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The use of instrumented indentation to characterize power-law creep is studied by computational modeling.
Systematic finite element analyses were conducted to examine how indentation creep tests can be employed
to retrieve the steady-state creep parameters pertaining to regular uniaxial loading. The constant inden-
tation load hold and constant indentation-strain-rate methods were considered, first using tin (Sn)-based
materials as a model system. The simulated indentation-strain rate-creep stress relations were compared
against the uniaxial counterparts serving as model input. It was found that the constant indentation-strain-
rate method can help establish steady-state creep, and leads to a more uniform behavior than the constant-
load hold method. An expanded parametric analysis was then performed using the constant indentation-
strain-rate method, taking into account a wide range of possible power-law creep parameters. The
indentation technique was found to give rise to accurate stress exponents, and a certain trend for the ratio
between indentation strain rate and uniaxial strain rate was identified. A contour-map representation of the
findings serves as practical guidance for determining the uniaxial power-law creep response based on the
indentation technique.
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1. Introduction

Instrumented indentation is a widely used technique for
measuring the mechanical properties of materials such as elastic
modulus and hardness. It is also increasingly used to probe
time-dependent material behavior for thin films and bulk
materials. However, assessing creep behavior through instru-
mented indentation is not as straightforward as the standard
uniaxial creep test. Accordingly, research aimed to gain insight
on the relationship between indentation creep and uniaxial
creep is of great interest.

Metallic materials display time-dependent plastic deforma-
tion (creep) at high homologous temperatures. Conventionally,
a creep test involves applying a constant uniaxial stress to a
bulk specimen. After a transient duration, a steady state is
reached where the strain increases nearly linearly with time,
i.e., the creep strain rate remains constant. The relationship
between steady-state strain rate _es, applied stress r, and
temperature is often found to be (Ref 1-3)

_es ¼ A0 exp � Q

RT

� �� �
rn; ðEq 1Þ

where A¢ is a constant, Q is the activation energy, R is the
universal gas constant, T is the temperature (in K), and n is
the stress exponent for creep. At a constant temperature, the
expression becomes

_es ¼ Arn; ðEq 2Þ

where the creep coefficient A has incorporated the tempera-
ture effect. The constants A and n uniquely characterize this
power-law creep response. With a series of uniaxial tests, the
constants A and n can be determined by plotting the mea-
sured strain rates against the applied stresses, both in logarith-
mic scales.

A representative early development of indentation-based
creep measurement is the impression creep method (Ref 4-6),
which involves pressing a flat-end cylinder onto the test
material under a constant load and observing the increase in
depth. The creep stress exponent and/or activation energy
obtained by this technique have been found to be consistent
with those measured by conventional uniaxial creep tests (Ref
5-7). As for the commonly used sharp indenter geometries
(pyramidal and conical), the most widely employed technique
is the constant-load creep, where the indentation is held at a
fixed peak load over a duration of time, while the penetration
depth continues to increase (Ref 8-17). The hardness H is
defined as

H ¼ P

Ac
; ðEq 3Þ

where P is the load and Ac is the instantaneous projected con-
tact area. The indentation strain rate is defined as (Ref 8)

_eI ¼
1

h

dh

dt

� �
; ðEq 4Þ

where h is the instantaneous indentation displacement (depth)
and t is time. During the hold period hardness continues to
decrease as the projected contact area increases, and the
indentation strain rate also decreases with time. Note that the
creep stress is proportional to H and the indentation strain
rate _eI is assumed to be proportional to the uniaxial strain rate
_es in a conventional creep test. By monitoring the changes in
hardness and indentation strain rate during the constant-load
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hold, the stress exponent n can be determined by means of
Eq 2. Reasonable agreement of n values with those measured
by conventional uniaxial creep tests has been reported (Ref 8-
13). However, uncertainty also exists, especially due to devia-
tion from the steady-state creep condition during the con-
stant-load indentation (Ref 14-16).

