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Hot compression tests of Ti-6Al-4V alloy in a wide temperature range of 1023-1323 K and strain rate range
of 0.01-10 s21 were conducted by a servo-hydraulic and computer-controlled Gleeble-3500 machine. In
order to accurately and effectively characterize the highly nonlinear flow behaviors, support vector
regression (SVR) which is a machine learning method was combined with genetic algorithm (GA) for
characterizing the flow behaviors, namely, the GA-SVR. The prominent character of GA-SVR is that it with
identical training parameters will keep training accuracy and prediction accuracy at a stable level in
different attempts for a certain dataset. The learning abilities, generalization abilities, and modeling effi-
ciencies of the mathematical regression model, ANN, and GA-SVR for Ti-6Al-4V alloy were detailedly
compared. Comparison results show that the learning ability of the GA-SVR is stronger than the mathe-
matical regression model. The generalization abilities and modeling efficiencies of these models were shown
as follows in ascending order: the mathematical regression model<ANN<GA-SVR. The stress-strain
data outside experimental conditions were predicted by the well-trained GA-SVR, which improved simu-
lation accuracy of the load-stroke curve and can further improve the related research fields where stress-
strain data play important roles, such as speculating work hardening and dynamic recovery, characterizing
dynamic recrystallization evolution, and improving processing maps.
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1. Introduction

Ti-6Al-4V alloy, a typical a + b titanium alloy, has the
advantages of high strength, low density, excellent stress-
corrosion resistance etc., so it was widely used in aerospace
industry. It is widely acknowledged that stress-strain data play
important roles in many areas, for examples, speculating work
hardening (WH) and dynamic recovery (DRV) (Ref 1),
improving processing maps (Ref 2), characterizing dynamic
recrystallization (DRX) evolution (Ref 3), etc. A prediction
model which can accurately track flow behaviors and predict
stress-strain data is critical to reflect material properties and
further improve the related research fields where stresses play
important roles. Thereby, it is important to construct a model to
accurately characterize the highly nonlinear flow behaviors of
Ti-6Al-4V alloy.

So far, there exist three typical models in characterizing flow
behaviors of metals, namely, empirical/semiempirical model,
analytical model, and phenomenological model (Ref 4-6). The
analytical model requires systematic and detailed investigation

of microscopic deformation mechanisms such as dislocation
theory, static coarsening, and dynamic coarsening (Ref 7).
Voyiadjis and Abed constructed the analytical constitutive
models involving dislocations interaction mechanisms for the
flow behaviors of face-centered cubic (FCC) and body-centered
cubic (BCC) metals at different strain rates and temperatures
(Ref 8). In the study of Voyiadjis and Abed, the mobile
dislocation density has different impacts on flow behaviors at
different temperatures and strain rates, so it needs to build
different analytical constitutive models at different deformation
conditions; otherwise, the analytical constitutive models cannot
precisely track the highly nonlinear deformation behaviors (Ref
8). In addition, analytical constitutive models need a lot of
precise experiment data to construct mathematical models of
complicated microscopic deformation mechanisms. Thereby,
analytical models have not been extensively adopted for
characterizing flow behaviors of metals.

Phenomenological model includes mathematical regression
equation and intelligence algorithm, and it does not require
systematic and detailed investigation of microscopic deforma-
tion mechanisms. At present, the typical Arrhenius-type
equation of phenomenological model, and its improved forms
were used to characterize flow behaviors of many materials,
such as pure titanium (Ref 9) and Ti-6Al-4V (Ref 10). Other
mathematical regression equations of phenomenological model
involve the representative Khan-Huang-Liang (KHL) model
and Johnson-Cook (JC) model. Mathematical regression equa-
tions only need to calculate some necessary material constants
and further fit experimental data, so they have been widely
used. However, mathematical regression equations have large
fluctuant accuracies at different strain rates and temperatures
(Ref 11-14). Because the mathematical regression equations
which are mathematically fitted according to limited experi-
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mental data cannot accurately track the highly nonlinear flow
behaviors at different strain rates and temperatures (Ref 13, 15).

Recently, artificial neural network (ANN) of intelligence
algorithm which imitates biological neural systems was utilized
to characterize the flow behaviors of many metals, such as
42CrMo steel (Ref 16), as-cast Ti60 titanium alloy (Ref 17),
and as-cast TC21 (Ref 18). ANN needs to try a lot of network
topologies and training parameters to acquire a higher accuracy
level, which will consume much time and energy. For a certain
dataset, the same network topology and training parameters of
an ANN will obtain fluctuant accuracies in different attempts.
ANN can encounter well network topology and training
parameters to reach a higher accuracy level; however, this
accurate results have poor reproducibility. Besides, ANN is
easy to fall into local extremum and cannot obtain a globally
optimal solution.

