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As the fabrication and characterization of cellular lattice structures are time consuming and expensive,
development of simple models is vital. In this paper, a new approach is presented to model the mechanical
stress-strain curve of cellular lattices with low computational efforts. To do so, first, a single strut of the
lattice is modeled with its imperfections and defects. The stress-strain of a specimen fabricated with the
same processing parameters as those used for the lattice is used as the base material. Then, this strut is
simulated in simple tension, and its stress-strain curve is obtained. After that, a unit cell of the lattice is
simulated without any imperfections, and the material parameters of the single strut are attributed to the
bulk material. Using this method, the stress-strain behavior of the lattice is obtained and shown to be in a
good agreement with the experimental result. Accordingly, this paper presents a computationally efficient
method for modeling the mechanical properties of cellular lattices with a reasonable accuracy using the
material parameters of simple tension tests. The effects of the single strut’s length and its micropores on its

mechanical properties are also assessed.

Keywords cellular lattice structures, elastic modulus, mechanical
behavior, selective laser melting, struts’ imperfections,
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1. Introduction

In recent years, lightweight metallic foams have been
greatly used in high-performance load bearing applications. But
irregular and inhomogeneous cell architecture of such materials
leads to overly conservative design criteria, which makes them
unsuitable to be used in several applications such as aerospace
structures (Ref 1, 2). It is shown that it is possible to design
cellular lattice structures which offer greater strength- and
stiffness-to-weight ratios than those of traditional foam mate-
rials (Ref 3). Since the microstructure of such materials is
regular, their mechanical properties can be adjusted to what is
needed too. Until now, several architectures have been studied
for cellular materials including octet truss (Ref 4), pyramidal
(Ref 5), triangulated planar truss faces (Ref 5), BCC (Ref 6),
BCC-Z (Ref 6), and F2FCC (Ref 6). It is demonstrated that
‘angle-ply’ lattices, whose struts are oriented in 45°, offer nearly
optimized configurations under bending, compression, and
shear loadings. Accordingly, BCC and BCC-Z microstructures
have attracted a great interest. The repeating unit cells of these
two architectures are shown in Fig. 1.
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Several attempts have been made to fabricate and to
characterize the mechanical behavior of cellular lattice struc-
tures in the literature (Ref 1, 7-12). Since fabrication and
characterization of cellular lattices are time consuming and
expensive, predicting the mechanical properties of lattices
before fabrication is of great importance. To this end, several
models were developed using beam theory (Ref 4, 13),
continuum element-based finite element method (Ref 14), and
beam element-based finite element method (Ref 5, 13-16).

One of the most important difficulties for modeling the
mechanical behavior of these lattices is existence of imperfec-
tions and defects in lattices’ struts. Micro-computed tomogra-
phy images from the micro struts of cellular lattices show that
the struts’ diameters are not uniform along their length. Also,
some micro (nano) pores and un-melted or semi-melted
powders may exist in struts. These imperfections and defects
can severely affect the mechanical properties of lattices.
Another important difficulty which may arise in modeling is
to find suitable material parameters to be attributed to the bulk
material. The mechanical properties of the lattices’ struts are
influenced by the processing parameters in fabrication process
(for example, laser parameters of the selective laser melting
machine (Ref 17)). Accordingly, these properties can be sharply
different from those of the raw powder used for fabrication (Ref
18).

Several attempts have been made to compel the above-
mentioned difficulties. Tsopanos et al (Ref 17) fabricated some
316L stainless steel micro-lattice structures using selective laser
melting method. To find suitable stress-strain response of the
bulk material, they also fabricated some microstruts using the
same processing parameters as those used for fabrication of the
lattices and tested them in compression. The obtained elastic
modulus of the strut was just about 3% of the bulk value which
was far from the real elastic modulus of the strut. They
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Fig. 1 The repeating unit cell architecture of (a) BCC and (b) BCC-Z lattices

