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The results of investigation of the influence of additions of 2 and 3 at.% of Sn and simultaneously of Sn and
3 at.% Nb on microstructure and properties of the bulk metallic glasses of composition (Tig.
Cuzs_,Zr1oPd;4Sn,)199—,Nb, are reported. It was found that the additions of Sn increased the temperatures
of glass transition (7), primary crystallization (7.), melting, and liquidus as well as supercooled liquid
range (A7) and glass forming ability (GFA). The nanohardness and elastic modulus decreased in alloys with
2 and 3 at.% Sn additions, revealing similar values. The 3 at.% Nb addition to the Sn-containing amor-
phous phase decreased as well all the T, T,, Ty, and T,, temperatures as AT and GFA; however, relatively
larger values of this parameters in alloys containing larger Sn content were preserved. In difference to the
previously published results, in the case of the amorphous alloys containing small Nb and Sn additions, a
noticeable amount of the quenched-in crystalline phases was not confirmed, at least of the micrometric sizes.
In the case of the alloys containing Sn or both Sn and Nb, two slightly different amorphous phase com-
positions were detected, suggesting separation in the liquid phase. Phase composition of the alloys deter-
mined after amorphous phase crystallization was similar for all compositions. The phases CugZr; CuTiZr,
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and Pd;Zr were mainly identified in the proportions dependent on the alloy compositions.
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microstructure, phase stability

1. Introduction

Bulk metallic glasses, requiring relatively low critical
cooling rates to form amorphous phase, remain very promising
materials for some applications (Ref 1). In recent years, a lot of
attention has been paid to exploring Ti-based crystalline alloys,
characterized by high specific strength and low density.
Another important property of the Ti alloys is their bio-
compatibility enabling applications in the field of medicine as
different types of implants (Ref 2-4). Ti-based BMGs have
potential to further expand into the medical application area,
because of mechanical properties better fitting to the parameters
required for the human implants than the crystalline alloys (Ref
5). Among different systems of multi-component glassy alloys,
TiZrCuPd alloys were identified as potentially bio-compatible
in spite of Cu content which remains cancerogenic in the
human tissues (Ref 1, 5, 6). The TigZr1oCuso_Pdigsy
compositions with Pd content of 10, 14, and 20 at.% were
first invented by Inoue group and later widely studied (Ref 7-9).
These BMGs reveal quite large supercooled liquid range AT
and glass forming ability (GFA). The amorphous phases reveal
a complex, multi-stage crystallization process, good mechanical
properties, and good corrosion resistance (Ref 7). Also, dL/
LodT formability in the homogenous deformation range near 7,
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temperature is as large as 1.3.107* [T~'] (Ref 10). Most of the
investigations concentrated on the properties of the composi-
tion with 14 at.% of Pd because of the high GFA and large
critical diameter of BMG available (Ref 5). To further increase
the critical diameter of the bulk glassy samples preserving bio-
compatibility, small amounts of Sn were added (Ref 5, 6), while
Nb additions were used for the improvement in mechanical
properties (Ref 11). As investigations of Zhu et al. (Ref 5, 6)
have shown, TiseZr;oCuzs_xPd;4Sn, alloys with additions of 2
and 4 at.% of Sn, could be fabricated as amorphous by the copper
mold casting, with diameters up to 12 mm. However, 6 at.%
addition of Sn lead to partially crystalline structure. In comparison
with the TigoZr;oCuszPd 4 BMG, 2 and 4 at.% Sn additions caused
an increase in 7, temperature and GFA, while the addition of
4 at.% Sn increased supercooled liquid range AT = T,—T,.
Except high strength in the range of 2000 MPa, the BMGs
containing 2 at.% of Sn revealed large 3.5% plastic strain in
relation to the branching of the shear bands (Ref 5). In the case of
similar additions of Sn replacing components of the TiZrCuPd
BMGs other than Cu, no improvement in GFA was noticed, except
when Ti was replaced by 2 at.% of Sn. Also no increase in strength
or plasticity was achieved (Ref 6).