Support vector regression (SVR) is a machine learning
method based on statistical learning theory and structural risk
minimization principle, which is generally utilized in regression
analysis area (Ref 19). SVR has the merits of strong
generalization ability and robustness. Compared with ANN,
SVR can avoid falling into local extremum and obtain a
globally optimal solution. For a certain dataset, a SVR with
same training parameters will keep training accuracy and
prediction accuracy at a stable level in different attempts. In this
work, SVR was adopted for characterizing the hot flow
behaviors of Ti-6Al-4V alloy on account of its excellent
advantages. The learning ability and generalization ability of a
SVR depend on the three parameters (penalty factor C, kernel
parameter c, and insensitive loss function f), especially the
mutual influences among them. A SVR with suitable parameters
C, c, and f will accurately study the hot flow behaviors of Ti-
6Al-4V alloy and appropriately ignore some singular points of
stress-strain data. The impacts of the three parameters (C, c,
and f) on the learning ability and generalization ability of SVR
should be comprehensively considered. It is inefficient to
manually adjust the three parameters one by one to construct an
accurate SVR in characterizing the hot flow behaviors of Ti-
6Al-4V alloy. Thereby, it is crucial to find a stable and efficient
way to realize the optimal selection of the three parameters (C,
c, and f) in SVR.

Lou et al. developed a SVR combined with particle swarm
optimization (PSO) for characterizing the flow behaviors of
AZ80 magnesium alloy. In the model, PSOwas adopted to select
the parameters C, c, and f. This work indicated that the model is
more precise than ANN and mathematical regression equations,
meanwhile the sample dependence of the SVR is lower (Ref 20).
Desu et al. established a SVR for characterizing the flow
behaviors of Austenitic Stainless Steel 304, and the research of
them indicated that SVR is more accurate, efficient, and reliable
than the mathematical regression equations such as Johnson-
Cook model, revised-Zerrili-Armstrong model, revised-Arrhe-
nius model, and intelligence algorithm ANN (Ref 21). The best
correlation coefficient (R) in their work is 0.9989 at a high
accuracy level; however, they just attempted few parameter
combinations of the three parameters (C, c, and f), and there is
still room for improvement in accuracy and efficiency (Ref 21).

GA, as a bionic and global optimization algorithm, was
extensively used in multiparameters optimization problem on
account of its advantages of strong robustness, high efficiency,
and parallel processing. GA searches the global optimum in
solution space by imitating the natural selection process and
genetic mechanism (Ref 22). In this work, in order to utilize the

advantages of GA, it was combined with SVR to construct the
flow stress prediction model of Ti-6Al-4V alloy where GA was
used to efficiently search the optimal parameter combination of
the three parameters (C, c, and f), and the model was called as
GA-SVR in this study. Compared with the work of Desu et al.
(Ref 21), the GA-SVR can self-adaptively and dynamically
search the optimal parameter combination of the three param-
eters (C, c, and f) to obtain the most accurate prediction model
for Ti-6Al-4V alloy, which greatly enhances the accuracy.

Subsequently, the learning abilities, generalization abilities,
and modeling efficiencies of the mathematical regression
model, ANN, and GA-SVR were compared. A standard
statistical parameter, average absolute relative error (AARE),
was adopted to assess the prediction performance of these
models. In the comparisons of study abilities, the GA-SVR has
larger R values and lower AARE values, which show the GA-
SVR can sufficiently learn the training samples and the study
ability of the GA-SVR is stronger than the mathematical
regression model. In the comparisons of generalization abilities,
GA-SVR has larger R values and lower AARE values, which
indicate that the GA-SVR can accurately predict the highly
nonlinear flow behaviors. The generalization abilities of these
models were displayed as follows in ascending order: the
mathematical regression model<ANN<GA-SVR. The
prominent character of GA-SVR is that it with identical
training parameters will keep training accuracy and prediction
accuracy at a stable level in different attempts for a certain
dataset. GA-SVR only needs representative training samples
from the investigation and then self-adaptively and automati-
cally searches the three parameters C, c, and f to obtain the
most accurate model, which greatly enhances the computational
efficiency. The time in modeling an accurate GA-SVR is
shorter than ANN. The modeling efficiencies of these models
were displayed as follows in ascending order: the mathematical
regression model<ANN<GA-SVR.

In finite element software, if a software needs to invoke
stress-strain data which are not beforehand inputted to the
software, it commonly calculates unknown stress-strain data by
mathematical interpolation means. However, hot flow behav-
iors of materials at different strain rates and temperatures are
highly nonlinear. The mathematical interpolation way cannot
correctly predict the stress-strain data of materials and will
obtain incorrect simulation results. The stresses outside exper-
imental conditions were predicted by the well-trained GA-SVR,
which improves simulation accuracy of the load-stroke curve
and can further improve the related research fields where stress-
strain data play important roles.

