r45 = 0.95, r90 = 0.83,
a = 1.265 and b = 1179 MPa)

Fig. 6 Influence of plastic anisotropy on ductile fracture in the space of (ef , b) for orthotropy situation (assuming h = 0, h = p/4 and h = p/2)

Table 1 Material parameters of 2024-T351 aluminum alloy

A n c1 c2

740 MPa 0.15 0.0345 338.6 MPa
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XAverage ¼
X0 þ 2X45 þ X90

4
ðEq 20Þ

where X represents the parameters A and n.

6.2 Quantification of Plastic Anisotropy (Calibration of
Parameters r0, r45, r90)

The Lankford parameter r is defined by

r ¼ e22
e33

ðEq 21Þ

where e22 and e33 are the strains in the width and thickness
directions of specimen in the uniaxial tensile test, respec-
tively. Taking into account the condition of volume constancy
e11 + e22 + e33 = 0, e11 is the strain in the loading direction;
the following form of Eq 21 is obtained.

r ¼ � e22
e11 þ e22

ðEq 22Þ

Since the strain tensor can be calculated from the displace-
ment field by the DIC software ARAMIS, the Lankford

parameter in three directions can be obtained accurately.
ARAMIS uses the digital image correlation theory to utilize a
series of digital images for optical measurements. The strain
tensor is calculated by the displacement change between the
pixels. The 3D DIC system used in this study is shown in
Fig. 9. Virtual two-point extensometers were used to determine
the histories of both the major strain and the minor strain, as
shown in Fig. 10(a). The results of the r measurements are
summarized in Fig. 10(b), which shows the relation between
the major and minor strains for tensile specimens, cut at 0�, 45�,
and 90�. The results in the same direction are very repeatable,
and the calculated values of the Lankford parameters are given
in Table 3. The values of all the parameters of anisotropy
calculated from the measured strain ratios are given in Table 3
as well.

Fig. 7 (a) The fracture locus of MMC model in Ref. 11. (b) The
comparison of the locus of the proposed fracture model and MMC
model

Fig. 8 (a) Engineering stress-strain curves measured in uniaxial
dog-bone specimens. (b) True stress vs. plastic strain calculated up
to necking

Table 2 Measured values of A and n for DP590

Specimen orientation A n

0� 960.7 0.204
45� 949.8 0.198
90� 1022.7 0.186
Average value 970.75 0.1965
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6.3 Four Types of Fracture Tests (Calibration of Parameters
a and b)

In order to prepare the database for calibration of the
fracture locus, a series of specimens, described in Table 4,
including classical dog-bone specimens, flat specimens with

cutouts and center holes and pure shear specimens
(Fig. 11), are performed to fracture. Every specimen is
prepared with their longitudinal axis inclined with the
angle of 0�, 45�, or 90� to the rolling direction. All tensile
tests are performed on a 50-kN mechanical loading frame.
The equivalent strains to fracture ef of all these specimens
are calculated by the strain tensor measured by the DIC
system. The gauge section of each of the specimens is
painted completely with a thin layer of white paint, and
then, black speckles are spray painted on the white layer,
providing a pattern for the DIC program to follow. Two
digital cameras are used to take pictures through each
experiment, so that the 3D strain components can be
calculated by the DIC software ARAMIS. The optical
measurement system is set up to take 10 pictures per
second. After each test is completed, ARAMIS was used to
analyze the resulting pictures.

The strain history can be calculated accurately by
ARAMIS. Therefore, the stress ratio b is determined from
the strain ratio a in this paper. The postulate of plastic
incompressibility imposes the following restrictions on the
strain rate ratio:

de1:de2:de3 ¼ 1:a:� ð1þ aÞ ðEq 23Þ

where a = de1/de2. Under the hypothesis of proportional load-
ing, the strain rate ratio is equal to the stain ratio. From the
associated flow rule, the stress ratio, b = r1/r2, can be calcu-
lated by the equation:

b ¼ aþ H

F þ ð1þ aÞH ðEq 24Þ

Figure 12 shows the strain paths of these four types of
fracture tests. The strain history of the fracture points is
measured. The definition of the fracture point and the directions
of the major and minor strain are explained below, shown in
Fig. 14. Average strain ratio a is determined for each case.
Then, the stress ratio b can be obtained by Eq 24. The results
are summarized in Table 4.

The DIC technique employed in this study is a 3D DIC
method with two cameras. Therefore, the strain components
calculated from the displacement field are accurate when
applying to the material that necks before fracture. The Hill
1948 expression for the equivalent strain in the case of plane
stress (r13 = r23 = r33 = 0) is of the form:

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

c
½ðF þ HÞe211 þ ðH þ GÞe222 þ 2He11e22� þ

2

N
e212

s

ðEq 25Þ

where c = FH + HG + FG. The in-plane components of the
plastic strain tensor e11, e22 and e12 can be calculated by the
major and minor principal strain e1 and e2 measured by DIC
system through the following equations.