corrected the obtained stress-strain curve of the strut by
adjusting the elastic modulus of the lattice in a finite element
analysis. This method was previously suggested by Mines
(Ref 8). They then used this corrected stress-strain curve as the
bulk material for modeling the mechanical behavior of the
lattices. As the stress-strain response of the strut was obtained
in tension, it did not include buckling of the strut. Labeas and
Sunaric (Ref 6) modified the corrected stress-strain curve of the
lattices’ struts presented in (Ref 8, 17) to include the effects of
possible buckling in vertical struts. They used this modified
stress-strain curve to predict the mechanical behavior of the
lattice structures with three different cell topologies. Gumruk
and Mines (Ref 19) realized that the difference between the
measured elastic modulus and the real value reported in (Ref 8,
17) is due to slip between the strut and the grippers of a testing
machine. To overcome this problem, they designed new
grippers with the ability of eliminating the slip. They used a
rapid araldite adhesive to glue a clip gage to the strut to
measure the exact displacement of the strut between the clip
gages. Using this method, they obtained the stress-strain curve
of the struts and used them to simulate the mechanical
compression of two lattices utilizing both theoretical and finite
element analyses. Smith et al (Ref 20) used the same stress-
strain response to predict the mechanical behavior of BCC and
BCC-Z lattices using beam and solid finite element models. In
the above-mentioned modeling approaches, no geometrical
irregularities are needed to be included in the model because
the measured stress-strain curve of the strut already represents
the effects of imperfections within the microstruts (Ref 19). To
consider variations in the struts’ diameter along their length,
Campoli et al (Ref 21) developed some beam finite element
models to study the elastic behavior of cellular lattices
fabricated by selective laser melting and electron beam melting.
Using statistical models, they implemented irregularities caused
by the manufacturing process including structural variations of
the architecture. Karamooz Ravari et al (Ref 22) proposed beam
and solid finite element models to predict the mechanical stress-
strain curve of polylactic Acid BCC-Z cellular lattice structures
fabricated by fused deposition modeling. Their model was
capable of considering the effects of variations in the struts’
diameter along their length.

To the authors’ information, there is no modeling approach
in which the base material of the lattice’s struts and the
imperfections are directly taken into account. In this paper, a
new method is developed to obtain the stress-strain curve of a
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lattice structure using just the stress-strain response of the
simple tension sample fabricated by the same processing
parameters as those used for the lattice. To this end, first, a
single strut of the lattice is modeled with its imperfections using
the stress-strain curve of the base material in simple tension to
obtain stress-strain response of that single strut. Then, this
stress-strain response is attributed to the bulk material of the
lattice in a unit cell model without any kind of imperfections
and defects. To account for the material concentration in the
vicinity of vertices, a higher elastic modulus is used in regions
near the vertices. The obtained stress-strain curve of the lattice
is shown to be in a good agreement with the experimental one.
The elastic modulus of the lattice is obtained to be about
14.31 MPa, which is 90.87% of the experimental one, and the
collapse strength is obtained to be nearly 0.446 MPa, which is
about 17.14% higher than the experimentally measured value.
At the end, the effects of single strut’s length and its micropores
on the mechanical properties of the lattice are assessed. The
results show that the strut’s length does not significantly affect
the mechanical properties while the effects of micropores are
crucial. Based on the obtained results, this paper presents a
computationally efficient method for simulating mechanical
properties of cellular lattice structures using just the stress-
strain curve of simple tension samples.

2. Modeling Procedure

There might be several kinds of defects in lattices’ struts such as
variable cross-sectional area along their length, wavy struts, and
micro (nano) pores. These defects severely affect the mechanical
properties of a lattice structure. Li et al (Ref 23) studied the effects
of cell shape and variations in strut’s cross-sectional area on the
elastic properties of three-dimensional open-cell foams. They
showed that these imperfections have a significant influence on the
mechanical properties of foams. Jang et al (Ref 24) found out that it
is necessary to consider material distribution in the ligaments for
obtaining nearly accurate results.

Figure 2 shows deformed configuration of a lattice structure
fabricated by selective laser melting from 316L stainless steel.
In this figure, two kinds of defects i.e., wavy struts and variable
struts’ diameter can be easily observed. Although it is vital to
consider geometrical details in modeling process, it can
considerably increase the computational time.
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Fig. 2 Deformed configuration of a 316L cellular lattice structure
fabricated by selective laser melting technique (Reprinted from Ref
19, with permission from Elsevier)

Gumruk and Mines (Ref 19) showed that, to consider the
effects of the struts’ imperfections, one can just assign the stress-
strain response of single struts to the bulk material. Although this
method provides good results, fabricating single struts can be
time consuming and expensive. Moreover, a designer must be
able to predict the mechanical properties of the lattice before
fabricating any samples. It can help to choose an appropriate
machine and processing parameters. The following subsections
are proposed to achieve such a modeling scheme.

