
GA Approach for Optimization of Surface Roughness
Parameters in Machining of Al Alloy SiC

Particle Composite
Rajesh Kumar Bhushan, Sudhir Kumar, and S. Das

(Submitted May 18, 2011; in revised form August 19, 2011)

Experiments were carried out using carbide turning inserts on AA7075/10 wt.% SiC (particle size
10-20 lm) composites to get actual input values to the optimization problem, so that the optimized results
are realistic. By using experimental data, the regression model was developed. This model was used to
formulate the fitness function of the genetic algorithm (GA). This investigation attempts to perform the
application of GA for finding the optimal solution of the cutting conditions minimum value of surface
roughness. The analysis of this investigation shows that the GA technique is capable of estimating the
optimal cutting conditions that yield the minimum surface roughness value. With the highest speed, the
lowest feed rate, the lowest depth of cut, and the highest nose radius of the cutting conditions’ scale, the GA
technique recommends 1.039 lm as the best minimum predicted surface roughness value. This means that
the GA technique has decreased the minimum surface roughness value of the experimental sample data,
regression modeling and desirability analysis by about 3%, 1%, and 2.8%, respectively.
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1. Introduction

In many real machining applications, three conflicting
objectives are often considered: the maximum production rate,
the minimum operational cost, and the quality of machining. In
terms of quality of machining, the criterion for the assessment
usually refers to the surface quality of the machined part.
Improvement in the quality could be indicated by referring to a
performance measure known as surface roughness (Ra). The
conventional optimization approach can optimize the machin-
ing problem by using some techniques, such as the Taguchi, the
factorial, and the response surface methodology (RSM) tech-
niques (Ref 1). The new trend of optimization of the machining
process is for soft computing approaches such as GA to be the
alternative technique in estimating the optimal result of the
cutting parameters, particularly for the Ra value in the turning
process. Some established soft computing techniques have been
applied by previous studies to suggest the optimal cutting
conditions for machining/cutting problems, such as the genetic
algorithm (GA), simulated annealing (SA), Tabu search (TS),
ant colony optimization (ACO) (Ref 2), and particle swarm
optimization (PSO) (Ref 1, 3). Considering the ability factors of

GA for the machining optimization problem, an effort is made
to estimate the best combination of cutting conditions for the Ra

performance measure in the turning process. A few advantages
of GA in optimizing cutting conditions for machining problems
are listed below (Ref 1, 4, 5):

(i) GA is preferred for near-optimal conditions instead of
the exact optimal solution. It is readily acceptable for
implementation by the manufacturers.

(ii) It uses a derivative-free approach for near-optimal
point(s) search direction.

(iii) It can handle objective functions of any complexity
with both discrete and continuous variables.

(iv) It involves simple construction of the model by new input
parameters without modifying the existing model structure.

(v) It enables an automatic search for the nonlinear connec-
tion between the inputs and outputs.

(vi) It is a fast and simple optimizing technique.

This study is taken up to find optimum values of cutting
speed, feed, depth of cut and nose radius at which Ra is
minimum. Comparison of results of minimum surface rough-
ness obtained by experiments, regression analysis, desirability
analysis, and GA is made to find out which result is better. The
percentage variation in the value of Ra, obtained by these four
approaches, is also described.

2. Literature Review

Surface roughness is an important machining performance
measure, especially, in finish turning operations. The well
known ideal surface roughness equation, which represents the
best possible finish that may be obtained for a given tool shape
and feed, is given by the following geometric expression (Ref 6)
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Re ¼ 0:0321f 2

re
ðEq 1Þ

where f represents the feed, and re represents the tool-nose
radius.

This equation works quite well for moderate machining
involving medium cutting conditions, but finish-turning oper-
ations always seem to give much higher measured Ra values
than the predicted theoretical values by this equation (Ref 7).
This is because the real surface roughness can be attributed to
the influence of physical and dynamic phenomena such as
friction of the cut surface against tool point and vibrations (Ref
8). Hence, the database for surface roughness is experimentally
created and a cubic spline interpolation method is applied to
obtain the surface roughness function.