During the constant-load hold indentation creep, both the
hardness and strain rate are simultaneously changing. If the
indentation strain rate can be held constant during the
indentation loading process, a steady-state creep may be more
easily attained. In other words, if a prescribed constant _eI gives
rise to a stable value of H (over a range of independent depth),
then the power-law creep relation, Eq 2, can be readily
assessed. The constant indentation strain rate test may be
easily achieved in a displacement-controlled machine (Ref 18).
For geometrically self-similar indentation, a constant indenta-
tion strain rate, 1

h
dh
dt

� �
, can be obtained by imposing a constant

normalized load rate, 1
P

dP
dt

� �
, under the condition of a steady-

state value of hardness (Ref 19, 20). Applying this approach to
indium (In), Lucas and Oliver (Ref 19) showed good agreement
with the literature data for both the stress exponent n and
activation energy Q. Further studies of creep mechanisms in
aluminum (Al), tin (Sn), and bismuth (Bi), employing this
constant strain rate technique, have also been reported (Ref 15,
21, 22).

Numerous studies have shown good correlation between the
stress exponents n determined by indentation and by conven-
tional uniaxial creep tests, as described above. However, the
viability of using instrumented indentation to characterize the
uniaxial creep response will also rely on a quantifiable relation
between _eI and _es (Ref 23). Equivalently, the question is how
and if the coefficient A in Eq 2, at a fixed temperature, can be
determined by indentation. Poisl et al. (Ref 24) studied
indentation and uniaxial creep of amorphous selenium (Se),
which displays a Newtonian viscous behavior (with the stress
exponent of unity) at above its glass transition temperature. The
ratio _es=_eI was found to be approximately 0.09. Takagi et al.
(Ref 25) examined an aluminum (Al)-magnesium (Mg) solid
solution alloy with a stress exponent of 3.2, and obtained the
_es=_eI ratio as 0.28. In our previous numerical finite element
study subjecting Sn-based model materials to the constant
indentation-strain-rate method, the _es=_eI ratio was found to be
0.33 (Ref 26). It is unclear if these values are representative of
other materials showing general power-law creep behavior.

The present study aims to correlate the indentation strain
rate _eI and uniaxial strain rate _es from a numerical modeling
standpoint, to cover a very wide range of power-law creep
parameters. In the first part of the study, we apply both the
constant-load hold method and constant indentation-strain-rate
method to Sn-based materials, to extract hardness (and thus
stress, r) values at different indentation strain rates ( _eI). The
_eI � r relationships obtained from the two methods are
compared with the uniaxial creep response (which serves as
the input for the finite element model). In doing so, we will
illustrate that the constant indentation-strain-rate method yields
a more consistent result than the constant-load hold method.
The second part of the study is then devoted to the constant
indentation-strain-rate method, with the constants A and n
systematically varied. The objective is to examine how the
indentation-derived creep response may be influenced by the
actual uniaxial creep parameters (used, again, as the model
input). We will develop a ‘‘map’’ showing the variation of

indentation-derived stress exponent and _es= _eI ratio with the
uniaxial creep constants A and n. The result will thus provide
practical quantitative guidance on how to extract the uniaxial
creep parameters from the constant indentation-strain-rate creep
test.

2. Model Description

Figure 1 shows the model geometry. The model is axisym-
metric, with the left boundary being the symmetry axis. The
specimen has a lateral span (radius) of 200 lm and a height of
200 lm. The indenter is a diamond cone with a semi-angle of
70.3�, which results in the same nominal projected contact area,
for a given depth, as that of a Berkovich indenter. Use of the
conical indenter is a practical way to model the indentation
process in a two-dimensional setting (Ref 27). During inden-
tation, the left boundary is allowed to displace only in the 2-
direction. The bottom boundary is allowed to move only in the
1-direction. The right edge is not constrained. The top surface
of the specimen, when not in contact with the indenter, is also
free to move. The coefficient of friction between the indenter
and the top surface is taken as 0.1, which is a typical value for
the diamond/metal contact pair (Ref 28, 29). A total of 61,608
continuum 4-node quadrilateral elements are included in the
model, with a finer element size near the upper left corner of the
test material. Mesh convergence was checked through the
modeled indentation hardness values resulting from a total of
three meshes with different extents of refinement (Ref 30). The
finite element program ABAQUS (Version 6.12, Dassault
Systemes Simulia Corp., Providence, RI) was used to carry out
all the simulations.