2. Collection of Experimental Stress-Strain Data

The chemical compositions (wt.%) of the adopted Ti-6Al-4V
alloy are as follows: Al-6.50, V-4.25, O-0.16, Fe-0.04, N-0.015,
C-0.02, and H-0.0018, Ti (balance). The homogenized extruded
metal bar of Ti-6Al-4V alloy was incised by wire-electrode
cutting to 28 specimens with a height of 12 mm and diameter of
10 mm. Figure 1 shows the optical microstructure of the as-
received Ti-6Al-4V alloy, in which b-phase distributes on the
grain boundaries of a-phase. These 28 specimens were com-
pressed on a servo-hydraulic and computer-controlled Gleeble-
3500 machine. Graphite lubricants were applied to coat the
contact surfaces of the anvils and test samples, so as to diminish
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the friction and prevent bonding between them. The test samples
were heated at a rate of 10 K/s and held at a certain temperature
for 3 min to assure a uniform temperature and reduce material
anisotropism. The 28 test samples were compressedwith a height
reduction 60% (true strain 0.9) at the strain rates of 0.01, 0.1, 1,
and 10 s�1, and the temperatures of 1023, 1073, 1123, 1173,
1223, 1273, and 1323 K. And then these compressed test
samples were rapidly quenched into water to retain the
microstructures acquired at high temperatures. Figure 2 shows

the experimental compressive stress-strain curves of Ti-6Al-4V
alloy at different strain rates and temperatures. As shown in
Fig. 2, it can be concluded that the flow stress level increases
with the increase of strain rate for a certain temperature, and the
flow stress level observably decreases with the increase of
temperature for a certain strain rate. The flow stress evolution
with strain can be briefly divided into three phases. At the first
deformation phase, the flow stress quickly increases to a critical
value with the increase of strain whereWHdominates this phase;
at the same time, the stored energy in grain boundaries increases
quickly to the activation energy of DRX. At the second phase,
DRX and DRV arise, and the increasing rate of flow stress
decreases until a maximal stress where the thermal softening on
account of DRX and DRVare balanced with WH. And the flow
stress evolution involves two typical types at the third phase: the
flow stress approximately keeps at a stable level which indicates
a new dynamic balance between WH and DRV, such as the flow
stress curves of 1223-1323 K and 0.01-0.1 s�1; the flow stress
continuously decreases with distinctly DRX softening, such as
the flow stress curves of 1023-1123 K and 0.01 s�1, 1023 K and
0.1 s�1, and 1023-1173 K and 10 s�1 (Ref 23). It is widely
acknowledged that stress-strain data play important roles in
many areas, for examples, speculating WH and DRV (Ref 1),
improving processing maps (Ref 2), characterizing dynamic
recrystallization evolution (Ref 3), etc. The existing literatures
demonstrate that there are close relationships among tempera-
ture, strain, strain rate, and flow stress. A prediction model which
can accurately track flow behaviors and further predict stress-
strain data is critical to reflect material properties. Thereby, it isFig. 1 Optical photograph of the as-received Ti-6Al-4V alloy
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Fig. 2 True stress-strain curves of Ti-6Al-4V alloy at different strain rates and temperatures
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important to construct a model to accurately characterize the
highly nonlinear flow behaviors of Ti-6Al-4V alloy.

3. Development of Support Vector Regression
(SVR) for the Flow Behaviors of Ti-6Al-4V Alloy

In this study, SVR was applied to establish the flow
behaviors model of Ti-6Al-4V alloy on account of its excellent
regression analysis ability and robustness.

3.1 The Basic Principles of SVR

SVR is a machine learning method based on statistical
learning theory and structural risk minimization principle (Ref
19). The main merits of SVR are as follows. First, in SVR, the
linearly inseparable low-dimensional data are mapped into
linearly separable multidimensional data. Subsequently, SVR
builds the linear discriminant function in high dimension space,
and this method can conveniently handle the highly nonlinear
data. Second, compared with ANN, the global optimum can be
acquired using SVR. The computational process of SVR is
robust and will avoid falling into local extremum.

In SVR, linearly inseparable low-dimensional data are
mapped into linearly separable multidimensional data by kernel
function k(xi, xj) = U(xi) ÆU(xj). And a SVR equipped with the
radial basis function (RBF) of kernel function can reach a
higher regression precision. Thereby, the RBF expressed as
Eq 1 was applied to this work

kðxi; xÞ ¼ expð�c xi � xk k2Þ; ðEq 1Þ

where c is variable parameter of the RBF.
In SVR, y = f(x) can be expressed by Eq 2:

f ðxÞ ¼ x � xþ b; ðEq 2Þ

where x is a multidimensional column vector and b is a bias
term. It is assumed that original data are (x1, y1), (x2, y2), (x3,

y3), …, (xi, yi), …, (xk, yk), xi, yi [R, and the function f(x) is
able to estimate all data. The optimal function can be ex-
pressed by:

min
1

2
wk k2þC

Xl

i¼1

ðni þ n�i Þ; ðEq 3Þ

s.t.

yi � x � xi � b � fþ ni

x � xi þ b� yi � fþ n�i

ni; n
�
i � 0

8
>><

>>:

; ðEq 4Þ

where ni and ni
* are slack variables which impact regression

accuracy; C is the penalty factor; x is a multidimensional
column vector; and f is an insensitive loss parameter which
greatly impacts regression accuracy of SVR. In this study, the
input variables x of SVR are strain (e), strain rate ( _e) and
temperature (T), and the output variable f(x) is flow stress (r)
of Ti-6Al-4V alloy.

