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Accurate prediction of the mechanical properties in quenched steel parts has been considered by many
recent researchers. For this purpose, different methods have been introduced. One of them is the quench
factor analysis (QFA) which is based on continuous cooling rate during quenching. Another method for
prediction of the mechanical properties in heat-treated alloys is artificial neural networks (ANNs). In the
present research, QFA and ANN approaches have been used to predict the hardness of quenched steel parts
in several different quench media. Then for the two methods, the predicted values have been compared with
the experimental data. Results showed that the two methods are suitable in prediction of the hardness at
different points of the quenched steel parts.
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1. Introduction

Prediction of mechanical properties such as hardness after
heat treatment of alloys can help engineers in determination and
designing of quenching systems by which the desired properties
are to be obtained. There are several methods in dealing with
prediction of mechanical properties such as strength in heat-
treated alloys. One of the methods has been developed for
prediction of strength in quenched-tempered aluminum alloys.
The technique is based on the value of average cooling rate at
the critical temperature range (between 400 and 290 �C for
aluminum alloys) (Ref 1). The average cooling rate is
determined by dividing the 200 �F (93 �C) temperature differ-
ence by the corresponding time difference, in seconds. It is
known the strength of the alloys is increased when an increase
in average cooling rate is occurred (Ref 1).

Another important method in dealing with the effect of
cooling rate on mechanical properties such as hardness in
quenched-tempered aluminum alloys and quenched steel parts
is quench factor analysis (QFA). The method was first
developed by Evancho and Staley (Ref 2) in order to predict
the mechanical properties of quenched-tempered aluminum
alloys. By combining the cooling curves at each point and
Time-Temperature-Property (TTP) curve, desired property is
calculated. In addition to aluminum alloys, QFA has been
successfully applied to predict the hardness of some quenched
steel parts (Ref 3-7). For plain carbon steels such as 1045 steel,
it was shown that the accuracy of the method for accurate

prediction of hardness is reduced with reducing hardness
(Ref 7). Also Kianezhad and Sajjadi (Ref 8) developed a
modified method from QFA and improved the hardness
prediction of a quenched steel part.

Another method for the prediction of mechanical properties
of heat-treated alloys is artificial neural networks (ANNs).
Implementing ANNs has introduced a new methodology in
several applications of engineering materials including predic-
tion of mechanical properties of metals and alloys. Prediction of
fatigue crack growth rates (Ref 9), hardness in metal matrix
composites (Ref 10), tensile behavior of carbon steels (Ref 11),
and formability analysis (Ref 12) are some of the applications
of neural computations.

In this paper, the accuracy of QFA in the prediction of
hardness at different points of quenched CK60 steel parts was
evaluated. Moreover, based on the average cooling rate at the
critical temperature range and using the ANNs, the hardness
related to each cooling rate was calculated. At the end, accuracy
of the two methods was compared.

2. Experimental Procedure

In the current study, samples of CK60 steel with various
shapes and thicknesses were used. The chemical composition
of the alloy used in this research was determined by optical
emission spectroscopy (OES).

Longitudinal holes were drilled in the samples with different
shapes at different points of the samples, and K-type thermo-
couples were placed in the holes to measure the temperature
variations of the points during quenching. Figure 1 shows a
schematic illustration of a cylindrical sample and the K-type
thermocouples inserted at different points of the sample. In
order to prevent the water penetration into the holes, the holes
were filled with fireproof gypsum. The samples were
austenitized at 830 �C for 50 min and then quenched in
different environments, such as water and oil with different
temperatures, soapy water, etc. Cooling curve for each point of
the samples was determined using a data acquisition set
(Advantech-USB4718) capable of recording ten different
temperatures per second. In order to ensure the accuracy of
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the results, each experiment was repeated three times. The
hardness of each point was measured on Vickers scale (HV30)
using the hardness tester set model Avery-Dennison. To study
the relation of microstructure to hardness, the samples were
ground, polished, and then etched by Nital 2% etchant. Finally,
the microstructure of each point of the quenched samples was
studied using optical microscopy.

3. Results and Discussion

3.1 Quench Factor Analysis (QFA)

The chemical composition of the steel used in this study, as
determined by OES, is C = 0.64, Si = 0.27, Mn = 0.9,
P = 0.015, S = 0.011, and Fe = 98.16 wt.%. As mentioned
before, QFAwas first developed by Evancho and Staley (Ref 2)
in the early 1970s to predict the effect of continuous cooling
rate on the yield strength and corrosion resistance of wrought
aluminum alloys. The technique provides a single value that
correlates the cooling rate and cooling curve to the transfor-
mation rate of a particular alloy being quenched (Ref 13).