2.1 Strut Model

To model the struts’ geometry, it is supposed that each strut
can be constructed by putting some spheres on each other. This
method for building the struts” geometry can be concluded from
Fig. 2. Figure 3 shows a schematic two-dimensional view of
the modeling process. As is seen, the axis of the strut is first
determined. Some spheres with random diameters are then
generated along the axis until the strut’s length (L;) is satisfied,
and the over-plus regions are finally removed. Each sphere is
supposed to intersect with its adjacent ones by a random
penetration value (L,). To account for wavy strut’s defects, the
center of each sphere is shifted to a random position in the
plane whose normal vector is the strut’s axis.

The distance between the center’s position and strut’s axis is
called “deviation from strut’s axis” throughout this manuscript
and is indicated by 44. Equations 1 to 3 are used for calculating
the spheres’ diameter, deviation from strut’s axis, and the
spheres’ penetration value, respectively.

D= Dmin + V(Dmax - Dmin) (Eq 1)
Ad =r- Admax (Eq 2)
L, = min(R,, R,), (Eq 3)

where D, and D,,.x are the minimum and maximum values
of the struts’ diameter, respectively, and are determined
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Fig. 3 Two-dimensional schematic of the strut’s modeling process

according to the SEM images. r is a random number between
0 and 1 from a Gaussian distribution, Agmn., 1S the maximum
value of the deviation from strut’s axis, and R; and R, are the
radii of two spheres which should be penetrated to each
other.

In this paper, the microstructural observations reported in
(Ref 17) are used for constructing the geometry of the struts. It
is reported that the struts’ diameter is in the range of
D =207=£10 pm for single struts. The Agmax 1S supposed to
be 20 um based on SEM images. Figure 4 shows a random
model of the strut.

The next step for simulation of the strut’s mechanical
behavior is to assign material parameters to the strut’s bulk
material. In the present work, the stress-strain curve of a
vertically generated tensile specimen fabricated by SLM (Ref
25) is used. The processing parameters of the sample are the
laser power of 90 W and the layer thickness of 50 um. The
obtained samples are almost 99% dense, so their stress-strain
response can be assigned to the bulk material. It should be
noted that these material processing parameters are similar to
those utilized for the fabrication of the desired lattice structure.
Figure 5 shows the stress-strain curve of the sample after
removing its initial non-linear part called the toe region. In this
paper, isotropic, elastic-plastic, strain-rate independent material
behavior together with J2 plasticity and isotropic hardening
material model is applied. Table 1 shows all the utilized model
parameters of the struts.

As the strut should be tested in simple tension, one end of
the strut is fixed in all directions while the other end is stretched
to about 18% of its initial length (Ls). The stress and strain of
the strut are calculated using the following equations, respec-
tively:

AF
= Eq 4
7T, (Eq4)
5
_ 0 Eq 5
6= (Eq 5)

in which F is the reaction force, D,, is the average diameter
of the strut, and d is displacement of the moving end of the
strut.

2.2 Unit Cell Model

The mechanical properties of a cellular lattice structure with
body-centered cubic microstructure are chosen for verifying the
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Fig. 4 A random model of the lattice’s strut
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Fig. 5 Stress-Strain curve used to define the bulk material of the
single struts (Ref 25)

presented method. This lattice was fabricated by Gumruk and
Mines (Ref 19). Figure 6 shows the unit cell used for modeling
the cellular lattice structure. The cell size of the lattice is
2.5 mm, and the average diameter of the struts is about
218 pm. Smith et al (Ref 20) showed that the stress-strain curve
of a BCC lattice can be predicted by just one unit cell. Thus, in
this paper, only one unit cell is considered for modeling the
mechanical properties of the lattice.

Since the struts of the unit cell are modeled using beam
elements, an adaption of the stiffness in the vicinity of the
vertices is needed. As shown in Fig. 7(a), each strut of the unit
cell is partitioned into three regions. As proposed by Luxner
et al (Ref 14), an elastic modulus of 1000 times greater than
that of the bulk material is assumed for the regions in the
vicinity of the vertices. These regions are called “vertex
regions” in the rest of the paper. The length of each vertex
region is found using SEM images such as the one depicted in
Fig. 7(b). To this end, a circle is drawn, which covers all the
material in the vertices. The diameter of the circle is measured
to be about 2.4 x D,,. Accordingly, the size of the vertex
regions is supposed to be 1.2 x D,, at each end of the struts.