In the case of constant-load hold test, the indentation process
is load-controlled with two peak loads considered: 50 and
100 lN. A duration of 10 s is used to bring the load to the
target value. The load is then held for 30 h during which the
variation of indentation depth with time is monitored. Contact
geometry during this period is also monitored for extracting the
instantaneous contact radius. When determining the contact
radius from the simulation, the last nodal point on the top

Fig. 1 Schematic showing the indenter and test material, along
with the boundary conditions and local mesh used in the axisymmet-
ric model. The left boundary is the symmetry axis. The entire speci-
men is 200 lm in lateral span (radius) and 200 lm in height
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surface in contact with the indenter is identified in the deformed
mesh. Therefore, the effect of possible ‘‘pile-up’’ or ‘‘sink-in’’
of material at the indentation edge is automatically taken into
account. The evolution of hardness and indentation strain rate
are then determined from Eq 3 and 4. Choosing several points
during the hold time history will then provide a _eI � H
relationship for a given material.

In the case of constant indentation-strain-rate test, displace-
ment (h) is applied on the top face of the indenter such that the
indentation strain rate, _eI (defined in Eq 4), maintains a
prescribed value. This was implemented in a piecewise manner,
through successive intervals with an increasing displacement
rate up to a maximum indentation depth of 4 lm. The range of
_eI considered in this study is from 10�7 to 10�4 s�1. Under a
constant applied indentation strain rate, if the hardness
(calculated by the evolutions of load and contact radius)
remains constant, then a steady state is reached. Several
simulation runs with different prescribed indentation strain rates
will then be sufficient to establish a _eI � H relationship for a
given material.

In order to obtain the correspondence between indentation
creep and uniaxial creep, the relationship between hardness and
creep stress is needed. Here the creep stress r is taken as (Ref
24, 25, 31-35)

r ¼ H

3
: ðEq 5Þ

The _eI � r relation thus obtained, from both the constant-
load hold method and constant indentation-strain-rate method,
for any given material will be contrasted against its uniaxial
counterparts ( _es � r relation), and the difference can then be
quantified.

In the numerical model, the Young�s modulus and Poisson�s
ratio of the elastic diamond indenter are 1141 GPa and 0.07,
respectively. The test materials are taken to be elastic-creep
solids with a true time scale. For the comparison study of the
constant-load hold and constant indentation-strain-rate meth-
ods, four different material models are considered: pure Sn at
25 �C, pure Sn at 120 �C, Sn-3.9Ag-0.7Cu alloy at 25 �C, and
Sn-3.9Ag-0.7Cu alloy at 120 �C, all in their bulk form. Their
experimentally measured uniaxial steady-state power-law creep
response (Ref 36, 37), following Eq 2 and reproduced in Fig. 2,

is used as the model input. In the multiaxial stress state, stress r
in Eq 2 is the von Mises effective stress and strain rate _es is the
equivalent creep strain rate, defined by

_ecr ¼
ffiffiffi
2

p

3
_e1 � _e2ð Þ2þ _e2 � _e3ð Þ2þ _e3 � _e1ð Þ2

h i1=2
; ðEq 6Þ

where _e1, _e2 , and _e3 are the principal components of creep
strain rate. The constitutive formulation is very similar to
standard metal plasticity (Ref 38). Table 1 lists the elastic and
creep parameters of the four models. Note that temperature
does not explicitly exist in the simulations; its effect on mate-
rial behavior is manifested by the different creep parameters.

As described in introduction, a parametric analysis of
indentation creep is also conducted for the constant indentation-
strain-rate method. Here the stress exponent n from 1 through
10 and the constant A spanning many orders of magnitude are
considered.