The regression function of optimal hyperplane in SVR is
expressed by Eq 5:

f ðxÞ ¼
Xl

i¼1

ðai � a�i Þkðxi; xÞ þ b; ðEq 5Þ

where ai is the Lagrange multiplier; k(xi, x) is a kernel func-
tion; and b is a bias term.

3.2 The Impact of Parameters Selection on the Performance
of SVR

In SVR, the learning ability and generalization ability can be
enhanced by suitable parameters settings, and these parameters
are penalty factor C (expressed by Eq 3), the kernel parameter c
(expressed by Eq 1), and insensitive loss function f (expressed
by Eq 4).

Initialize the population of GA.

Train the SVR model.

The population is updated by the operators of 

selection, crossover, and mutation.

Calculate the fitness value of all chromosomes.

Start

Original data set

Output optimal parameters combination.

Train the SVR model.

Validate the SVR model.

Output the predicted value.

No

Does the process reach the maximum iterations?

Yes

Training stresses Prediction stresses

Fig. 3 The detailed flowchart of GA-SVR
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(1) Penalty factor C: The robustness of SVR is influenced
by the penalty factor C. In SVR, a larger C value indi-
cates that all training samples should be accurately
learned, which will cause the model to be complicated
and over-fitting. Whereas a smaller C value in SVR
indicates that some singular points can be neglected. In
SVR, the phenomenon of under-fitting will appear when
the penalty factor C value is too small.

(2) The kernel parameter c of RBF: As mentioned previ-
ously, the RBF expressed as Eq 1 was adopted in this
work. The kernel parameter c influences the generaliza-
tion ability and learning ability of SVR. Severe over-fit-
ting will appear in the following situations: (a) penalty
factor C value is set as a certain numerical value and
c fi ¥; (b) c is set as a certain numerical value and
C fi ¥ (Ref 24). And severe under-fitting will appear
in the following situations: (a) C is set as a certain
numerical value and c fi 0; (b) C is set as a smaller
numerical value and c fi ¥; and (c) c is set as a cer-
tain numerical value and C fi 0 (Ref 24). An appro-
priate parameter c can avoid over-fitting and under-
fitting of data in SVR.

(3) The insensitive loss function f: In SVR, the f value im-
pacts the number of support vector and further influ-
ences the regression accuracy of the model.

It can be concluded that the learning ability and generaliza-
tion ability of SVR depend on the three parameters C, c, and f,
especially the mutual influences among them. In SVR, in order
to obtain an accurate model, it is time-consuming to manually
optimize each parameter. The mutual effects of the three
parameters (C, c, and f) on learning ability and generalization
ability of SVR should be comprehensively considered. It is
inefficient to manually adjust the three parameters one by one
to construct an accurate SVR in characterizing the hot flow
behaviors of Ti-6Al-4V alloy. Thereby, it is crucial to find a
stable and efficient way to realize the optimal selection of the
three parameters in SVR. A SVR with suitable parameters C, c,
and f will accurately study the hot flow behaviors of Ti-6Al-4V
alloy and appropriately ignore some singular points of stress-
strain data.

3.3 The Stress Prediction Model Based on SVR and Genetic
Algorithm (GA)

In this section, GAwas combined with SVR to construct the
flow stress prediction model of Ti-6Al-4V alloy where GA was
utilized to efficiently search the optimal parameter combination
of the three parameters (C, c, and f), and the model was called
as GA-SVR in this work.

3.3.1 The Basic Principles of GA. GA, as a bionic and
global optimization algorithm, was extensively used in multi-
parameters optimization problem on account of the advantages
of strong robustness, high efficiency, and parallel processing.
GA searches the global optimum in solution space by imitating
the natural selection process and genetic mechanism (Ref 22).
In GA, a population comprises a certain number of individuals
which are encoded by gene encoding. After generation of initial
population, optimal solutions are evolved in every generation.

The individuals are selected using a fitness function in every
generation. Based on the fitness value of each individual, the
individual which has a larger fitness value is selected to next
generation with a larger probability. And the individuals cross
and mutate to generate new individuals which represent new
solutions. The latter generated populations will adapt to
environment better than the previous populations. The individ-
ual which has the highest fitness value in last population after
decoding is outputted as an optimal solution.