Fig. 9 The 3D DIC system used in this study

Fig. 10 (a) Virtual extensometers in ARAMIS at their initial posi-
tion. (b) Major strain vs. minor strain for uniaxial tension

Table 3 Measured values of the Lankford parameters
and parameters of the Hill 1948 model for DP590

r0 r45 r90 F G H N

0.6 0.95 0.83 0.451807 0.625 0.375 1.56137

3292—Volume 26(7) July 2017 Journal of Materials Engineering and Performance



Table 4 List of the four types of fracture tests

Specimen description Strain rate ratio a Stress ratio b Stress triaxiality g

Pure shear �0.96 �1.05319 �0.04316
Dog bone �0.337 0.054252 0.360795
Flat with a center hole �0.271 0.143412 0.406952
Flat with cutout �0.092 0.357185 0.515419

Fig. 11 Geometry of specimens (a) dog bone, (b) flat with a center hole, (c) flat with cutout, (d) pure shear
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e11 ¼ e1 cos2 hþ e2 sin
2 h

e22 ¼ e2 cos2 hþ e1 sin
2 h

e12 ¼ ðe1 � e2Þ cos h sin h

8

<

:

ðEq 26Þ

For the tensile test of flat specimen with center hole, the
onset of fracture can be captured very specifically by the DIC
technique. The first visible crack in the paint layer on the
specimen surface is very clear, as shown in Fig. 13. However,
for the tests of dog-bone specimens and flat specimens with
cutout, the specimens rupture in a very short time that the DIC
system cannot capture the onset of first visible crack under the
photofrequency of 10 Hz. So the stage that right before the
rupture is defined as the onset of fracture. The DIC-measured
strain field of the stage of fracture for all the four types of
specimens is shown in Fig. 14. e1 and e2 are the major strain
and minor strain, respectively. The point with the maximum
strain value is defined as the fracture point, where the strain is
measured. Figure 15 shows the force-displacement curves of all
the four types of specimens.

The values of the equivalent strains to fracture measured
according to Eq 25 and 26 for all specimens are shown in
Table 5, 6, 7 and 8. In Table 5, 6, 7 and 8, there are two
different columns, specimen orientation and h. Specimen
orientation means the loading direction, which is the angle
between the loading direction and the rolling direction. h means
the angle between the direction of the maximum principal stress
and the rolling direction. These two angles are the same for
these three specimens, dog-bone specimens, flat specimens
with cutouts and center holes. The loading direction and the
direction of the maximum principal stress are the same for these
three specimens, which are shown in Fig. 14(a)-(c). So in
Table 5, 6, 7, these two columns are the same. However, for the
specimen of pure shear, these two angles are not the same,
shown in Fig. 14(d), so these two columns in Table 8 are
different.

The results of dog bone prepared with their longitudinal axis
inclined with the angle of 0 to the rolling direction and pure
shear specimens with their longitudinal axis inclined with the
angle of 45� to the rolling direction are used to calibrate the two
basic material constants a and b in Eq 18. The direction of
major stress for the dog-bone specimens is parallel with the
tensile direction, and the direction of major stress for the pure
shear specimens is inclined with the angle of 45� to the tensile
direction, shown in Fig. 14. So that the parameter h equals to
zero for these two kinds of specimens. Substituting the
experimental data (b, ef ) into Eq 18, a set of two nonlinear
algebraic equations for a and b are obtained. The solution of
this system yields a = 1.266 and b = 1179 MPa. Substituting
these results into Eq 7, the M-C fracture criterion parameters c1
and c2 are obtained (c1 = 0.238, c2 = 589.544 MPa).

Now all seven parameters in Eq 18 have been determined,
which are summarized in Table 9. The plot of the resulting
fracture locus is shown in Fig. 16. Average values of test nos.
1, 2 and 24, 25, 26, used for calibration, are displayed as
diamonds. The ‘‘S’’-shaped curve passes exactly through those
two points. Points corresponding to the remaining tests are
denoted by crosses. They are approximate to the fracture locus
predicted by the proposed expression, except for point corre-
sponding to pure shear test of 0� from rolling direction. This is
mainly because the equivalent strain to fracture for the stress
state of pure shear is difficult to measure by DIC system. The
displacement field of the onset of fracture stage is hard to be
obtained because the pixels are difficult to distinguish due to
the large deformation in the very small region. Otherwise, the
accuracy of the model is acceptable. Particularly, the orders of
the equivalent strain to fracture for different specimen orien-
tation under certain stress ratios are predicted accurately by the
proposed model. In the stress state of b = 0.05 (dog bone) and
b = 0.14 (flat with center hole), the equivalent strain to fracture
of the specimen with orientation of 45� is the largest and that of
specimen with orientation of 90� is the smallest. Meanwhile, in
the stress state of b = 0.35 (flat with cutout), the equivalent
strain to fracture of the specimen with orientation of 0 is the
largest and that of specimen with orientation of 90� is the
smallest. The proposed model predicts these results accurately.

