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In this work, to study the effects of stress triaxiality, temperature, and strain rate on the fracture behaviors
of a single-crystal Nickel-base superalloy, a series of experiments over a temperature range of 293 to
1373 K, strain rate range of 0.001 to 4000/s, and stress triaxiality range of 20.6 to 1.1 are conducted.
Anomalous peak of stress is noticed in the yield stress versus temperature curves, and strain rate effect on
the anomalous peak of yield stress is analyzed. The anomalous peak shifts to higher temperature as the
strain rate increases. Then the effects of stress triaxiality, temperature, and strain rate on its fracture
behaviors, including strain to fracture, path of crack propagation, and fracture surface, are observed and
analyzed. A valley of the fracture strain is formed in the fracture strain versus temperature curve over the
selected temperature range. The micrograph of fracture surface is largely dependent on the temperature,
stress triaxiality, and strain rate. Finally, the original Johnson-Cook (J-C) fracture criterion cannot de-
scribe the effect of stress triaxiality and temperature on the fracture behaviors of single-crystal Nickel-base
superalloy. A modified J-C fracture criterion is developed, which takes the anomalous stress triaxiality and
temperature effects on the fracture behaviors of single-crystal Nickel-base superalloy into account.

Keywords fracture criterion, single-crystal nickel-base superal-
loy, strain rate, stress triaxiality, temperature

1. Introduction

The performance of the aircraft engine is highly depending
on the properties of its materials, especially the material of
turbine blades. The extreme environment within the turbine
engine requires superior high-temperature properties in turbine
blades. Single-crystal Nickel-base superalloy (SCNBS) has no
grain boundary, which causes the brittleness of polycrystals at
high temperature (Ref 1, 2). SCNBSs are widely used as turbine
blades due to their superior mechanical performances at high
temperature (Ref 3).

As studied previously (Ref 4-8), yield stress or critical
resolved shear stress (CRSS) increases with increasing temper-
ature over an elevated temperature range and then decreases,
e.g., a stress peak occurs. The peak temperature, Tp, and the
height of the peak depend on the crystal�s orientation, the sense
of the applied stress, the deformation rate, and sensitively on
the exact composition of the c¢-phase (Ref 9). Tp shifts to a
higher temperature with increased strain rate (Ref 4, 10). This
phenomenon is similar to the strain rate effect of the third-type

strain aging (third SA) (Ref 11-13). For the fracture strain of
SCNBSs, with the increasing temperature, a valley of fracture
strain is observed in the fracture versus temperature curves (Ref
1, 8, 14).

As we known, stress triaxiality has important significance
to the void growth. It has been recognized to control the void
growth rate leading to ductile failure (Ref 15, 16). For low
stress triaxiality, the fracture of the material is ductile. For
high stress triaxiality, the fracture is brittle. To obtain a range
of stress triaxiality factor, Bridgman (Ref 17) machined
notches of different notch severity in plain and cylindrical
tensile specimens, and only positive stress tiaxialities were
obtained. Bao and Wierzbicki (Ref 18) performed a series of
tests including upsetting tests, shear tests, and tensile tests on
2024-T351 aluminum alloy, which cover a wide range of
stress triaxialities.

As observed in NIMONIC 105 by Nembach et al. (Ref 19),
under the condition T< Tp, the yield strength is independent of
the temperature and the strain rate, whereas the value of the
yield strength is dependent on the temperature and the strain
rate for T> Tp. This result is in agreement with that obtained
by Milligan and Antolovich (Ref 20). However, all of these
results were obtained under quasi-static conditions. As a matter
of fact, while in service, the turbine blades have severe
operation conditions characterized not only by creep, fatigue,
corrosion, and oxidation, but also by foreign object impact (Ref
21), which causes significant reduction in the blade�s lifetime.
Therefore, investigations on the high strain rate properties of
SCNBSs are indispensible.