3.3.2 The Development of Stress Prediction Model GA-
SVR. In order to use the advantages of GA, it was combined
with SVR to construct the flow stress prediction model of Ti-
6Al-4V alloy where GA was used to efficiently search the
optimal parameter combination of the three parameters (C, c,
and f), i.e., the GA-SVR.

In this investigation, 2184 input-output pairs were selected
from the experimental stress-strain curves, and 448 input-
output pairs at the strain range of 0.05-0.8 with a distance of
0.05 were not used for training but for testing the generalization
ability of the GA-SVR. The remaining 1736 input-output pairs
were adopted to train the GA-SVR.

The N-fold cross-validation method, as an effective method
for assessing the accuracy of data mining and machine learning,
was adopted in this study to evaluate the performance of the
GA-SVR. In N-fold cross-validation method, raw data are
divided into N data sets. A separate dataset is retained as a
validation dataset and the other (N� 1) datasets are used to
train the GA-SVR. Each dataset of N datasets is alternately set
as validation dataset, and the performance of the GA-SVR is
evaluated by the average number of an evaluation index in N
validation process. In this work, the number N was set as 5. A
classic evaluation index mean square error (MSE) between
training stresses and validation stresses was introduced by Eq 6
to measure the fitness value.

MSE ¼ 1

N

XN

i¼1

½f ðxiÞ � yi�2; ðEq 6Þ

where f(xi) are the predicted stresses; yi are the experimental
stresses; and N is the number of stress-strain samples.

Besides, other representative evaluation index correlation
coefficient (R) expressed as Eq 7 was adopted to assess the
degree of correlation between the experimental flow stresses
and predicted flow stresses (Ref 25). A larger R value indicates
a well correlation between the two variables, and vice versa.

R ¼
PN

i¼1 ðEi � �EÞðPi � �PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðEi � �EÞ2

PN
i¼1 ðPi � �PÞ2

q ; ðEq 7Þ

where N is the number of samples; E is the sample of experi-
mental stress-strain data; and P is the sample of predicted
stress-strain data.

The detailed flowchart of the GA-SVR is shown in Fig. 3.
Step 1. Initialize the population of the GA-SVR. The

parameters of the C, c, and f were encoded to the chromosomes
of individuals. In this work, the population number was set as
30.

Step 2. The fitness values of the individuals were computed
by fitness function MSE expressed by Eq 6 in GA.

Step 3. The population was updated by the selection,
crossover, and mutation operators. Based on the fitness value of
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each individual, the individual which has a smaller MSE value
was inherited to the next generation with a greater probability.
Crossover probability PC value is commonly set in the range of
0.6 to 0.9. A larger PC value will fast bring new chromosomes
to the population; nevertheless, it will increase the risk of
premature convergence and the loss of well gene structure.
While a smaller PC value will delay the process of genetic
evolution. In this study, the PC value was set as 0.7. The
mutation operator is used in local random searching, so the
mutation probability Pm value should be set as a smaller value.
In this work, Pm value was set as 0.01. The cross-validation
method was adopted to evaluate the performance of the GA-
SVR.

Step 4. Stop criterion. If the iteration times attains the
predetermined times, the process of GA-SVR was stopped.
Meanwhile the optimal parameters were outputted and further
used to train the GA-SVR. In this work, the iteration times was
set as 50.

Figure 4 exhibits the best fitness value and average fitness
value corresponding to iteration times of the GA-SVR. As
shown in Fig. 4, it can be seen that the convergence speed of
the well-trained GA-SVR is fast. In the first 20 iteration times,
the average fitness values sufficiently approximate to the best
fitness value state. The C, c, and f of the best parameter
combination (R = 0.99997) are 99.95, 14.18, and 0.02, respec-
tively.

4. Comparisons of the Mathematical Regression
Model, ANN, and GA-SVR for Ti-6Al-4V Alloy

In this chapter, the learning abilities, generalization abilities,
and modeling efficiencies of the existing mathematical regres-
sion model, ANN, and GA-SVR for Ti-6Al-4V alloy were
detailedly compared.

4.1 The Existing Mathematical Regression Model and ANN
for Ti-6Al-4V Alloy

Quan et al. calculated the mathematical regression models at
the strain of 0.5 for Ti-6Al-4V alloy in (a + b) phase and b
phase by mathematical regression means, which just involve
temperature and strain rate. The mathematical regression
models in (a + b) phase and b phase were expressed as Eq 8
and 9, respectively (Ref 26).

_e ¼ 1:43� 1025½sinhð0:0061rÞ�4:70 exp �564:05

RT

� �
; ðEq 8Þ

_e ¼ 1:94� 1011½sinhð0:0235rÞ�3:36 exp �300:20

RT

� �
; ðEq 9Þ

where _e is strain rate (s�1); r is flow stress (MPa); R is the
universal gas constant (8.31 J/mol/K); and T is temperature
(K).

And the ANN for Ti-6Al-4V alloy was described by Quan
et al. in the reference (Ref 26).