The Al-2124/SiCp composites with 20 and 30 vol.% of
SiCp reinforcements and of 220 and 600 mesh sizes were
fabricated by the powder metallurgy route. The surface
roughness was considered as a dependent variable. The
magnitudes of feed-rate (10, 60, and 110 mm/rev) and depths
of cut (50, 100, and 150 mm) were chosen such that they are
closer to the sizes of reinforcement (15 and 65 lm). The tool-
nose radii of (0.2, 0.4, and 0.8 mm) were selected based on the
available geometry of PCD tools. A response surface-based
D-optimal design, consisting of 29 experimental runs, which
considers five factors of which two are at two-levels and the
remaining three at three-levels, was found to provide the
suitable framework for this experimentation. A total of 58
experimental runs (including one replication), as per the design,
were performed. ANN-based model was developed to predict
roughness of machined surfaces, which uses a feed-forward
network and an algorithm involving Bayesian regularization
combined with the Levenberg-Marquardt modification to train
the neural network. Analysis of machined surface quality and
development of an ANN-based model to predict surface
roughness in machining of composites shows that; the size of
reinforcements in the composite material influences roughness
of the machined surfaces significantly; when its magnitude is
comparable to that of the feed-rate and the tool-nose radius
employed during machining of the composite material. The best
surface quality was obtained at the lowest value of feed-rate,
the smaller particle size, and the largest tool-nose radius. The
predicted response of the ANN model is in very good
agreement (correlation coefficient of 0.977 and the mean
absolute error of 10.4%) with experimental data (Ref 9).

With GA, Ra increases with an increase in the depth of cut
and nose radius (Ref 10). With GA, for the cutting conditions of
feed rate, cutting speed and axial depth of cut, a Ra value that is
lower than the values of experimental results was obtained (Ref
11). With GA, Ra decreases with high cutting speed and very
low feed rate (Ref 12). GA reduces the Ra value on mild steel
from 2.60 to 0.71 lm for cutting speed, feed rate, and depth of
cut cutting conditions (Ref 13). With feed rate, cutting speed,
axial depth of cut, radial depth of cut, and machining tolerance
cutting conditions, GA reduces the Ra value in the mould cavity
from 0.412 to 0.375 lm, corresponding to about a 10%
improvement (Ref 14).

Saravanan et al. (Ref 15) used GA and simulated annealing
(SA) to optimize the machining parameters for carbide tools on
turning a cylindrical stock into a continuous finished profile.
The constraints considered were cutting force, power con-
straint, and tool-tip temperature. Because of high complexity of
this machining optimization problem, a SA) and GA were

applied to resolve the problem. The results obtained from GA
and SA were compared.

Chien and Tsai (Ref 16) investigated to find the optimum
cutting conditions to achieve the maximum material removal
rate for coated carbide tools during machining of 17-4PH
stainless steel. The back-propagation neural network (BPN)
was used to construct the predictive model. The GAwas used in
the optimization model. The Taguchi method (TM) was used to
find the optimum parameters for both the above models. It has
been shown that the predictive model is capable of predicting
the tool flank wear in an agreement behavior. The optimization
model had shown that it is a convenient and an efficient method
to find the optimum cutting conditions associated with
the maximum metal removal rate (MMRR) under different
constraints.

Wang and Jawahir (Ref 17) used AIS1 1045 steel as study
material and (TNMG331-CG1) as cutting tool for multi-pass
turning process. No cutting fluids were applied. They optimized
the multi-pass turning process using GA, and the effect of
progressive tool wear was also studied on the optimization of
the process. The results show that this methodology can
balance the cutting conditions very well between passes, and it
is effective for determining optimum cutting conditions as well
as for the selection of cutting tool inserts for multi-pass turning
operations. By considering the effect of tool-wear, the optimi-
zation results are shown to be more reasonable and practical.