Various fracture criteria were proposed to predict the onset
of fracture in metal based on various hypotheses, experimental
observations, and analytical studies for nucleation, growth,
and coalescence of voids (Ref 22). Based on the equation
about void propagation (Ref 15, 23), Johnson and Cook (Ref
24) have proposed a relation for fracture strain as a function
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of stress triaxiality, strain rate and temperature. The Johnson-
Cook (J-C) fracture criterion can be expressed as

ef ¼ f1 r�0
� �

f2ð_eÞf3ðTÞ
¼ C1 þ C2 exp C3r

�
0

� �� �
1þ C4 ln _e

�ð Þ 1þ C5T
�ð Þ;

ðEq 1Þ

where ef is the equivalent plastic strain to fracture, r�0 ¼ rm
�r is

the stress triaxiality, rm is the mean stress, �r is the von Mises
equivalent stress, _e�¼_e=_e0 is the dimensionless strain rate, _e0
is reference strain rate. To simplify the fitting process, one al-
ways selected the lowest strain rate of the experiments as the
reference strain rate. T� ¼ T � Trð Þ= Tm � Trð Þ is homologous
temperature, Tr is reference temperature, Tm is the melting
temperature. C1, C2, C3, C4, C5 are five material constants.
Because necking or notch exists in the specimen for tension
tests, the deformation of the smooth or notch specimen is not
uniform, and the fracture strain occurs at the fracture surface.
Based on the assumption that the strain is constant across the
minimum cross-section (i.e., the center of the notch), and that
the cross-section shape remains unaltered during the deforma-
tion, the strain to fracture, ef , is calculated as (Ref 25)

ef ¼ ln
A0

Af

� �
¼ 2 ln

a0
af

� �
; ðEq 2Þ

where A0 is the initial area of the minimum cross-section, Af

is the fracture area of the minimum cross-section, a0 is the
initial radius of the minimum cross-section, and af is the frac-
ture radius of the minimum cross-section. Due to the simplic-
ity of formulation, the ease of calibration, and the wide
availability of material constants for many metals, J-C frac-
ture criterion has been widely applied to engineering.

In this study, a comprehensive experimental study is
designed to investigate the effect of temperature (293 to
1373 K), strain rates (0.001 to 4000/s), and stress triaxialities
(�0.6 to 1.1) on the fracture characteristics of a SCNBS.
Finally, according to the anomalous fracture behaviors of
SCNBS, the J-C fracture criterion was modified, and the
parameters of the modified J-C fracture criterion are calibrated.

2. Material and Experimental Procedure

2.1 Material and Specimen

The investigated material is selected to be DD407 SCNBS.
It was provided by Central Iron and Steel Research Institute of
China. To further improve the performance of turboshaft
engine, DD407 superalloy was developed in about 2011. Its
chemical composition is listed in Table 1. Tensile strength of
DD407 and some other SCNBSs of the same generation is
shown in Fig. 1. As seen in this figure, the tensile strength of
DD407 is higher than that of other superalloys over most of the
selected temperature range. Anomalous peak of stress can be
observed for all these superalloys, and the peak temperatures
for all these SCNBSs are close to each other.

The SCNBS is hardened by coherent ordered fcc Ni3Al (c¢)
particles in the disordered fcc c matrix (Ref 28). Figure 2 shows
the microstructure of DD407 superalloy using scanning elec-
tron microscope (SEM). As seen in Fig. 2, the microstructure of
the SCNBS mainly consists of submicron cubic c¢-precipitates
dispersed in the c-phase matrix. The specimens used in the
experiments are from a rod with a diameter of 16 mm. The
crystallographic orientations were examined by a rotation x-ray
diffraction method on a D/MAX-2400 x-ray diffractometer. The
loading direction (longitudinal direction) of the specimens was
within 10� deviating from [001] orientation of the crystal
lattice. Figure 3 shows the specimens for compression (includ-
ing plane strain compression, notched round bar compression,
and cylinder compression), tension (including smooth round
bar tension and notched round bar tension), and pure shear. For
plane strain compression and pure shear, the direction of the
length of the cross-section is close to [100] orientation.

2.2 Low Strain Rate Experiments

The compression, tension, and shearing tests at nominal
strain rate of 0.001/s are conducted using a DNS100 servohy-
draulic testing machine, over temperature range of 293 to
1373 K. Elevated temperatures are obtained with a radiant-
heating furnace, measuring the temperature using a thermo-
couple arrangement. The temperature was maintained constant
during the test with a fluctuation of ±3 �C. The deformation of
the specimen is obtained indirectly by subtracting the displace-
ment due to the compliance of the loading frame from the
displacement measured by LVDT, which mounted in the testing
machine.