3. Results and Discussion

3.1 The Constant-Load Hold Analysis

Two separate runs were performed for each of the four Sn-
based material models, one with a peak load of 50 lN and the
other 100 lN. Consider pure Sn at 120 �C as an example.
Figure 3 shows the simulated indentation load-displacement
response for the two peak loads. It is evident that, during the
constant-load stage, a significant increase in indentation depth
is achieved and the higher peak load results in a deeper
penetration over the 30-hour hold period. Figure 4(a) and (b)
shows the contour plots of equivalent creep strain, defined as
_ecr dt, in pure Sn at 120 �C, at the beginning and end of the
hold period under 100 lN, respectively. Only the region close
to the indentation site is included in the presentation. During
initial loading, creep deformation has occurred (Fig. 4a), with
the largest creep strain at the tip of the indentation. As the
indenter sinks further during the 30 h hold, significant expan-
sion of local creep field also takes place (Fig. 4b). The same
observation holds true for the other material models.

The constant-load hold method focuses exclusively on the
creep behavior during the holding stage of indentation. The
indentation depth (h)-time (t) response is directly taken from
the indentation modeling data. An example is shown in Fig. 5,
with pure Sn at 120 �C under both the 50 and 100 lN peak
loads. The other three material models showed identical
qualitative behavior, and thus are not shown here. For each
curve, five points (times) were arbitrarily selected: 25, 350,
1.089 104, 6.029 104, and 1.089 105 s. The depth rates, dh

dt ,
are then evaluated at these five points to obtain the indentation
strain rates _eI. The projected contact areas are evaluated by
locating the corresponding contact edges from the deformed
model configurations, so hardness H and thus stress r can be
calculated. Sufficient data are therefore in place to construct the
_eI � r relationship for each material under a given peak load.

Figure 6 shows the simulated relationship between inden-
tation strain rate (_eI) and creep stress (r) for all four material
models. The dashed lines and symbols represent the indentation
peak loads at 50 and 100 lN, respectively. Also included in the
figure (solid lines) are the uniaxial power-law creep relations
based on experimental measurements (Ref 36, 37) and used as
model input. Note that some of the input power-law lines in

Fig. 2 Experimentally measured steady-state creep response for the
four materials considered (re-created from the linear fit in Ref 36)
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Fig. 6 are direct extensions of the experimental result shown in
Fig. 2, for easier comparison with the indentation modeling
result. The material models and simulation conditions consid-
ered in this study yield strain rates spanning from below
1910�6 to above 1910�3 s�1, and stresses from about 2 to
65 MPa. It is evident that the two different peak loads result in
essentially the same linear appearance in all cases. The
indentation-derived curves are also nearly parallel to the
uniaxial creep response, which suggests nearly identical stress
exponents (n) between indentation creep and uniaxial creep for
the respective materials. The indentation-derived stress expo-
nents are listed in Table 2. Comparing the n values in Tables 1
and 2, it is confirmed that the stress exponent may be accurately
obtained through the constant-load hold indentation test.

The satisfactory correlation of stress exponents shown above
is widely known. However, as described in introduction, the
relationship of creep coefficients A resulting from indentation
and uniaxial tests is much less reported in the literature. In the
present context, such a relation may be expressed as the ratio of
uniaxial strain rate and indentation strain rate, _es= _eI, which
quantifies the extent of translating the indentation-measured
curve to match the uniaxial curve as shown in Fig. 6. The
calculated strain rate ratios are given in Table 2. It is observed
that, for a given material under the two different peak loads, the
ratio _es=_eI exhibits reasonable consistency, with the largest
discrepancy of 6% occurring in the case of SnAgCu at 120 �C.
When comparing all four Sn-based material models, the values
of _es=_eI span from about 0.31 for pure Sn at 120 �C (the
weakest material among the four) to 0.42 for SnAgCu at 25 �C

(the strongest among the four). In fact, there is a clear trend of
increasing _es=_eI as the creep resistance of the material
increases.

3.2 The Constant Indentation-Strain-Rate Analysis

Attention is now turned to extracting the power-law creep
parameters using the constant indentation-strain-rate method.