The influence of the 1-5 at.% of Nb addition on the properties
of TiggZr19CusePd;4 glassy alloy was investigated by Qin et al.
(Ref 11). The Nb content increased both glass transition and
primary crystallization temperatures 7, and 7T\, but decreased
GFA, which resulted in precipitation of the composition-
dependent amount of the Pd;Ti phase. This result agreed with
the suggestion of Park et al. (Ref 12) that the addition of alloying
element of Nb type may induce local structure heterogeneity in
the amorphous matrix. Due to the crystalline nanoprecipitates,
Nb-containing BMGs revealed increased yield strength above
2050 MPa, high Young modulus of about 80 GPa, and plastic
strain of up to 8.5% (Ref 1). The Nb additions were also efficient
in improving corrosion resistance and bio-compatibility of the
bulk metallic glasses (Ref 13).
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The mechanism of crystallization of all investigated amor-
phous alloys is quite complex, characterized by two or more
exothermic effects on the DSC curves and may be modified by
small additions of Sn and Nb (Ref 5, 6). The particles quenched
in from the liquid phase or crystallizing in heating were
identified as CugZr;y and CuyTiz (Ref 5) or CugZrz, CuTi, and
PdTi, (Ref 6). In the case of the amorphous alloy containing
2 at.% of Sn, the activation energy for primary crystallization
increased to 334.3 kJ/mol from 287.6 for the TiyzgZr;oCuzgPd;4
amorphous alloy (Ref 6). As shown in (Ref 14), in case of the
TigoZr1oCuyoPdyo glassy alloy primary crystallization pro-
ceeded by diffusion of Ti and Cu between amorphous and
crystalline phases, the last ones formed through the stage of 1-
2 nm clusters growing to 5 nm crystallites identified as CugZrs,
Cu,Ti, and Cu;Pd phases.

In the present work, the influence of Sn and simultaneously
Sn and Nb additions to the amorphous alloys of the compo-
sition (Ti40Cll36_er10Pd14SnX)lgo_bey, with x = 2, 3 and
y =3 on the glass microstructure, thermally induced crystal-
lization process, and microhardness were investigated. As far as
we know, the influence of such simultaneous additions of Sn,
replacing Cu and Nb decreasing the content of all components,
has not been reported yet.

2. Materials and Methods

The nominal composition of the investigated alloys named
Pd-14, Sn-2, and Sn-3 was TiygCuzs_,Zr;oPd4Sn, (x =0, 2,
3 at.%), and for the alloys marked as Sn2Nb3 and Sn3Nb3
(Ti40Cu36,er10Pd14Snx)loo,bey ()/: 3 at%) The master
alloys were prepared by cold crucible levitation melting under
a high-purity argon atmosphere (Ref 15). The potentially
amorphous bulk samples were prepared by the cooper mold
injection casting method. The samples were 3 mm in diameter
and 40 mm in length. The structure and phase composition of
the alloys were determined with x-ray diffraction (XRD). The
XRD equipment D2 Phaser (Brukers) with XFlash detector was
used and Cu K, radiation applied. The Rietveld method was
used to calculate the amount of the main phases. After several
attempts, the most suitable background and texture formulas
were used. The microstructure was investigated with transmis-
sion (TEM), high resolution (HREM) and high-angle annular
dark-field scanning transmission (HAADF-STEM) electron
microscopy. The transmission electron microscope TECNAI
(FEI, G2 FEG/200 kV) equipped with the EDAX Phoenix
system for micro-analysis was used. The crystallization process
was characterized by differential scanning calorimetry (DSC).
The DSC experiments were performed in constant heating rate
modes with rates from 10 to 30 K/min, with the use of the
DuPoint 910 and F1 404 Netzsch DSC calorimeters. Glass
transition temperature T, was defined at the inflection point on
the DSC curves. The nanohardness (NHy) measurements may
be used for monitoring the local change of microstructure and
the corresponding mechanical properties. The UMIS indenter
with Vickers diamond tip was used for such measurements. The
applied load was 20 mN and at least 400 indentations were
made in each case. The measurements with increasing pene-
tration rates, 0.08 and 2.0 mN/s, were done with the 50 mN
load, each time in six different places.
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3. Results and Discussion