The basic theory for QFA is referred to the Johnson-Mehl-
Avrami-Kolmogorov (JMAK) equation as shown in Eq 1
(Ref 14):

X ¼ 1� exp �ktð Þn; ðEq 1Þ

where X is the transformed volume fraction, n is Avrami
exponent (constant), and k is a temperature-dependent constant.

For isothermal precipitation kinetics for aluminum alloys,
Evancho and Staley (Ref 2) showed this equation can be
re-written as below:

X ¼ 1� exp
�t
k

� �
; ðEq 2Þ

where t is time (second), and the value of k is estimated from
the following equation developed by Evancho and Staley
(Ref 2):

k ¼ CT

k1
¼ �k2exp

k3

RT k4 � Tð Þ2

 !
exp

k5
RT

� �
; ðEq 3Þ

where CT is the critical time required to form a constant amount
of diffusion phases (ferrite or pearlite) (s), k1 is a constant
which equals to the natural logarithm of the untransformed
fraction (1—the fraction defined by the C-curve) or equals to
�0.00501, k2 is a constant related to the reciprocal of the num-
ber of nucleation sites (s), k3 is a constant related to the energy
required to form a nucleus (J/mol), k4 is a constant related to
the solvus temperature (for steels equal to Ar3 temperature line
versus K), k5 is a constant related to the activation energy for
diffusion (J/mol), T is temperature (K), and R = 8.3143
(J/mol K) (Ref 2, 15, 16).

The values from k2 to k5 define a C-curve showing TTP
relationship similar to the TTT curve for steels (Ref 3, 17). All
of the constants are calculated using iteration method. By fitting
cooling curve of each point of specimen on the C-curve, the
corresponding hardness of the point is obtained. In order to use
this technique, first the incremental quench factor (q) is
calculated for each time interval in the cooling process
according to Eq 4 (Ref 17):

q ¼ Dt
CT

ðEq 4Þ

The incremental quench factor represents the ratio of
holding time of steel at a particular temperature to the time
required for 0.5% transformation at that temperature (Ref 3).
The value of cumulative quench factor is then calculated by
summation of the qi over the critical temperature range
(between Ar3 and Ms for steels) according to Eq 5 (Ref 3):

Q ¼
X

qi ¼
XAr3
Ms

Dt
CTi

ðEq 5Þ

Figure 2 schematically shows the calculation of Q value.
The quench factor can be related to the hardness of as-quenched
steel according to Eq 6 (Ref 3):

P ¼ Pmin þ Pmax � Pminð Þ exp k1Qð Þ; ðEq 6Þ

where Pmin, and Pmax. are the minimum and maximum hard-
ness of steel, as measured after cooling in furnace and cold
brine, respectively, k1 is ln(0.995) = �0.00501, and Q is
quench factor.

Table 1 represents k2 to k5 constants related to CK60 steel.
Also, Fig. 3 shows the C-curve for this steel which was
obtained by placing different temperatures between AC3 and
Ms at CT equation. As can be seen from the figure, the critical
temperature range (which the sensitivity of the alloy to create
the diffusional phases such as pearlite is maximum) for the
CK60 steel is between 450 and 650 �C.

Fig. 1 Schematic of round samples and K-type thermocouples at
different points of the sample
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Figure 4 shows some cooling rate curves related to the
samples cooled in different environments. The accuracy of the
model has been evaluated in Fig. 5, where the experimental
results are illustrated versus the model prediction. The
deviation from continues line, which represents the accuracy
of the model, increases when the hardness declines. Thus, the
model works much precisely at higher values of hardness.
Figure 6 shows microstructures of different points with differ-
ent hardness values. The white areas in the figure represent the
martensitic phases, while the black areas represent the pearlitic
structure. Depending on the cooling rate, the amount of the
phases formed in the samples is different. The amount of each
phase was determined using image analyzer and is summarized
in Table 2. It can be seen from the Table that there are different
phases in quenched steel parts. The results showed that the
accuracy of the method in accurate prediction of the hardness is

limited to the dominant structure. The dominant phase in the
steel is martensite. Thus, the method is proper for prediction of
accurate hardness in steels at specific ranges of the hardness.