2.3 High Strain Rate Experiments

Dynamic compression experiments are performed at strain
rates of 1000 and 4000/s over temperature range of 293 to
1273 K, using the NPU�s enhanced split Hopkinson pressure bar
technique. The enhanced split Hopkinson bar technique was
originally developed by Nemat-Nasser et al. (Ref 29). A furnace
was used to attain the required uniform temperature in the
specimen during the high-temperature tests. Dynamic tension
experiments are performed at strain rate of 1000 and 4000/s and
temperature of 293 K, using the NPU�s split Hopkinson tensile
bar. During the experiments, two improved technique are
applied, e.g., high-temperature split Hopkinson pressure bar
technique (Ref 30) and dynamic recovery technique (Ref 31, 32).

3. Experimental Results and Analysis

3.1 Plastic Behaviors of SCNBS

Uniaxial compression tests were conducted on the DD407
superalloy along the nominal [001] crystal orientation. The true
stress-true strain curves were obtained over a wide range of
temperatures from 293 to 1273 K and over strain rate ranging
from 0.001 to 4000/s. To further the understanding of the
temperature effect on the stress, the yield stress vs. temperature
relation of DD407 superalloy is plotted for each applied strain
rate in Fig. 4. As seen in this figure, anomalous peak of stress
occurs at the indicated strain rates. This anomalous peak has
been also observed in the stress versus temperature curves of
other SCNBSs (Ref 27). The peak temperature, Tp, is about

Table 1 Nominal composition of DD407 superalloy
(wt.%)

Ni Cr Co Mo W Al Ti Ta

Balance 8 5.5 2.25 5 6 2 3.5
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1055 K for the strain rate of 0.001/s, 1150 K for 1000/s and
1160 K for 4000/s. Tp shifts to higher value as the strain rate
increases. Figure 5 shows the variation of Tp as a function of

strain rate. The height of the anomalous peak decreases with
increasing strain rate. Because of this anomalous behavior, the
common models used for the flow stress can not describe the
mechanical behavior of SCNBS. Our previous paper developed
a constitutive model, which took the anomalous peak of stress
into account (Ref 14).

3.2 Fracture Behaviors of SCNBS DD407

3.2.1 Effect of Temperature on the Fracture Character-
istics. An effort is made in this part to study the effect of
temperature on the tensile stress-rupture property of smooth
round specimen. Figure 6 shows the variation of the strain to
fracture over a temperature range of 293 to 1373 K for DD407
SCNBS. As seen in figure, the strain to fracture first decreases
and then increases with the increasing temperature. Thus a
valley of the fracture strain is formed over the selected
temperature range. The valley temperature of the DD407
superalloy is around 800 K. This anomalous valley of strain to
fracture is similar to that of other SCNBS, as shown in Fig. 7. It
is obvious that the J-C fracture criterion can not describe such
temperature dependence of the strain to fracture.

As seen in the insets of Fig. 6, the path of the crack
propagation is temperature dependent. For the case of 293 K,
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necking did not occur during the loading process. The crack
surface is perpendicular to the loading direction. With the
temperature of 873 K, shear fracture is observed. The path of
the crack propagation is perpendicular to the loading direction
close to the lateral surface of the sample. In the center region of
the fractured sample, the crack surface and the loading direction
form an angle of about 40�, which is the orientation of the
twisted {111} slip plane. With the temperature of 1073 K, the
crack surface exhibits a serrated form with an angle of 45� or
135� to the loading direction. The crack propagates alterna-
tively along two groups of octahedral slip planes, which have
the same resolved shear stress and strain. In another words,
there are two possible paths for crack propagation. Once the
crack propagates along one of the slip plane and encounters
obstacles, the other path will be taken. For the case of 1373 K,
necking is observed close to the fracture surface, which is
perpendicular to the loading direction.

Figure 8(a) to (f) shows the SEM micrographs of the tensile
fracture surface of DD407 SCNBS with temperature of 293,
873, and 1373 K and strain rate of 0.001/s. For 293 K case, the
fracture mode is a mixture of cleavage and microvoid
coalescence mechanisms. Microvoids can be observed in the
fracture surface. As seen in the inset of Fig. 8(b), the c¢ particles
are pulled apart because the strength of c¢ phase is close to that
of c phase. At 873 K, the fractographs show entire cleavage
fracture, and these cleavage planes belong to {111} crystal
plane. As seen in the inset of Fig. 8(d), some parts of the edges
and corners of the c¢-phase particles are sheared off, and the
cracks propagate mainly through the matrix due to the higher
strength of c¢ phase than that of c phase at this temperature. At
high temperature of 1373 K, the fracture surface is character-
ized by mostly ductile rupture with dimples. The c¢/c
microstructure can not be observed.