3.1 Amorphous Phase

The XRD patterns for the as-cast specimens shown in Fig. 1
are very similar, consisting mainly of one broad peak each. In
the case of the Pd-14 and Sn-2 alloys, the diffraction patterns
are typical of the fully amorphous alloys, while the XRD
patterns for the Sn-3, Sn-2Nb-3, and Sn-3Nb-3 alloys contain a
narrow intensity at the angle 20 of 40.5° suggesting melt-
quenched crystalline particles.

The peak position fits the CugZr; phase (Table 2) which
corresponds to phase identification in (Ref 6). Similarly, XRD
pattern of the Sn-2Nb-3 sample contains a narrow peak at the
angle of 41.45° suggesting participation of the nanocrystals in
amorphous microstructure, probably ternary CuTiZr phase
(Table 2).

The structure of the “as received” amorphous phase of the
alloys containing Sn was further studied with the TEM and
HAADF-STEM. Because the Sn-2 sample was completely
amorphous, only TEM micrographs concerning Sn-3 massive
sample which may contain crystalline particles are presented in
Fig. 2.

As is visible in the bright-field (BF) (Fig. 2a) and dark-field
(DF) (Fig. 2b) micrographs, no crystalline particles were
detected. The SAED pattern (Fig. 2c) is also characteristic of
the glassy phase. The composition-sensitive HAADF-STEM
method was used as well (Fig. 3a, b). The STEM micrographs
not only confirm differences in the foils’ thickness visible in the
BF micrograph but also reveal inhomogeneous composition in
micro-volumes of the amorphous phase of the “island” and
“valley”” morphologies. The average composition of the islands
in the case of the Sn-3 amorphous alloy was Tig.
Cuz0Zr;oPd;;Sn; (points 2, 4 in Fig. 3a), showing an increase
in the content of Pd by 3 at.%, compensated by the depletion in
Cu in comparison with the nominal composition. The remain-
ing components’ content was unchanged. The separating
valleys revealed the average composition TizoCugyeZr;sPdgSns
(points 1, 3 in Fig. 3a), depleted in Ti (10 at.%) and Pd (6 at.%)
and enriched in Cu and Zr. This result suggests melt separation
into two slightly different compositions like [(TiPd)so_.(-
CuZr)sg+.]o7Snz, probably also influencing thermal stability
against crystallization. A similar result was achieved for the
other amorphous alloys. As shown in Fig. 3b, for the Sn-2Nb-3
alloy the island composition agrees with the nominal compo-
sition, while the valleys are depleted in Ti and Pd and enriched
in Cu and Zr, which confirms lack of the Nb influence on the
component separation.

3.2 Thermally Induced Processes and Glass Forming Ability

The DSC curves corresponding to the glass transition and
crystallization of the as-cast BMGs were measured at the
constant heating rate of 30 °C/min and are shown in Fig. 4. The
glass transition and primary crystallization temperature 7, and
T, as well as supercooled liquid temperature range AT = T, —
T, are given in Table 1. All samples exhibit a clear endothermic
heat event characteristic for glass transition, followed by the
exothermic peaks resulting from the glass crystallization. The
crystallization process consists of two or three peaks, revealing
sensitivity to the small Sn and Sn+Nb additions and indicating
complexity of the crystallization.
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Fig. 1 XRD patterns of the amorphous alloys: (Pd-14) TiggCuzsZrioPd 4, (Sn-2) TiggCuz4ZrioPd14Sny, (Sn-3) TiggCuzz3ZrioPd 4Snz, (Sn-2Nb-3)

(Ti40CU34Zr10Pd14sn2)g7Nb3, and (Sn-3Nb-3) (Ti40Cll33Zr10Pd14sn3)97Nb3

Fig. 2 TEM micrographs of Sn-3 BMG: (a) bright-field (BF), (b) dark-field (DF), and (c) selected area diffraction (SAED) pattern