4. Artificial Neural Networks (ANNs)

ANN method is considered as a useful soft computational
tool, which is used to simulate a wide range of different
engineering cases with high prediction accuracy. Neural
network has inspired by human nervous mechanism and has
the power of learning directly by examples without any
predefined relation. In addition, ANNs can perform the non-
linear computations when an exact analytical solution is very
complicated to achieve (Ref 18). A neural network is a system
consisting of many linked units called neurons or nodes. Each
neuron in neural network receives input from several others.
The neural system generally consists of three parts connected to
each other: input layer, hidden layer, and output layer. The
input layer includes the primary data. The primary information
is entered to the input layer. No processing operation happens
on this layer. In the hidden layers, training and testing actions
take place. It is so-called because its outputs are invisible. The
number of neurons should be determined according to the

Fig. 2 Calculation of the Q value

Table 1 CK60 steel C(T) curve coefficients

K2, s K3, J/mol K4, K K5, J/mol

0.037 345 1095 47500

Fig. 3 Schematic diagram of TTP curve for CK60 steel

Fig. 4 Cooling rates curves related to different environments
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necessities of the problem in the layer of the neural networks.
Finally, the processed data present in the output layer.

In this study, the feed-forward back-propagation type of
ANNs is used. Back-propagation algorithm has an outstanding
capability of training networks in order to find logical relation
between inputs and outputs. The tangent sigmoid transfer
function (tansig) for the hidden layers and linear transfer
function (purelin) for the output layer were utilized. Different
structural combinations for hidden layers were examined, and
finally, the architecture of two hidden layers with eight and
three neurons was chosen. Multi-Layer Perceptron neural
network uses a gradient descent algorithm to minimize the
mean square error between the computed outputs and the
targets (Ref 19). The input data were normalized before
training, and at last for representing the actual hardness and
calculating accurate errors, denormalization was carried on.
Normalization action means putting the datasets in a specific
range so that it can give off maximum sensitivity and
performance in training, regarding the training function of
neural computation.

First step of the calculation before using the two mentioned
approaches is to standardize all the input data to values in
special range, and the last step is the de-standardization of
outputs. The first action is done to assure having sensitivity and
accuracy for network, and the purpose of the second one is to
calculate the actual desired values and achieving real errors. In
this study, standardization was carried out using the below
formulation which puts data in a range with mean and standard
deviation of 0 and 1 (Eq 7), respectively.

X ðnormalÞ ¼ X ðactualÞ � X ðmeanÞ
X ðSTD� DEVÞ ; ðEq 7Þ

where X (actual) is the actual parameter, and X (mean) and X
(STD-DEV) are the mean values of all data and standard
deviation of actual parameters, respectively, which produce X
(normal) or final standardized parameter as an input to the
ANN structure.

In order to predict the hardness for each point of the heat-
treated samples, the average cooling rate in the critical
temperature range at each point of the samples was used. For

steels, the critical temperature ranges from Ac3 to Ms. There are
two categories of data: one for the network learning called
training data, and the other for evaluating the network called
testing data. First, the network was trained by a fraction of
experimental values (60 numbers) and then, as a result of neural
computation, an assessment between experimental and calcu-
lated hardness was done. Figure 7 shows the neural network
results and the actual trends of the hardness as a result of
changing the average cooling rate at a specific range with an
acceptable fitting between data. Following this step, a regres-
sion plot of harness values was drawn. The regression plot
showed the high degree of accuracy of neural network in
predicting the experimental results in all ranges of cooling rates

Fig. 5 Variation of actual hardness versus predicted hardness of
different points determined by QFA

Fig. 6 The microstructures related to the different points with
different hardness values
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(Fig. 8). It should be mentioned that the regression is
R2 = 0.9907 for the curves.

The results show that the accurate prediction of the hardness
in whole range of the hardness and different structures can be
achieved using ANNs. Also, unlike the QFA in which the
accurate prediction of the hardness is limited to the dominant
phase (martensite) formed at the steel, the ANNs are able to
predict properties at different phases formed in quenched steel
parts.

5. Conclusions

In this research, the accuracy of two different methods for
prediction of hardness of as-quenched CK60 is evaluated. It
was shown that

(1) The accuracy of the QFA method in prediction of the
hardness at quenched CK60 steel parts is limited, and
accuracy of the method is reduced by reducing the
hardness.

(2) Based on the C-curve related to CK60 steel, the critical
temperature range for the CK60 steel is between 450
and 650 �C.

(3) The ANNs are a prominent method for accurate predic-
tion of hardness in steel parts.

(4) Unlike QFA, the ANN method can predict the accurate
hardness in whole range of hardness and different phas-
es which formed in quenched steel parts.
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