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Diffusion along microstructural defects, such as grain boundaries or dislocation pipes, is significantly faster
than diffusion through an undisturbed crystal. The ratio of diffusion enhancement is 3-4 orders of mag-
nitude close to the melting point and reaches up to several ten orders of magnitude close to room tem-
perature. An assessment of literature shows a large scatter in the available data and emphasizes the need
for representative mean values. Applying a least mean square fit to selected experimental information
delivers temperature-dependent functions for the ratio of grain boundary and dislocation pipe to bulk
diffusion, respectively. We demonstrate that application of the attained results in a computational frame-
work for the kinetics of precipitation makes the predictive simulation possible for the evolution of particles
located at dislocations and grain boundaries.
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1. Introduction

Diffusion in solids is a well-known phenomenon and has
been investigated heavily over the last decades. Accurate
assessments of bulk self-diffusion in Al and Ni have been
performed by Campbell (Ref 1) and in Fe by Fridberg et al.
(Ref 2) and Jönsson (Ref 3), respectively. The assessed data for
the bulk diffusion rates, that is diffusion in an equilibrated and
defect-poor alloy, lie predominantly within a narrow confidence
band and are generally in good agreement with each other.
However, the acceleration of diffusion kinetics along short-
circuit paths, such as grain boundaries or dislocation pipes, is
rather complex. Data and publications on this topic are sparse
in some systems, and the scatter of data can be in the range of
several orders of magnitude. Simple temperature extrapolation
of individual sets of data is not advisable and, even within the
measured temperature range, uncertainties remain.

Kaur and Gust (Ref 4) have reviewed grain boundary and
dislocation pipe diffusion data in the eighties. Since then, a
handful of newer experiments have become available, which
are taken into account in the present assessment. After analysis
of the dislocation and grain boundary diffusion coefficients
obtained in our analysis, these results are utilized in a study of
AlN formation along grain boundaries and dislocations in
microalloyed steel.

2. Experimental Challenges

Obtaining reliable values for diffusion coefficients over a
wide range of temperatures is a challenging task. Several effects
must be taken into account that can lead to unavoidable scatter
in the data. Whereas the bulk diffusion rate is a quantity that
can be obtained experimentally by relatively easy means, grain
boundary and, even more so, dislocation pipe self-diffusion are
dependent on various factors and they are significantly more
difficult to measure. One major reason in this context is the
tremendous effect of material purity on the diffusion rate.
Whereas older research (Ref 5) is sometimes contradicting
more recent publications (Ref 6-8), it seems accepted, nowa-
days, that an increase in purity will increase the resulting
diffusion rates, for instance, along grain boundaries. In addition
to purity, the misorientation of the grain boundary is an
important factor, carrying even the possibility of the occurrence
of coincidence site lattices. An increase in misorientation
generally increases the diffusion rate, as long as no coincidence
site lattices occur (Ref 9). Consequently, even experiments that
are very similar in purity and other parameters yield a
considerable scatter.

The use of radiotracers and serial sectioning is the method of
choice in Ni and Fe system, where the isotopes 63Ni and 59Fe
are readily available. For the Al system, tracer self-diffusion
measurements are difficult to obtain because the only useful
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tracer isotope is 26Al. Since this isotope has a half-life of
7.49 105 years, the number of radioactive counts available in
the experiment is rather low (Ref 9). Complex investigation
methods must generally be applied to gather data on Al self-
diffusion (Ref 10, 11). Detailed information on this issue is
reported in ref. (Ref 4). For the diffusion along fcc-Fe
dislocation pipes, no experimental data are accessible to the
authors. Consequently, in the present work, we assume that this
quantity has a similar value as that for Ni, as they share the
same crystal structure and a melting temperature in the same
order of magnitude.

3. Statistical Analysis

The original data sources for Ni (Ref 7, 12-15), Al (Ref 10, 11,
16), bcc-Fe (Ref 5, 17-19), and fcc-Fe (Ref 20-22) short-circuit
self-diffusion are plotted in Figure 1. For the sake of clarity, we
show the experimental diffusion rates only at the reported
maximum/minimum temperature as obtained from the Q and D0

values given in the respective literature sources. Details on the
assessment procedure are reported elsewhere (Ref 23).

The fits are performed in such a way that a single
mathematical equation describes the data over the entire
temperature regime. For bcc-Fe, three separate regions need
to be accounted for to consider the transition from ferro- to
para-magnetic ordering. The following Tables 1 and 2 summa-
rize the values for activation energy and pre-exponential factor,

which are used here to calculate the diffusion ratio DGB/
DBulk = D0,GB/D0,Bulk 9 exp(�(QGB�QBulk)/RT). The ratio for
DDisl/DBulk can be obtained likewise by using Q and D0 for
dislocation pipes.

4. Application to AlN Precipitation at Grain
Boundaries and Dislocations of Microalloyed
Steel

Precipitation of carbides and nitrides in microalloyed steel is
of high technical relevance, since the interaction of precipitates
and dislocations provides one of the major strengthening
mechanisms in metals (Ref 24). In addition, precipitates can pin
grain boundaries and, thus, provide a convenient means for
controlling grain size evolution during heat treatment.