3.2.2 Effect of Stress Triaxiality on the Fracture Char-
acteristics. It is common sense that void growth is mainly
affected by the stress triaxiality as analyzed by Mclintck (Ref
23) for a cylindrical void and Rice and Tracey (Ref 15) using a
single-spherical void in an infinite solid. Stress triaxiality is an
important influence factor of metal ductility, and earlier study
results have shown that metal ductility decreases with increas-
ing stress triaxiality (Ref 25, 33). This result is quite natural
from the microscope viewpoint of void growth (Ref 22). Bao
and Wierzbicki (Ref 18), Bai and Wierzbicki (Ref 34), and
Brunig et al. (Ref 35-37) classified damage mechanisms as
microshear crack at negative stress triaxiality, void growth-

dominated modes at large positive stress triaxiality, and mixed
modes for low positive stress triaxiality. To study the effect of
stress triaxiality on the plastic strain to fracture of DD407
SCNBS, experiments with different stress triaxialities, includ-
ing tension, compression, and pure shearing tests, are con-
ducted. Figure 9 shows the geometry of notched specimen.
From different geometries of notched specimens, one can
obtain different initial stress triaxialities (Ref 24). The initial
stress triaxiality r�0 in the center of the notch is obtained by
inserting the initial radius of the minimum cross-section a0 and
the initial notch radius R0 into the following Equa-
tion (Table 2). In this study, the tensile-notched specimens
have initial stress triaxiality equal to 0.56, 0.74, and 1.03
respectively, while the initial minimum radius a0 equal to 2 mm
in all the tensile-notched specimens and the initial notch radius
R0 correspondingly equal to 4, 2, and 1 mm. The test
temperature is 1373 K, close to the working temperature of
SCNBSs, and the nominal strain rate is 0.001/s.

Figure 10 shows the strain to fracture as a function of stress
triaxiality of DD407 SCNBS at temperature of 1373 K and
nominal strain rate of 0.001/s and at temperature of 293 K and
nominal strain rate of 4000/s. The plastic strain to fracture in
pure shear was less than that in uniaxial tension in both of the
conditions, which is similar to the Xue�s (Ref 38) and Xue and
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Wierzbicki�s (Ref 39) observation for AA 2024-T351 (Ref 18)
and 4340 steel (Ref 40). It is obvious that the J-C fracture
criterion can not predict such fracture behavior at both low
strain rate and high strain rate, as shown in Fig. 10. With the
increasing positive stress triaxiality of tension specimen, the
angle of the crack with the loading direction varies from 90� to
about 45� at temperature of 1373 K and low strain rate of
0.001/s shown in Fig. 10(a). However, the crack propagation of
tension specimen seems insensitive to stress triaxiality at
temperature of 293 K and high strain rate of 4000/s, and the

crack seems always perpendicular to the loading direction with
the varying stress triaxiality, as seen in Fig. 10(b).

The micrographs of fracture surface at temperature of
1373 K, nominal strain rate of 0.001/s, and different stress
triaxialities are shown in Fig. 11. For the tension of notched
specimen shown in Fig. 11(a) and (b), the fracture surface is
characterized by mostly ductile rupture with dimples. Square-
shaped facets are observed, and a small micropore can be found
in the center of the facet. Combined with fracture surface of
smooth specimen tension (Fig. 8f), one can find the quantities
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Fig. 8 The SEM micrographs of the tensile fracture surface of DD407 SCNBS with the temperature of (a, b) 293 K, (c, d) 873 K, (e, f)
1373 K and strain rate of 0.001/s
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of facets and micropores decrease with the increasing stress
triaxiality. For pure shear, fracture mode completely changes to
cleavage mechanism, as shown in Fig. 11(c). The micrographs
of fracture surface at temperature of 293 K, nominal strain rate
of 4000/s, and stress triaxiality of 1.03 are shown in Fig. 12.
The characteristics of fracture surface at high strain rate are
quite different from that under quasi-static condition. Lots of
needle-shaped defects can be seen in the fracture surface, as the
arrows point in Fig. 12. Two kinds of fracture morphology are
observed, as shown in the enlarged partial view of Fig. 12. One

Fig. 9 Geometry and dimensions of notched specimens
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Table 2 The types of classical specimens for different
stress triaxialities