4.2 Comparisons of the Study Abilities of the Mathematical
Regression Model and GA-SVR

The classic evaluation index of relative error (d) expressed
as Eq 10 was adopted to estimate the performance of these
prediction models

dð%Þ ¼ Ei � Pi

Ei
� 100%; ðEq 10Þ

where E is the sample of experimental stress-strain values
and P is the sample of predicted stress-strain values.

Other evaluation index of average absolute relative error
(AARE) expressed by Eq 11 was adopted to further estimate the
study abilities of these prediction models. Compared with d
value, AARE can better show total prediction error
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Fig. 4 The relationships between the fitness values and the iteration
times of the GA-SVR

Table 1 The singular points of testing predictions of GA-SVR

Temperature, K Strain rate, s21 Strain Experimental stress, MPa Predicted stress, MPa, by GA-SVR Relative error, %

1223 0.01 0.05 29.54131 30.96881 �4.8322
1223 0.01 0.8 26.00849 27.49151 �5.70206
1273 0.01 0.05 23.71685 25.42046 �7.18313
1273 0.01 0.8 21.49681 23.01901 �7.08107
1323 0.01 0.05 15.09013 17.02897 �12.8484
1323 0.01 0.8 16.15854 18.0067 �11.4377
1273 0.1 0.05 32.16834 33.92986 �5.47592
1273 0.1 0.8 35.76305 36.78041 �2.84474
1323 0.1 0.05 27.39279 28.72423 �4.86057
1323 0.1 0.8 34.1912 35.32371 �3.31228
1323 1 0.05 44.36162 45.90839 �3.48671
1323 10 0.05 61.08919 62.60452 �2.48052
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AARE ¼ 1

N

XN

i¼1

Ei � Pi

Ei

����

����; ðEq 11Þ

where E is the sample of experimental stress-strain values; P
is the sample of predicted stress-strain values; and N is equal
to the number of samples.

Figure 5 shows the correlation between the trained flow
stresses and training predictions for the training dataset of the
GA-SVR for Ti-6Al-4V alloy. As shown in Fig. 5, it can be
observed that the R values between the trained flow stresses and
training predictions of the GA-SVR model are larger than 0.999
at high accuracy levels. The R values of the mathematical
regression models for Ti-6Al-4V alloy at the strain of 0.5 in
(a + b) phase and b phase are just 0.991 and 0.994, respec-
tively (Ref 26). It can be summarized that the GA-SVR can
sufficiently learn the training samples, and the study ability of
the GA-SVR is stronger than the mathematical regression
model. The mathematical regression model cannot precisely
track the hot flow behaviors, because the multivariate nonlinear
regression equation is difficult to describe the highly nonlinear
flow behaviors which accompany phase transformation, WH,
DRX, and DRV in wide temperature and strain rate ranges.

4.3 Comparisons of the Generalization Abilities Among the
Mathematical Regression Model, ANN, and GA-SVR

Figure 6 shows the comparisons between the experimental
flow stresses and testing flow stresses which were predicted by
the GA-SVR at different strain rates and temperatures. The
following work detailedly compared the generalization ability
of the GA-SVR.

Figure 7 shows the correlation between the experimental
flow stresses and testing flow stresses predicted by the GA-
SVR in (a + b) and b phase, and the R values between them are
larger than 0.9998 at high accuracy levels. In order to detailedly
display the distribution and relative frequency of d values of the
GA-SVR, they were further analyzed by Gaussian distribution
analysis. The mean number of all the relative errors (l)
expressed as Eq 12 and standard deviation (w) expressed as
Eq 13 were obtained after Gaussian distribution analysis. As
expressed by Eq 13, the standard deviation (w) which is an
evaluation index to measure discrete degree of individual in
dataset was introduced to measure the distribution of the

relative error (d). Here, a smaller w value demonstrates that
most of d values approach the l value, and vice versa. And a
smaller l value indicates that more predicted stress data are
close to the experimental stress data

l ¼ 1

N

XN

i¼1

di; ðEq 12Þ

w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðN � 1Þ
XN

i¼1

ðdi � lÞ2
vuut ; ðEq 13Þ

where d is the sample of relative error; l is the average num-
ber of d values; and N is the number of samples.

As shown in Fig. 8, the d values of the GA-SVR vary from
�13 to 2%. Figure 8 shows the histogram of d values of the
GA-SVR, which show the relative frequency of each d-level.
The l value and w value of the GA-SVR are 0.00702 and
0.52684. It can be observed that most of d values (97.322%)
distribute in the range of �2 to 2%, and few d values (2.678%)
are smaller than �2%. The few d values (2.678%) which are
smaller than �2% are some singular points of the testing
predictions, and they also can be seen from Fig. 6 and 7. And
these singular points are shown in Table 1. It can be observed
that these singular points locate the edge of the stress-strain
curves. Some data points which locate the edge of the stress-
strain curves and do not accord with the whole tendency of the
hot flow behaviors are more likely to be appropriately ignored.
It should be noted that some singular points cannot influence
the accuracy of the entire model. The testing predictions in
Table 1 are close to the experimental stresses, which do not
influence the accuracy of the entire model.