The proposed model can be conveniently applied in
engineering practice. For a specific metal material, the fracture
tests for only one direction, for example the rolling direction,
are needed to be carried out for parameter identification. The
fracture loci for the other direction can be obtained by the

Fig. 12 Strain paths of these four types of fracture tests

Fig. 13 The first visible crack in the paint layer on the specimen
surface of flat with a center hole
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Fig. 14 The DIC-measured strain field of the stage that right before the rupture (a) dog bone, (b) flat with center hole, (c) flat with cutout, (d)
pure shear
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Fig. 15 Force-displacement curves of all the four types of specimens (a) dog bone, (b) flat with center hole, (c) flat with cutout, (d) pure shear

Table 5 Strain measured using the DIC method for specimens of dog bone

Test no.

Specimen
orientation (angle from

rolling direction) h

Major
strain, e1

Minor
strain, e2

Equivalent strain
to fracture, ef

Average
value

1 0 0 0.738 �0.196 0.744 0.746
2 0 0 0.742 �0.199 0.748
3 45 45 0.802 �0.291 0.792 0.806
4 45 45 0.829 �0.299 0.819
5 90 90 0.538 �0.17 0.597 0.627
6 90 90 0.593 �0.196 0.657

Table 6 Strain measured using the DIC method for specimens of flat with center hole

Test no.

Specimen
orientation (angle from

rolling direction) h

Major
strain, e1

Minor
strain, e2

Equivalent
strain to fracture, ef

Average
value

7 0 0 0.689 �0.153 0.701 0.699
8 0 0 0.693 �0.188 0.698
9 45 45 0.737 �0.302 0.723 0.726
10 45 45 0.736 �0.181 0.747
11 45 45 0.714 �0.249 0.707
12 90 90 0.416 �0.276 0.467 0.468
13 90 90 0.405 �0.168 0.446
14 90 90 0.443 �0.153 0.490
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proposed model directly and can be used to predict the ductile
fracture behavior of the material more accurately.

7. Conclusion

In this paper, the effect of plastic anisotropy on ductile
fracture in the strain space is investigated for sheet metals under

the assumption of plane stress. The plastic behavior of the
material is modeled using a standard plasticity featuring: (Ref
2) the anisotropic Hill 1948 yield function, (Ref 3) an
associated flow rule and (Ref 4) an isotropic hardening law.
The Hill 1948 yield function can describe the differences of the
material performance in different directions with good accu-
racy. Besides, the anisotropy parameters, r0, r45 and r90, which
are proved to have a significant effect on ductile fracture in the
strain space in this study, can be easily obtained by experi-

Table 7 Strain measured using the DIC method for specimens of flat with cutout

Test no.

Specimen
orientation (angle from

rolling direction) h

Major
strain, e1

Minor
strain, e2

Equivalent strain
to fracture, ef

Average
value

15 0 0 0.554 �0.028 0.595 0.608
16 0 0 0.57 �0.039 0.608
17 0 0 0.578 �0.029 0.621
18 45 45 0.548 �0.038 0.595 0.580
19 45 45 0.522 �0.039 0.566
20 45 45 0.536 �0.04 0.581
21 90 90 0.372 �0.122 0.412 0.416
22 90 90 0.372 �0.107 0.415
23 90 90 0.383 �0.146 0.422

Table 8 Strain measured using the DIC method for specimens of pure shear

Test no.

Specimen
orientation (angle from

rolling direction) h

Major
strain, e1

Minor
strain, e2

Equivalent strain to
fracture, ef

Average
value

24 45 0 0.59 �0.586 0.736 0.764
25 45 0 0.611 �0.638 0.785
26 45 0 0.619 �0.612 0.770
27 0 45 0.7 �0.68 0.863 0.851
28 0 45 0.667 �0.673 0.84

Table 9 Material constants for DP590

A n r0 r45 r90 a b

970.75 MPa 0.1965 0.6 0.95 0.83 1.266 1179 MPa

Fig. 16 Fracture locus for DP590
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ments. The Mohr-Coulomb fracture model is employed to
describe ductile fracture in the stress space. The form of the M-
C criterion is transformed to the coordinate system, where the
axes are the equivalent strain to fracture ef and the stress ratio
b. Material anisotropy, characterized by the Lankford parameter
r, is introduced into the expression of the fracture locus
function. The main conclusions of this work are:

1. The fracture criterion in the stress space remains isotropic
in this study. However, the anisotropy of the plasticity
model leads to different fracture strains when the material
undergoes the same load path but different load direc-
tions.

2. Explicit mathematical expression is presented. The effect
of material anisotropy on ductile fracture in the strain
space is revealed and quantitatively analyzed.

3. Experimental method is presented to obtain the fracture
locus predicted by the expression proposed in this study.
Material constants and fracture locus of DP590 are ob-
tained. It is shown that the proposed model is able to
predict the material direction dependency of the fracture
strain with good accuracy.
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