Specimen type
Expressions for initial
stress triaxiality r�0

Smooth round bars, tension (Fig. 3b)
1

3

Notched round bars, tension (Fig. 3b)
1

3
þ ln 1þ a0

2R0

� �

Shear (Fig. 3c) 0

Cylinders, compression (Fig. 3a) �1

3

Plastic plane strain, compression (Fig. 3a) �
ffiffiffi
3

p

3

Notched round bars, compression (Fig. 3a) � 1

3
þ ln 1þ a0

2R0

� �	 


2048—Volume 25(5) May 2016 Journal of Materials Engineering and Performance



presents the c/c¢ microstructure, and the other shows glacier-
like fracture morphology.

3.2.3 Strain Rate Effect on the Fracture Characteris-
tics. Tensile experiments with smooth specimens are con-
ducted at temperature of 293 K and different strain rates (0.001,
1000, and 4000/s), as shown in Fig. 13. The flow stress of

DD407 SCNBS is sensitive to strain rate. Figure 14 shows the
fracture strain versus strain rate relation. The fracture strain
decreases linearly with increasing lnð_eÞ, which can be described
by J-C fracture criterion. The crack propagation is dependent on
strain rate. At low strain rate of 0.001/s, the crack surface is
perpendicular to the loading direction. For high strain rate case
(1000 and 4000/s), the crack surface is inclined to loading
direction. The micrograph of fracture surface of tension smooth
specimen at temperature of 293 K and high strain rate of 4000/s
is shown in Fig. 15. Comparing with the fracture surface at
temperature of 293 K and low strain rate of 0.001/s (Fig. 8b),
lots of needle-shaped defects in the fracture surface at high
strain rate, as the arrows point in Fig. 15. Two kinds of fracture
morphology, which are similar to that at temperature of 293 K,
strain rate of 4000/s, and stress triaxiality of 1.03 (Fig. 12), are
observed, as shown in the enlarged partial view of Fig. 15.
Similarly, one presents the c/c¢ microstructure, and the other
shows glacier-like fracture morphology.

4. Discussion

As discussed in previous section, the J-C fracture criterion
can not describe the effects of temperature and stress triaxiality
on the fracture behaviors of DD407 SCNBS. For the original
expression of J-C fracture criterion, the strain to fracture is
given as multiplication of the stress triaxiality, temperature, and
strain rate term, ef ¼ f1 r�0

� �
f2ð_eÞf3ðTÞ. To exactly describe the

effect of stress triaxiality, temperature, and strain rate on the
strain to fracture of SCNBSs, a modified J-C fracture criterion
should be developed.

As described above, the stress triaxiality term of J-C fracture
criterion, f1 r�0

� �
, can not describe the stress triaxiality effect on

the fracture behavior. A modified J-C fracture criterion should
be developed to describe the effect of stress triaxiality on the
strain to fracture. As pointed out by Barsoum and Faleskog
(Ref 41), based on previous experimental work (Ref 18, 42)
and our experimental results, the stress state term of a model
incorporating only stress triaxiality cannot predict the fracture
characteristics of metals. Previous studies (Ref 38, 39, 43) have
shown that Lode parameter, besides stress triaxiality, has

20μm

Fig. 12 The SEM micrographs of the fracture surface of DD407 SCNBS with the temperature of 293 K and strain rate of 4000/s for notched
tension with =1.03
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important influence on the fracture characteristic. Wilkins et al.
(Ref 44) were first to introduce the effect of deviatoric stress
ratio, which is related to Lode parameter on ductile fracture, on
fracture. Lode parameter dependence was first introduced in
modeling of fracture by Xue (Ref 38). Lode parameter, L, is
defined as

L ¼ 2r2 � r1 � r3
r1 � r3

; ðEq 3Þ

where r1, r2; and r3 indicates the largest, middle, and the
lowest principle stress respectively, ordered as r1 � r2 � r3.
L changes from 1 to �1. As a result of the competition of
two failure mechanisms: void growth and ‘‘shear decohe-
sion,’’ the fracture locus would exhibit three branches in the
whole range of the stress triaxiality (Ref 18, 45). Hence, the
following simple form of strain to fracture as a function of
stress triaxiality and Lode parameter is postulated (Ref 34),

F1 r�0; L
� �

¼ 1

2
D1e

�D2r�0 þ D5e
�D6r�0

� �
� D3e

�D4r�0

	 