As is visible from Table 1, as a result of the increase of Sn
content to 3 at.%, glass transition temperature 7, increased by
9 °C, T, temperature increased by 22 °C, and also supercooled
liquid range AT increased by 12 °C. The 3 at.% addition of Nb
generally decreased temperatures 7, and T, and AT range but in
different ways. T, temperatures were decreased by about 5.5 °C
in both Sn-2Nb-3 and Sn-3Nb-3 alloys, and 7, temperature was
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decreased by 11 °C in the case of Sn-2Nb-3 but only by 5 °C in
case of the Sn-3Nb-3 alloy, preserving higher crystallization
temperature T, and the largest supercooled liquid temperature
range for the alloys containing 3 at.% addition of Sn. As is also
visible in Fig. 4, the 2 at.% Sn addition caused the third
crystallization effect to appear at 578 °C in place of the single
one. The 3 at.% Nb addition to this composition further
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Fig. 3 TEM microstructure and (HAADF-STEM) image with marked points of the chemical composition analyses of (a) Sn-3 BMG and (b)
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Fig. 4 Comparison of the DSC curves for the bulk amorphous
samples of different compositions; heating rate 30 °C/min

increased this effect. However, the observation does not
concern Sn-3 and Sn-3Nb-3 alloys revealing essentially single
but widened secondary exothermic effects of crystallization. All
these results show the independent and opposite influence of
the Sn and Nb additions on the glass transition and the
amorphous phase crystallization temperatures but a similar
influence of the additions on the second step of the crystal-
lization. It should be noted, however, that crystallization
enthalpy was only slightly influenced at the primary crystal-
lization step and remained independent of the number of further
thermal events related to the crystallization (Fig. 4).

For the calculation of the GFA, the formula 7\,/(T,+77 ) was
used. The slower heating rate of 10 °C/min was used to
determine melting and liquidus temperatures T3, and 71 of the
alloys which are shown in Fig. 5 and summarized in Table 1. It
is visible that the complex thermal effect of melting in case of
the alloy Pd-14 Sn and Nb-less was replaced by one
endothermic effect in alloys with Sn and Nb additions
(Fig. 5; Table 1).

Similarly to the observations made for the crystallization
process, an increase of the Sn content led to the increase in T,
and 71 temperatures, while the Nb addition did not significantly
influence T, temperature but decreased 77 temperature, also
decreasing the 7y — Ty, temperature range (Table 1). As a
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result, GFA increases with the increase of the Sn addition, and
Nb addition decreases GFA but roughly proportionally to the
values resulting from the Sn content.

3.3 Crystallization of the Amorphous Phase

TEM and HREM microstructures of the Sn-2 bulk sample
annealed at 7, by 360 s are presented in Fig. 6 and 7,
respectively. Both TEM micrographs and SAED pattern show
nanocrystals in the amorphous phase together with large areas
of a different, dark contrast. HREM micrograph in Fig. 7
confirms phase separation, as shown in Fig. 3. After annealing,
the minor amorphous phase is not continuous as in Fig. 3 and
partially remains still amorphous. The phase compositions of
the alloys after the crystallization completed at 700 °C
determined with XRD are shown in Fig. 8.