Peng et al. established an ANN for the flow behaviors of as-
cast Ti60 titanium alloy during hot deformation, and the
correlation coefficient (R) in their work is 0.992 (Ref 17). Zhu
et al. predicted flow stress in isothermal compression of as-cast
TC21 titanium alloy, and the correlation coefficient (R) in their
work is 0.992 (Ref 18). Table 2 exhibits the R values and AARE
values of testing dataset of the ANN and GA-SVR, so as to
further compare the generalization abilities of them. It can be
observed that the GA-SVR has larger R values and lower AARE
values, which indicate that the GA-SVR can accurately predict
the highly nonlinear flow behaviors. Compared with ANN, the
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Fig. 5 Correlation between the trained flow stresses and training predictions for the training dataset of the GA-SVR model in (a + b) phase
and b phase
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globally optimal solution can be obtained using GA-SVR, and
the computational processes of GA-SVR are robust and will
avoid falling into local extreme value. For a certain dataset, the
same network topology and training parameters of an ANN will
attain fluctuant accuracies in different attempts. ANN can
encounter well network topology and training parameters to
reach a higher accuracy level; however, this accurate results
have poor reproducibility. The significant character of SVR is

that a SVR with same training parameters can keep training
accuracy and prediction accuracy at a stable level in different
attempts for a certain dataset. The generalization ability of GA-
SVR is stronger than ANN. The mathematical regression model
cannot precisely study the hot flow behaviors, and its
generalization ability is poor. The generalization abilities of
these models were displayed as follows in ascending order: the
mathematical regression model<ANN<GA-SVR.
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Fig. 7 Correlation between the experimental flow stresses and the testing flow stresses predicted by the GA-SVR in (a + b) and b phase
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4.4 Comparisons of the Modeling Efficiencies Among the
Mathematical Regression Model, ANN, and GA-SVR

Table 3 exhibits the time in constructing an accurate model
of the mathematical regression model, ANN, and GA-SVR.
Mathematical regression model needs to calculate numerous
material constants and construct many multivariate nonlinear
regression equations based on limited experimental data. And
these material constants and regression models need to be
recomputed when some new stress data are involved. This
process is complex and time-consuming. GA-SVR does not
need to calculate material constants and complicated mathe-
matical regression equations. GA-SVR only needs representa-
tive training samples from the investigation and then
automatically searches the three parameters C, c, and f to
obtain the most accurate model.

ANN needs to try a lot of network topologies and training
parameters to acquire a higher accuracy level, which consumes
much time and energy. Besides, the training process of ANN is
instable. For a certain dataset, the same network topology and
training parameters of an ANN will obtain fluctuant accuracies
in different attempts, which decreases the modeling efficiency.
Based on the selection, crossover, and mutation operators, GA-
SVR can self-adaptively and dynamically search the optimal
parameters, which greatly enhances the computational effi-
ciency. And the computing time of a training process of SVR is
shorter than ANN. The modeling efficiencies of these models
were displayed as follows in ascending order: the mathematical
regression model<ANN<GA-SVR.

5. Applications of the GA-SVR in Forming Simu-
lation

The flow stress data at the strain rate of 10 s�1 and
temperatures of 1048, 1098, 1148, 1198, 1248, and 1298 K
were predicted for Ti-6Al-4V alloy by the GA-SVR. And the
predicted stress-strain curves at the strain rate of 10 s�1 and
temperatures of 1023-1323 K are shown in Fig. 9. The
expanded stress-strain curves are beneficial to accuracy
improvement in following fields.

In this chapter, the impact of input stress-strain curves on
simulation results of compression test was analyzed by a FEM
software DEFORM. The simulation parameters were set based
on the actual compression experiments. One half of the test
sample was simulated for the reason of geometric symmetry, so

Table 2 The R values and AARE values between the experimental flow stresses and predicted flow stresses of the ANN
and GA-SVR for Ti-6Al-4V alloy

Model

R value AARE value

ANN GA-SVR ANN GA-SVR

(a + b) phase 0.9999 0.999977 0.51% 0.197114%
b phase 0.9998 0.999851 0.79% 0.7482294%

Table 3 The time in modeling an accurate model of the mathematical regression model, ANN, and GA-SVR