As a unit cell is used for modeling the mechanical behavior
of the lattice, periodic boundary conditions should be applied.
For a beam finite element model, the periodic boundary
conditions are as follows (Ref 26): let the three pairs of
opposite bounding faces of the cell be (dR;;, dR;), i =1, 3.
Displacements and rotations of points on these faces are,
respectively, denoted by (u;;, u;) and (0,1, 0,), i =1, 3. The
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following relationships for the degrees of freedom are pre-
scribed for points on each pair of the faces:

ref ref
Uiy —Up = Uy — Up

(Eq 6)

(Eq 7)

where u5" and 45" are displacements of two reference points
on the opposite bounding faces.

0 — 0 =0,

3. Results

All the following simulations are performed on 2 Intel Xeon
X5670 (12 core), 2.93 GHz processors with 24 cores and
24 GB RAM.

3.1 Strut model

A script is developed through ABAQUS/ STANDARD
6.11-1 which is able to model the strut and its imperfections.
Since the lattice’s cell size is L = 2.5 mm, the single strut’s
length is set to be L; = 2.5V3 /2 mm. The strut is meshed
using 10-node modified tetrahedron elements with hourglass
control. At first, a mesh-sensitivity study is performed. The size
of the elements is reduced until change in the stress-strain curve
is very negligible (the results are not presented here), and the
appropriate mesh size is obtained to be about 1.2 X (Dpax — Dimin)-
Fig. 8 shows one-fourth of the meshed strut.

To reduce the effects of the strut’s random microstructure on
its stress-strain response, 20 different models are generated and
solved, and the average curve is reported as the stress-strain
curve of the single strut of the lattice. Shown in Fig. 9 are the
stress-strain responses of the strut and its base material. The
elastic modulus of the strut is about 83.32% of the bulk
material. Tsopanos et al (Ref 17) showed that the elastic
modulus of the struts is about 75% of that of the bulk material
using experimental calibrations, but Gurmuk and Mines
(Ref 19) reported that the strut’s elastic modulus was 30%
lower than what was reported by Tsopanos et al (Ref 17).

3.2 Unit Cell Model for the Lattice

After finding the strut’s stress-strain response, this curve is
attributed to the base material of the lattice struts. To do so, a
MATLAB code is developed to separate elastic and plastic data
points which are in the format of ABAQUS material module.
As the effects of defects are included in the stress-strain curve
of the strut, no defects should be taken into account in the unit
cell model of the lattice.

Journal of Materials Engineering and Performance



Table 1 The utilized parameters for strut’s model

Minimum Maximum Strut’s Maximum deviation Elastic
Parameter diameter (Din) diameter (D,ax) length (L) from the strut’s axis (4qmax) modulus
Value 197 pm 217 pm 2.5v/3/2 mm 20 pm 33.425 GPa

N | =

V2
ZL\J

Fig. 6 The unit cell details for modeling the mechanical properties
of the BCC cellular lattice structure

A script is prepared in ABAQUS/EXPLICIT 6.11-1 which
generates the unit cell model and its boundary conditions. The
struts are modeled as 3-node quadratic beams based on
Timoshenko beam formulation accounting for shear strains.
By mesh-sensitivity study of the model, each strut is meshed
using 1 element in the vertex regions and 4 elements in the
middle region.

In this paper, the experimental result of a cellular lattice
reported by Gumruk and Mines (Ref 19) is used for validating
the numerical predictions. This experimental measurement was
performed on lattice blocks whose side is approximately
20-21 mm in length. The tests were carried out at a crosshead
speed of 0.25 mm/min. Figure 10 shows the stress-strain
curves of the lattice obtained from the model and experimental
measurements. As it can be seen, a good agreement exists
between experimental and finite element modeling results. The
elastic modulus of the lattice is found to be about 14.31 MPa,
which is about 90.87% of the experimentally measured one.
The collapse strength of the lattice is nearly 0.446 MPa, which
is 17.14% higher than the experimental one.