In that figure, the XRD patterns of the alloys with the 2 and
3 at.% of Sn are compared with those of the Pd-14 alloy and
Nb-containing samples. As is clearly visible, the sequence of
the main peaks does not change with the additions, suggesting
crystallization of the same phases. However, while comparing
the shape of the peaks it may be noticed that they are narrow in
case of the Pd-14 sample and much broader in case of the Sn-2
and Sn-2Nb-3 samples. The broadening decreases further in
case of the Sn-3 and Sn-3Nb-3 samples. This suggests that the
crystallizing phases in case of the Sn as well as Sn and Nb
additions are in dimensions of nanoparticles. Also the shape of
the XRD intensity in case of the Sn-2 sample, in the 20 angle
from 36 to 46°, suggests that a large part of the amorphous
phase was retained. This agrees well with the HREM
microstructure presented in Fig. 7. An increase in the Sn and
Nb content decreased this effect (Fig. 8). Phases giving the
most intensive peaks in the XRD were identified as CugZr;,
CuTiZr, and Pd;Zr. There were also noticed minor amounts of
the PdTi phase and MTi,-type phases (M = Cu, Zr). The
identified phases are marked in Fig. 8. For the CugZr;
orthorhombic phase, the lattice parameters were determined
to be a=0.8147, b=0.824, ¢=0.997 nm and for the
tetragonal cell of the CuTiZr phase a = 0.306 and
¢ =1.10 nm. The Pd;Zr tetragonal phase with fcc structure
had lattice parameters a = 0.562 and ¢ = 0.923 nm (Table 2).
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Table 1 Comparison of the characteristic temperatures of transformations, heating rate 30 °C/min, 7,—glass transition
temperature, AT=T, — T,, T.—peak onset point, T,,,—melting temperature, Ty —liquidus temperature, GFA—glass forming

ability
Characteristic temperatures, °C (onset point meth.)
Alloy (rod ¢3 mm) T, T, AT Tm Ty, T, — T GFA
Pd-14 404 450 47 832 897 65 0.391
Sn-2 411 466 55 850 892 42 0.400
Sn-3 413 472 59 860 899 39 0.409
Sn-2Nb-3 406 455 49 850 890 40 0.395
Sn-3Nb-3 407 467 60 858 889 31 0.402
DSC
05:eg eating 10Kimin ComplexPeak Complex Peak:
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Fig. 5 Comparison of the DSC curves presenting melting of the investigated alloys; heating rate 10 °C/min

—————— 100 nm

Fig. 6 TEM microstructure of (Sn-2) sample annealed at 455 °C: (a) bright-field (BF), (b) dark-field (DF), and (c) selected area electron

diffraction (SAED) pattern

The multi-phase Rietveld analysis was used for the deter-
mination of the volume fractions of the three dominating
phases. The possible small amounts of Ti-rich phases were
ignored in calculations. Due to this analysis, the volume
fraction of the CugZr; phase increases with the increasing
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content of Sn from 61 to 72 vol.%, whereas the volume fraction
of the CuTiZr phase decreases from about 40 to 30 vol.%.
Samples containing Sn and Nb show the same volume fractions
of the Pd;Zr phase (Table 2). Comparing above results with the
phase composition of the Pd-14 alloy, it may be concluded that
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the additions of Sn and Nb increase the proportion of the
CugZr; to CuTiZr phase from nearly 1 to about 3. The Pd;Zr
phase content is just slightly decreased (Table 2).

3.4 Nanohardness of the Alloys

Good mechanical properties of the amorphous alloys are
essential for their application (Ref 11). Table 3 and Fig. 9

Fig. 7 HREM microstructure of (Sn-2) sample annealed at 455 °C

present the results of the nanohardness tests for the amorphous
and fully crystalline alloys. The size of the samples used for the
tests was 3.0 mm in diameter and 5 mm in height. The
amorphous structure of the bulk samples for the hardness tests
was confirmed separately by XRD. The nanohardness of the
amorphous samples Pd-14 and Sn-3 was approximately 11 GPa
and the elastic modulus 180 GPa, both values decreasing for
the Sn-2 alloy but in the range of experimental error. The values
of NHy and E modulus were similar for the amorphous Sn-
2Nb-3 sample but increased in case of the Sn-3Nb-3 amor-
phous alloy containing 1 at.% more Sn (Table 3; Fig. 9).
Samples’ nanohardness and elastic modulus after crystallization
(Table 3; Fig. 9) remained the same in case of the Pd-14, Sn-
2Nb-3, and Sn-3-Nb-3 alloys, about 16 GPa and 270 GPa,
respectively, slightly lowered for the Sn-2 and clearly increased
for the Sn-3 alloys.