With the thermokinetic software package MatCalc (http://
matcalc.at), which is developed for the simulation of precipi-
tation kinetics in multi-component systems, the evolution of
AlN precipitates in microalloyed steel is calculated. We utilize
the thermodynamic database mc_fe.tdb (Ref 25) and the
mobility database mc_fe.ddb (Ref 26), which are based on the
CALPHAD approach, to evaluate the precipitation kinetics of
the AlN particles at dislocations and grain boundaries. We have
chosen this example because Al impurity diffusion is linked
linearly to the self-diffusion coefficient of Fe, as documented in
the work of Fridberg et al (Ref 2). The diffusion data and ratios
reported in the previous section are implemented for

Fig. 1 Arrhenius plots showing the effective self-diffusion rates along grain boundaries (GB), dislocation pipes (Disl), and bulk, respectively,
for Ni, Al, and Fe
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precipitation at grain boundaries according to the model that
has been developed recently by Kozeschnik et al. (Ref 27),
utilizing the grain boundary diffusion coefficient as one of the
key input parameters. Dislocation pipe diffusion enters the
simulations in determining the number of potential nucleation
sites for precipitation as well as accelerating diffusion in terms
of the effective diffusion coefficients. The exact treatment of
this effect is described in (Ref 28). Since the diffusivity of
interstitial N is significantly faster than the diffusivity of the
substitutional element Al, we consider Al as the rate-controlling
element for diffusion-controlled growth of AlN. Consequently,

the effect of heterogeneous diffusion is only taken into account
for the substitutional element Al. The chemical composition
used in the simulations is given in Table 3.

Figures 2 and 3 show the experimental phase fraction of
AlN together with the simulated curves for precipitation on
grain boundaries and dislocations, respectively. In determining
the experimental phase fractions, Brahmi and Borelly (Ref 29)
performed annealing in silica capsules containing low He
pressures in salt baths and air furnaces and low-temperature
aging in oil baths. König and Scholz (Ref 30) performed
annealing in salt baths and air furnaces. In the simulations,
precipitates of AlN are considered in two populations nucle-
ating at grain boundaries and dislocations, respectively. Values
for grain boundary size and dislocation density of 7.5 lm and
1012 (m�2) for ferrite, and 50 lm and 1011 (m�2) for austenite,
consider the actual sample microstructure and have been used
in simulations before (Ref 31). To demonstrate the effect of
heterogeneous diffusion on the precipitate evolution, the phase
fraction calculated with the proposed values is compared to no
diffusion enhancement at grain boundaries and dislocations.

Table 1 Activation energy and pre-exponential factors as shown in Fig. 1 for Ni, Al, and fcc-Fe

Q, kJ/mol D0, m
2/s Source

Ni Bulk 287 2.39 10�4 (Ref 1)
GB 122 1.29 10�5 This work
Disl 171 4.09 10�5 This work

Al Bulk 127.2 1.49 10�5 (Ref 1)
GB 60.2 2.09 10�5 This work
Disl 83.2 1.59 10�6 This work

fcc-Fe Bulk 286 7.09 10�5 (Ref 2)
GB 145 5.59 10�5 This work
Disl 167 4.59 10�6 This work

Table 2 Activation energy and pre-exponential factors as shown in Fig. 1 for bcc-Fe

bcc-Fe

Low T, RT—693 K Medium T, 693-1214 K High T, 1214 K—Tm

SourceQ, kJ/mol D0, m
2/s Q, kJ/mol D0, m

2/s Q, kJ/mol D0, m
2/s

Bulk 285 6.09 10�4 330 1.5 240 29 10�4 Fitted from (Ref 3)
GB 125 6.09 10�7 170 1.59 10�3 80 29 10�7 This work
Disl 150 1.59 10�6 195 3.89 10�3 105 59 10�7 This work

Table 3 Chemical composition of alloys (in wt.%)

Lit. Al N C O

Ref 29 0.046 0.0067 0.001 0.049
Ref 30 0.055 0.024 0.18 ÆÆÆ

Fig. 2 Phase fraction evolution of AlN in ferrite at 500 �C in a mi-
croalloyed steel (Ref 29) with 0.046 wt.% Al and 0.0067 wt.% N,
determined by thermoelectric power measurements

Fig. 3 Phase fraction evolution of AlN in austenite at 1100 �C in a
microalloyed steel (Ref 30) with 0.055 wt.% Al and 0.024 wt.% N,
determined by analytical chemistry
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Both figures show clearly the high impact and importance of
the assessed diffusion ratios.

5. Summary

Diffusion along grain boundaries and dislocation pipes is
significantly faster than bulk diffusion. The ratio comparing
diffusion along these short-circuit paths with the bulk values is
a main input parameter for thermokinetic simulations, con-
cerning the nucleation and growth of precipitates. Compared to
previously used estimates, mainly based on crystallographic
structure, the major improvement of our proposed diffusion
ratios is the reproduction of available literature data in the form
of representative mean values. The evaluation of diffusivity in
each system, Al, Fe, and Ni, by a least mean square fit delivers
the activation energy Q and pre-exponential factor D0 between
room temperature up to the melting temperature.

It is demonstrated that the simulation of heterogeneous AlN
precipitation in microalloyed steel delivers accurate results. In
the simulations, two populations of precipitates, nucleating on
grain boundaries and dislocation pipes, respectively, are
considered. Only if short-circuit diffusion is taken into account,
the experimental data can be reproduced in a satisfactory
manner.
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16. A. Hässner, Untersuchung der Korngrenzdiffusion von Zn-65 in alpha-
Aluminium-Zink-Legierungen, Krist. Tech., 1974, 9(12), p 1371–1388
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