4. Discussion

In this section, the effects of the single strut’s length and the
porosity of the strut are investigated.

4.1 Effects of Strufs Length on the Mechanical Properties

Since the length of a single strut can increase the compu-
tational time, it would be of interest to examine the effects of
the strut’s length. As mentioned earlier, the size of the single
strut is supposed to be equal to the size of the lattice’s struts as
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Fig. 7 (a) Partitioning the struts into three regions (2) Details on
how to find the size of the vertex regions (Reprinted from Ref 11,
with permission from Elsevier)

Ly = 2.5v/3/2 mm. To assess the effects of the single strut’s
length, L, = 2.51/3/2"*! is supposed where n varies between 0
and 4. Figure 11 shows the stress-strain curve of single struts
with different lengths. As shown in this figure, the single strut’s
length does not have a very significant influence on the elastic
modulus. However, the collapse strength increases by reducing
the strut’s length. It might be due to the number of defects in the
strut. As the length of the strut increases, the number of defects
increases leading to the reduction of the collapse strength. The
collapse strength of the shortest strut is about 534.6 MPa,
which is just 10.89% greater than that of the longest one.
Accordingly, the single strut’s length can be decreased for
computational efficiency.

4.2 Effects of the Strufs Porosity on the Mechanical
Behavior

As mentioned before, the mechanical properties of fabri-
cated parts by selective laser melting technique can be severely
affected by the processing parameters of the method. One of the
most important defects affecting the mechanical properties is
the existence of pores or un-melted powders within the lattice’s
struts. Meier and Haberland (Ref 25) showed that a higher
scanning speed as well as a lower laser power can increase the
micropores in the specimens. Similar observations are reported
in (Ref 27). To assess the effects of the existence of the
micropores in the struts, a model of strut with some pores is
developed. To do so, some spherical voids with random
diameters are added to the struts in random positions while the
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Fig. 8 One-fourth of the meshed strut
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Fig. 9 The stress-strain curve of the single strut and bulk material
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Fig. 10 Stress-strain curve of the lattice structure: experimental and
modeling

desired value of porosity is satisfied according to Eq 8. The
diameters of the pores are supposed to be between 30 and
40 pm, which are obtained based on the scanning electron
micrograph of some sections of lattices’ struts (Ref 10, 17).
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Fig. 12 The view cut of a porous strut with 5% porosity

p = Vv 100

7 (Eq 8)

In relation above, V45 and V are the volumes of voids and
strut without any voids, respectively. Figure 12 shows a view
cut of a strut with about 5% porosity. As is seen, the pores can
penetrate to each other in consistence with the reality.

To reduce the effects of randomness, 20 models are
generated for each value of porosity, and the average stress-
strain curve is reported. Shown in Fig. 13(a) is the stress-strain
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curve of single struts with different values of porosity. It is
obvious that the existence of pores in struts can significantly
affect the mechanical properties of the lattice’s struts. All the
simulations are performed for a strut with a length of
Ly :Z.Sﬁ/32 mm. Figure 13(b) shows variations of the
elastic modulus and collapse strength with porosity of the
single strut. As it can be seen, elastic modulus and collapse
strength are changed almost linearly with the porosity.

5. Conclusion

The focus of this paper is on the basics of modeling the
mechanical properties of cellular lattice structures in connec-
tion with the bulk material and strut’s imperfections. The
modeling process is started by simulating the mechanical
properties of a single strut with geometrical imperfections and
defects. The material parameters of the strut are then as
attributed to the bulk material of the lattice’s struts without
any imperfections, and the stress-strain curve is obtained. The
result shows that the obtained stress-strain response is in a
good agreement with the experimental one. Using this
method, the lattice’s elastic modulus is obtained about
14.31 MPa, which is 90.87% of the experimental one, and
the collapse strength is obtained about 0.446 MPa, which is
about 17.14% higher than the experimentally measured value.
The effects of the single strut’s length and its micropores are
also assessed on the mechanical properties. The results
indicate that the single strut’s length does not significantly
affect its stress-strain curve while the effects of the micro
pores are not negligible. It is shown that the elastic modulus
and collapse strength of a single strut decrease almost linearly
as the porosity increases. According to the obtained results,
this paper presents a computationally efficient method with a
reasonable accuracy for simulating the mechanical properties
of cellular lattice structures.
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