Figure 10 shows SEM micrographs of the indentation marks
for the Pd-14 (a-c) and Sn-2 (d-f) BMGs with the load
increasing from 20 to 50 mN and the indentation rate changing
from 0.08 to 2.0 mN/s. The difference in the indents’ sizes
caused by an increase of the load is noticeable as well as the
ripples resulting from the pile-up of the shear bands around
each indent in the amorphous phase. The number of the pile-
ups increases with increasing loading rate but is smaller for the
Sn-2 alloy. As the number of pile-ups indirectly reflects the
number of shear bands formed, it may be concluded that the
number of the shear bands increased with the increase of the
loading rate (Ref 16) and was lower for the softer alloy Sn-2
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Fig. 8 XRD patterns after crystallization: (Pd-14) TisoCuszeZrioPdis, (Sn-2) TiggCussZrioPd4Sn,, (Sn-3) TiggCuzzZrioPdi4Snz, (Sn-2Nb-3)

(Ti40Cu34Zr1OPd14Sn2)97Nb3, and (Sn-3Nb-3) (Ti40Cu33Zr1oPd14Sn3)97Nb3
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Table 2 Volume fraction and crystal parameters of the phases after crystallization of the samples, calculated by the mul-
ti-phase Rietveld analysis

CugZr; CuZrTi Pd;Zr
Volume Space Volume Space Volume Space

Sample fraction, %  group Unit cell fraction, % group Unit cell fraction, % group Unit cell
Pd-14 50 Pnma & =0.786 nm 45 14/mmm a =0.306 nm 5 P63/mmc  a = 0.562 nm
Sn-2 61 b =0.824 nm 36 ¢ =1.10 nm 3 ¢ =0.923 nm
Sn-3 72 ¢ =0.997 nm 26 2

Sn-2Nb-3 75 23 2

Sn-3Nb-3 63 35 2

Table 3 Comparison of the nanohardness and elastic modulus of the amorphous and crystalline samples Pd-14, Sn-2,
and Sn-3 under a load of 20 mN

Amorphous, GPa

Crystalline, GPa

BMG NHy (20 mN) E (20 mN) NHy (20 mN) E (20 mN)
Pd-14 11.35£1.2 178 =19 1559+ 1.6 270430
Sn-2 9.35+£1.6 141 £25 1448+ 1.6 265145
Sn-3 1125+ 1.4 175 £25 17.08 £1.7 282+43
Sn-2Nb-3 9.00£1.6 138 £25 15.50£1.1 270+ 36
Sn-3Nb-3 12.60+1.2 183 £21 1620+ 1.2 273 +£32

analysis revealed that the segregation of the components does

nHV [MPa] ” o

not concern Sn and Nb additions. Similar amorphous phase

Sn3Nb3 separation was observed earlier in case of the amorphous alloy

i of the composition Pd-10 (Ref 10). From the results of DSC

sn2Nb3 analysis, increasing the Sn addition further increases glass

transition T, primary crystallization T,, melting Ty, and

‘ liquidus 77 temperatures. As a result, supercooled liquid range

3| 17 AT largely increases while the GFA increases slightly. Further

Nb addition decreased all temperatures Ty, T, Ty, and Ty, as

Sn-2 well as AT and GFA parameters, but preserved tendency for

‘ their increased values for the larger 3 at.% Sn additions. This

Pd-14 | suggests independent influence of both types of atoms on the

M amorphous 16

M crystalline

Fig. 9 Comparison of the NHy histogram for the bulk amorphous
samples and crystalline samples of different compositions

(Table 3), also revealing a larger size of the indentation marks
(Fig. 10d-f) which agrees well with the lower nanohardness
measured (Table 3; Fig. 9).