Model Mathematical regression model ANN GA-SVR

The time in modeling an accurate model More than 180 min More than 60 min About 15 min
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Fig. 8 Distributions of relative errors of testing data of GA-SVR
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Fig. 9 The true stress-strain curves of Ti-6Al-4V alloy at the strain
rate of 10 s�1 and temperatures of 1023-1323 K, in which the solid
curves are experimental data and the fitted curves by points are pre-
dicted data

as to decrease the computing time. In the actual compression
experiments, the top and bottom surfaces of the test sample
were coated with graphite lubricants to diminish friction
between the sample and anvils, thereby, the friction type
among the contact surfaces of the sample and dies was set as
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shear-type in DEFORM. The heat conduction and heat
radiation among test sample, dies, and ambient were neglected
to simulate the isothermal compression test. If finite element
software needs to invoke stress-strain data which are not
beforehand inputted to the software, it commonly calculates
unknown stress-strain data by mathematical interpolation
means. However, hot flow behaviors of materials at different
strain rates and temperatures are highly nonlinear. The math-
ematical interpolation way cannot correctly predict the stress-
strain data of materials and will obtain incorrect simulation
results. Therefore, in this chapter, the expanded stress-strain
curves predicted by GA-SVR were applied to enrich the stress
data of Ti-6Al-4V alloy.

Two simulation schemes were designed for analyzing the
influences of input stress-strain curves on final simulation
results. The whole initial conditions of the two simulation
schemes are same except for different input stress-strain curves.
The compression tests were simulated at the strain rate of
10 s�1 and temperature of 1123 K. The stress-strain curves at
strain rate of 10 s�1 and temperatures of 1023-1323 K which
contain the expanded data were applied to scheme-A. The
experimental stress-strain curves at the temperatures of 1023,
1073, 1173, 1223, 1273, and 1323 K and strain rate of 10 s�1

were adopted by scheme-B, so the stress-strain curve at the

temperature of 1123 K and strain rate of 10 s�1 needs to be
automatically interpolated by software.

Figure 10(a) and (b) displays the distributions of effective
stresses of scheme-A and scheme-B, which can be approxi-

Fig. 10 Distributions of effective stress for (a) scheme-A (b) scheme-B at the strain rate of 10 s�1, temperature of 1123 K, and strain of 0.8
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mately divided into three districts. However, there exist large
differences of distributions of effective stresses between
scheme-B and scheme-A, as well as the average effective stress.

In addition, as shown in Fig. 11, the load curves of top dies
of scheme-A and experimental values are very close. The
relative errors of the top die loads between scheme-A and
experimental values are in the range of �3.767153 to
4.134918%, whereas this errors between scheme-B and exper-
imental values are in the range of �8.293616 to 6.218511%. It
can be summarized that a large span of interpolation or
insufficient stress-strain data bring inaccurate simulation
results. In addition, hot flow behaviors under different strain
rates and temperatures of a material are highly nonlinear,
thereby, calculating stress data by interpolation way in FEM
software is inaccurate. It is universally acknowledged that
stress-strain data play important roles in many fields, for
examples, speculating WH and DRV (Ref 1), improving
processing maps (Ref 2), characterizing dynamic recrystalliza-
tion evolution (Ref 3), etc. The GA-SVR can accurately predict
flow behaviors of materials, which can improve the related
research fields where stress-strain data play important roles.

6. Conclusions

The novel prediction model GA-SVR was constructed for
characterizing the hot flow behaviors of Ti-6Al-4V alloy
according to the experimental stress-strain data. Following
conclusions were concluded from the current investigation:

(1) The R values and AARE values between trained flow
stresses and training predictions for the training dataset
of the GA-SVR in (a + b) phase and b phase are
0.999978 and 0.158926 and 0.999886 and 0.603347%,
respectively. The results indicate the GA-SVR model
can sufficiently study the hot flow behaviors which
accompany with WH, DRX, and DRV. Comparison re-
sults show that the learning ability of the GA-SVR is
stronger than the mathematical regression model.

(2) In the comparisons of generalization abilities of these mod-
els, the R values and AARE values between the experimen-
tal flow stresses and testing flow stresses which were
predicted by the GA-SVR in (a + b) and b phase are
0.999977 and 0.197114 and 0.999852 and 0.748229%,
respectively. The results indicate the GA-SVR can pre-
cisely predict the highly nonlinear flow behaviors of Ti-
6Al-4V alloy. The generalization abilities of these models
were shown as follows in ascending order: the mathemati-
cal regression model<ANN<GA-SVR.

(3) According to the selection, crossover, and mutation oper-
ators, the GA-SVR can self-adaptively and dynamically
search the optimal parameter combination of the three
parameters (C, c, and f), which greatly improves the
computational efficiency. The modeling efficiencies of
these models were shown as follows in ascending order:
the mathematical regression model<ANN<GA-SVR.

(4) Hot flow behaviors of materials at different strain rates
and temperatures are highly nonlinear. In finite element
software, the mathematical interpolation way cannot cor-
rectly predict the stress-strain data of materials and will
obtain incorrect simulation results. The stresses outside
experimental conditions were predicted by the well-

trained GA-SVR, which improved simulation accuracy
of the load-stroke curve and can further improve the re-
lated research fields where stress-strain data play impor-
tant roles.
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