Table 1 Material properties used in the finite element
model (E: Young�s modulus, m: Poisson�s ratio, A: power-
law creep coefficient, n: stress exponent), for the compar-
ison study between the constant-load hold and constant
indentation-strain-rate methods

E, GPa m A, s21 MPa2n n

Sn at 120 �C 35 0.34 2.209 10�9 7
Sn at 25 �C 46 0.34 1.249 10�12 7
SnAgCu at 120 �C 35 0.34 2.09 10�17 8
SnAgCu at 25 �C 46 0.34 1.959 10�22 10

Fig. 3 Simulated indentation load-displacement curves for pure Sn
at 120 �C under two different peak loads. The hold period is 30 h

Fig. 4 Contour plots of equivalent creep strain in the indented pure
Sn at 120 �C, at the (a) beginning and (b) end of the constant
100 lN load hold period

Fig. 5 Simulated depth (h)-time (t) response for pure Sn at 120 �C
under two different peak loads

1112—Volume 25(3) March 2016 Journal of Materials Engineering and Performance



Again, the same four Sn-based material models are used.
Figure 7 shows the simulated load-displacement curves for
SnAgCu at 25 �C, at four different indentation strain rates from
1910�7 to 1910�4 s�1. A significant rate effect is reveale-
d—a higher indentation strain rate results in a harder response.
The other three materials showed the same load-displacement
trend and are not presented here.

Representative contour plots in the deformed configuration
are presented in Fig. 8 and 9. Figure 8(a) and (b) shows the
equivalent creep strain fields in SnAgCu at 25 �C, with the
prescribed indentation strain rates of 1910�4 and
1910�7 s�1, respectively, when the indentation displacement
is at 4 lm. It can be seen that the creep strain fields are virtually
indistinguishable for the two cases, irrespective of the widely
different strain rates. This is to be expected, since the two cases
are in the same overall deformation state (same indentation
depth). As the indentation depth increases, the creep zone also
increases. But when the two cases with different strain rates
reach the same depth, the inelastic deformation fields are
identical. The rate effect is better manifested by the von Mises
effective stress field, as shown in Fig. 9. Here the same
material, strain rates, and indentation depth as shown in Fig. 8
are considered. It is clear that, with a greater applied indentation
strain rate, the material volume directly underneath the indenter

experiences higher stresses, thus giving rise to a harder
response. It can also be seen that a harder material response
results in a higher stress state in the elastic indenter.

The indentation hardness, calculated based on Eq 3, as a
function of indentation depth is shown in Fig. 10 for SnAgCu
at 25 �C under the four different indentation strain rates. It can
be seen that hardness increases as the strain rate increases, and
the hardness value stays nearly constant at any given strain rate.
This observation illustrates that a steady state is established
using the constant indentation-strain-rate approach—a feat that
the constant-load hold was unable to accomplish due to the
continuous change in hardness and strain rate (Ref 14). These
observations hold true for the other three Sn-based material
models.

The simulated relationship between indentation strain rate
and creep stress is plotted in Fig. 11 (dashed lines with
symbols). Also included in the figure (solid lines) are the
uniaxial power-law creep relations for the four materials based
on experimental measurements (Ref 36, 37) and used as model
input. Within the range of strain rates considered, the creep
stress values of the four materials cover a range from 1.5 to
over 50 MPa. As in the constant-load hold method, the constant
indentation-strain-rate curves are all generally linear, and are
nearly parallel to the corresponding uniaxial creep response.
The slopes of the four dashed lines, listed in Table 3, are the
indentation-derived stress exponent n. Comparing the n values
in Tables 1 and 3, it is clear that the stress exponent for a given
material under uniaxial creep is essentially the same as that
obtained from the constant indentation-strain-rate test.

As before, the parallel nature of the indentation and uniaxial
creep behaviors observed in Fig. 11 makes possible a mean-
ingful determination of the quantitative difference between the
indentation strain rate ( _eI) and uniaxial strain rate ( _es). The
calculated strain rate ratios _es=_eI are also listed in Table 3. A
remarkably consistent value of 0.33 is found in all four cases.
The finding implies that, when the indentation strain rate versus
creep stress is plotted after indentation creep testing, one may
vertically translate the curve to 33% of its strain rate position to
yield the ‘‘uniaxial’’ creep response of the material.