4. Summary

The XRD investigations of the amorphous phase suggest an
increased tendency for the formation of crystals quenched in
from the liquid phase in case of the composition containing
3 at.% Sn and Nb additions. This was however not confirmed
by the TEM observations and may concern a very small amount
of the particles or surface oxides. What was shown by the TEM
and HAADF-STEM methods was amorphous phase separation
in the liquid state. The HAADF-STEM phase composition
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thermophysical properties of the amorphous phase of the
investigated alloys. The decrease of GFA together with the Nb
additions is in agreement with literature (Ref 11); however, the
strong tendency for the presence of the quenched-in crystalline
particles in the amorphous phase in case of the (Ti-
CuZrPd),o9_,Nb, amorphous alloys was not confirmed (Ref
11). It may be assumed that the small Sn additions increasing
GFA decrease clustering and nano-crystallization proceeding
together with the solidification of the amorphous phase. As was
shown by the isothermal nano-crystallization at 7, temperature,
two separated slightly different amorphous phase compositions
existed, one partially crystallized and the other remained
amorphous. CugZr,, one of the three main crystalline phases
identified after crystallization from the amorphous phase, is
well confirmed in literature (Ref 6). The phases identified in
this paper as ternary CuTiZr and Pd;Zr were not mentioned in
the literature, but the binary phase CuTi was observed (Ref 6).
From the Rietveld analysis, it may be concluded that the Sn and
Nb additions do not influence the Pd;Zr phase stability but
increase the amount of CugZr; phase on the cost of the content
of CuTiZr phase.

The amorphous phase nanohardness and elastic modulus E
were decreased with the Sn 2 at.% addition by 2 GPa and 40
GPa, respectively, and were not influenced by further Nb
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Pax= 20 mN

(e) Prax=50 mN
V;=0.08 mN/s

(c) P ax=50 mN
V;=2.0 mN/s

P.x=50 mN
V= 2.0 mN/s

Fig. 10 SEM micrographs of the indents of the BMG Pd-14 (a) and Sn-2 (d) under 20 mN load and Pd-14 (b, c) and Sn-2 (e, f) under 50 mN

load; two different loading rates of 0.08 and 2.0 mN/s, respectively

addition. In contrast, 3 at.% Nb addition to the Sn-3 alloy
slightly influenced both nanohardness and elastic modulus E.
The nanohardness and elastic modulus of all the samples
increased after crystallization. As in the amorphous alloy, the
addition of 2 at.% Sn caused a decrease of the nanohardness of
the Sn-2 alloy in comparison with the Pd-14 alloy, while 3 at.%
addition of Sn increased it, in both cases by about 1 GPa. It
should be noticed however that Sn-2 alloy retained after
crystallization a meaningful amount of the amorphous phase.

5. Conclusions

e Similarly to the previously observed amorphous phase
separation in the case of the TigoCuzeZrioPd;o alloy, in
case of the alloys containing Sn or Sn and Nb additions
two slightly different amorphous phase compositions were
observed. The composition modifications may be pre-
sented by the formula [(TiPd)so_,(CuZr)sg+.]o7(Sn,Nb);.

e Small 2 and 3 at% additions of Sn to the Tig.
Cuzg_.ZrioPd 4Sn, amorphous alloy increased glass tran-
sition (T,), primary crystallization (T,), melting, and
liquidus temperatures as well as supercooled liquid range
and GFA.

e The nanohardness and elastic modulus decreased with the
2 at.% Sn addition and for the alloy with the 3 at.% addi-
tion of Sn remained similar to characterizing Pd-14 amor-
phous phase.

e The 3 at.% Nb additions to the Sn-containing amorphous
alloys decreased T,, Ty, Ty, and T, temperatures as well
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as AT and GFA, however preserved larger values for the
3 at.% Sn-containing amorphous alloy.

¢ The Rietveld analysis shows that the Sn and Nb additions
do not influence Pd;Zr phase stability but increases the
amount of CugZr; phase on the cost of the content of Cu-
TiZr phase.

e It was not confirmed that small Nb additions to Tigq.
Cuse_,Zr1oPd4Sn, alloys led to the noticeable amount of
the quenched-in crystalline particles or crystallized phases
at least of the micrometric dimensions.
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