L2

þ 1

2
D1e

�D2r�0 � D5e
�D6r�0

� �
Lþ D3e

�D4r�0 ;

ðEq 4Þ

where D1, D2, D3, D4, D5; and D6 are parameters. For ten-
sion, L = �1, and value of D5 and D6 can be obtained based
on the corresponding experimental results. For notched round
bar compression and cylinder compression, L = 1, and value
of D1 and D2 can be obtained according to experimental re-
sults. Finally, D3 and D4 can be calibrated according to the
experimental results of pure shear and plane strain compres-
sion. Values of these parameters are shown in Table 3. Fig-
ure 16(a) shows the comparison of the fracture criterion
predictions with the experimental results under quasi-static
condition. To further verify the proposed model, Fig. 16(b)
compares the fracture criterion predictions with the experi-
mental results at high strain rate (4000/s). As seen in these
figure, the model predictions agree well with the experimental
results at the selected stress triaxialities, Lode parameters,
temperatures, and strain rates.

As discussed in Sect. 3.2.1, the fracture strain first decreases
and then increases with the increasing temperature for SCNBS,
as shown in Fig. 6 and 7. J-C fracture criterion can not describe
such fracture behavior. Based on the experimental data, a

20µm20µm

Fig. 15 The SEM micrographs of tensile fracture surface of DD407 SCNBS with the temperature of 293 K and strain rate of 4000/s

Fig. 16 Comparison of prediction results of the proposed fracture
criterion with experimental results (a) at strain rate of 0.001/s and
temperature of 1373 K (b) at strain rate of 4000/s and temperature of
293 K

Table 3 Calibrated parameters of modified J-C fracture
criterion

D1 D2 D3 D4 D5 D6 D7 T0 TD D8

0.18 3.6 0.31 1.5 1 1.8 0.9 830 820 �0.036
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modified form of the temperature term, F3ðTÞ, is developed to
describe this anomalous fracture behavior of SCNBSs

F3ðTÞ ¼ 1� D7 exp � T � T0
TD

� �2
" #

; ðEq 5Þ

where T0 is the temperature corresponding to the valley strain
to fracture, TD reflects the temperature range of the anoma-
lous valley, D7 reflects the value of the valley strain to frac-
ture, and T0, TD, D7 are all constants.

Generally, the final expression of the modified J-C fracture
criterion is given by

ef ¼ F1 r�0; L
� �

F2ð_eÞF3ðTÞ; ðEq 6Þ

where

F1 r�0; L
� �

¼ 1

2
D1e

�D2r�0 þ D5e
�D6r�0

� �
� D3e

�D4r�0

	 

L2

þ 1

2
D1e

�D2r�0 � D5e
�D6r�0

� �
Lþ D3e

�D4r�0 ;

ðEq 7Þ

F2ð_eÞ ¼ 1þ D8 ln _e
�ð Þ; ðEq 8Þ

F3ðTÞ ¼ 1� D7 exp � T � T0
TD

� �2
" #

: ðEq 9Þ

All the model parameters can be calibrated using experi-
mental data, the value of the parameters are shown in Table 3.

5. Conclusion

In this work, a comprehensive experimental investigation on a
SCNBS (DD407) is carried out over a temperature range of 293 to
1373 K, strain rate range of 0.001 to 4000/s, and stress triaxiality
range of �0.6 to 1.1. The temperature, strain rate, and stress
triaxiality effect on the fracture behaviors and strain rate effect on the
anomalous yield stress peak are analyzed. Based on the experimen-
tal results, a modified J-C fracture criterion is developed, which is
shown to work well for describing the fracture behavior of DD407
SCNBS. The following conclusions can be drawn from this study:

1. The anomalous peak of the stress takes place at both low
and high strain rates. The peak temperature is about
1055 K for the strain rate of 0.001/s, 1150 K for 1000/s,
and 1160 K for 4000/s. The peak of the stress shifts to
higher temperature with increased strain rate.

2. A valley of the fracture strain is formed in the fracture strain
versus temperature curves over the selected temperature range.

3. The micrograph of fracture surface is largely dependent
on the temperature, stress triaxiality, and strain rate.

4. The J-C fracture criterion is modified, and its prediction
results agree well with the experimental results at the se-
lected stress triaxialities, Lode parameters, temperatures,
and strain rates.
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