Of the four Sn-based material models investigated thus far,
the constant indentation-strain-rate method results in a more
uniform response than the constant-load hold method. In
Table 3, the _es=_eI ratios stay essentially constant but in Table 2
there is a trend of increasing _es= _eI with the increase in creep

Fig. 6 Relationship between indentation strain rate ( _eI) and creep
stress (r), obtained from the indentation modeling using the con-
stant-load hold method. (The dashed lines and symbols represent
peak loads at 50 and 100 lN, respectively.). The solid lines repre-
sent the uniaxial power-law creep relations, based on experiments
and used as model input

Table 2 Stress exponent n and the ratio _es=_eI, obtained
from indentation modeling using the constant-load hold
method

Material Peak load, lN n _es= _eI

Sn at 120 �C 50 7.088 0.319
100 7.037 0.316

Sn at 25 �C 50 7.081 0.351
100 7.007 0.338

SnAgCu at 120 �C 50 8.084 0.383
100 7.999 0.360

SnAgCu at 25 �C 50 9.793 0.401
100 10.196 0.425

Fig. 7 Simulated load-displacement response of SnAgCu at 25 �C,
under the four indicated indentation strain rates (_eI)
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resistance. It remains to be seen if the consistent _es=_eI ratio of
0.33 with the constant indentation-strain-rate method still holds
true, for materials displaying different power-law creep prop-
erties (i.e., different combinations of A and n in Eq 2). An
expanded parametric modeling analysis is therefore carried out,
as presented in the section below.

3.3 Parametric Analysis Using the Constant Indentation-
Strain-Rate Method

The same constant indentation-strain-rate approach em-
ployed in the previous section is used, with the only varying
input being the power-law creep parameters. Aside from the
four Sn-based systems considered above, the material models
being investigated were artificially chosen with values of A and
n spanning virtually the entire possible range for typical
metallic materials. A total of 60 simulations were conducted,
yielding 15 _eI � r relations each with four strain rate
conditions. These _eI � r relations were then used to calculate
both the indentation-derived stress exponent and the _es= _eI ratio
as was done previously. The results are organized into a ‘‘map’’
form, where the abscissa and ordinate are parameters n and A,
respectively, used as model input.

Figure 12 shows the simulated 15 sets of n (indentation-
derived) and R (the _es=_eI ratio) values distributed in the domain
of input parameter n (uniaxial) and A (uniaxial). It can be seen

that the strain rate ratio R tends to increase from the lower left
region to the upper right region of the map. The entire domain
is roughly divided into five zones, for ease of discussion, based
on the R value. Note that Zone V (the lower left region) is
virtually unattainable by creep-deforming materials under

Fig. 8 Contour plots of equivalent creep strain for the model
SnAgCu at 25 �C under the indentation strain rates of (a)
1910�4 s�1 and (b) 1910�7 s�1, when the indentation displace-
ment is at 4 lm

Fig. 9 Contour plots of von Mises effective stress (in MPa) for the
model SnAgCu at 25 �C under the indentation strain rates of (a)
1910�4 s�1 and (b) 1910�7 s�1, when the indentation displace-
ment is at 4 lm

Fig. 10 Simulated hardness as a function of indentation depth for
SnAgCu at 25 �C. Results from the four different indentation strain
rates are included
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reasonable loading conditions, since the steady-state creep
would be extremely slow. For example, the upper left and lower
right open circles in this zone, when loaded by 100 MPa of
uniaxial stress, will possess a steady-state creep rate of about
1910�10 and 1910�14 s�1, respectively. The materials thus
behave elastically unless the applied stress becomes exceed-
ingly large. The indentation-derived stress exponents n for
these open circles are also drastically different from the
corresponding uniaxial values. As one moves away from Zone
V, the indentation method is seen to produce accurate n values.

Figure 12 reveals that in Zones I, II, and III, the _es= _eI ratios
are all between about 0.27 and 0.35. The four Sn-based material
models considered in section 3.2 all fall within Zone II (with R
being approximately 0.33). It is worth identifying the positions
for actual materials from the limited experimental characteri-
zations mentioned in introduction, and comparing them with
the present numerical result. The position of amorphous
selenium (Se) at above its glass transition temperature studied
by Poisl et al. (Ref 24) has a uniaxial n of unity, and is located
approximately at the same far-upper-left point within Zone IV
in Fig. 12. The measured R was 0.09, which is somewhat below
the simulated value of 0.159. However, it is noted that both the
measured and simulated R ratios showed relatively low values,
and the material is located near the less well-defined region on
the chart. Next, the Al-Mg solid solution alloy studied by
Takagi et al. (Ref 25) has a uniaxial n of 3.2, and its uniaxial
creep response at between 636 and 773 K is located near the
upper region of Zone III close to the boundary with Zone IV.

The measured R value was 0.28, which is in good agreement
with the modeling result.

Figure 12 illustrates that the _es=_eI ratio is not a ‘‘universal’’
constant, so the vertical distance between the indentation-
measured and uniaxial strain rate-stress lines (as shown in
Fig. 11) is not fixed and will depend on the material. Neverthe-
less, Fig. 12 shows that this distance (expressed as R, the _es= _eI
ratio) is around 0.3 for a vast range of A and n, which can serve as
a quick estimate of power-law creep response from the
indentation creep measurement. Since indentation creep gener-
ally returns an accurate stress exponent n, an ‘‘unknown’’
material can thus be tested with its horizontal position in Fig. 12
(with the obtained n) established. This will help limit the
numerical range of R, which in turn can provide a more accurate
determination of the uniaxial power-law creep behavior based on
the measured indentation strain rate-stress response.

4. Conclusions

Numerical finite elementmodelingwas carried out to examine
the correlation between indentation creep and conventional
uniaxial creep, for metals following the steady-state power-law
creep behavior. The constant-load hold indentation method and
the constant indentation-strain-ratemethodswere assessed, using
pure Sn and a SnAgCu alloy at two different temperatures as the
model system. Bothmethods were able to yield an accurate stress
exponent n. The constant indentation-strain-ratemethodwas able
to generate more uniform creep coefficients A than the constant-
load hold method, thus rendering more consistent ratios of
uniaxial strain rate and indentation strain rate (_es= _eI). Steady-
state creep can also be established with the constant indentation-
strain-rate method. A parametric analysis taking into account a
wide span of uniaxial A and n values was performed using the
constant indentation-strain-rate method. It was found that, except
for the combinations of A and n that lead to essentially a non-
creeping response, the indentation measurement gives rise to
accurate stress exponents throughout the entire range. The _es= _eI
ratio displays an increasing trend toward greater values of A and

Fig. 11 Relationship between indentation strain rate and creep
stress, obtained from the constant indentation-strain-rate modeling
(dashed lines with symbols). The solid lines represent the uniaxial
power-law creep relations, based on experiments and used as model
input

Table 3 Stress exponent n and the ratio _es=_eI, obtained
from indentation modeling using the constant indentation-
strain-rate method

n _es= _eI

Sn at 120 �C 7.013 0.334
Sn at 25 �C 7.006 0.332
SnAgCu at 120 �C 8.060 0.335
SnAgCu at 25 �C 9.883 0.335

Fig. 12 Indentation-derived stress exponent n and strain rate ratio
R (¼ _es= _eI), obtained from the constant indentation-strain-rate simu-
lations, plotted within the domain defined by the uniaxial power-law
creep parameters n and A used as model input. The map is divided
into five zones based on the R value. Zone V is virtually unattain-
able by actual materials under realistic loading conditions
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n, but is generally between 0.27 and 0.35 for most of the
materials. The graphical presentation of the parametric analysis
offers practical guidance in determining the uniaxial power-law
creep response from the indentation technique.
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