Amiolemhen and Ibhadode (Ref 18) used GA for optimizing
machining parameters for multi-pass machining on mild steel
using carbide inserts. They proposed an optimization technique
based on GAs for the determination of the cutting parameters in
multi-pass machining operations by simultaneously studying
multi-pass roughing and single-pass finishing operations. The
optimum machining parameters are determined by minimizing
the unit production cost of converting a cylindrical bar stock
into a continuous finished profile involving seven machining
operations; with each operation subject to many practical
constraints. The cutting model developed for each machining
operation is a nonlinear, constrained problem. Experimental
results show that the proposed technique is both effective and
efficient. Sbaizero and Raj (Ref 19) attempted to optimize wear
rate in the ceramic cutting tool against material removal rate
and surface finish using system-level approach on machining
AISI 4340 steel.

With reference to the published literature, it is clear that,
currently the usage of the GA technique, which is labeled as a
soft computing approach for the turning process, is given less
consideration by researchers. Much of the optimization study
has been done on steel using carbide cutting tools or HSS tools,
and no study has been done on AA7075/10% SiC composites.
The increasing acceptance of AA7075/10% SiC composites by
aircraft and space industries has necessitated a machining
process producing the minimum value of surface roughness.
Therefore, it is necessary to know the optimum machining
parameters for machining of AA7075/10% SiC composites,
which can produce very good surface finish.

3. Methodology

Surface roughness is influenced by many factors such as
machining parameters, cutting phenomena, workpiece properties,
and cutting tool properties as shown in Fig. 1. Optimization of
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cutting speed, feed rate, depth of cut, and nose radius for the Ra

performance measure in the turning/machining process by
means of the GA technique can be taken as the new
contribution to the machining area. This study is implemented
in four phases to obtain the optimal operating conditions that
minimize machining surface roughness (Ra) values in the
turning process, which are as follows:

(i) Studying the real machining experimental data, set to
examine the cutting conditions used (cutting speed, feed
rate, depth of cut, and nose radius), which contribute to
the surface roughness results. For this purpose, AA7075/
SiC composites were turned by using carbide insert. The
machining experiments were designed using RSM (face-
centered-central composite design).

(ii) Developing the machining model to describe the rela-
tionship between parameters, viz., cutting speed, feed
rate, depth of cut, and nose radius, and responses (sur-
face roughness) using the regression technique. This
regression model is selected as the choice for the fitness
function (objective function) in the GA optimization
module.

(iii) Finding the optimal values of parameters to present the
minimum objective function using the GA technique.
The objective function or fitness function of GA leads
to the minimum (lower) value of surface roughness.
Matlab optimization toolbox is used to find the optimal
solutions that lead to the minimum value of surface
roughness.

(iv) Evaluating the GA optimization solution. The optimal
cutting conditions that give minimum surface roughness
values generated from GA are compared to the values
obtained by experiments, the regression model, and
desirability analysis.

4. Experimental study

4.1 Material

Chemical composition of 7075 Al alloy used as matrix for
AA7075/SiC composite is shown in Table 1.

4.2 Cutting Tools

Details of inserts and tool holders used for turning the
AA7075/10 wt.% SiC are given in Table 2.

4.3 Machining Parameters and Their Levels

The ranges of process parameters for the experiment were
decided on the basis of the literature survey and the results of
pilot experiments conducted using one variable at a time
approach. Their values are given in Table 3.

4.4 Computer Numerical Control (CNC) Machine

The basic objective behind the use of CNC machine is the
reduction of cost of production and improvement in product
quality. Machining by CNC is done for better precision than
conventional lathe. Better selection of range of cutting speed,
feed, and depth of cut is possible on CNC machine. Any
combination of cutting speed, feed, and depth of cut is possible
on CNC, but on lathe, a particular combination of cutting
speed, feed, and depth of cut is only possible. CNC Turning
Machine (Model TC 20) was used for these experiments. This
machine is shown in Fig. 2.
The Machine parameters are given below:

Parameter Specifications

Distance between centers 575 mm
Swing over telescopic cover 500 mm
Spindle speed range 40-4000 rpm
Positioning Accuracy
X-axis ±0.005 mm
Z-axis ±0.0075 mm
Main motor 7.5 kW

Surface 
Roughness 

Tool Parameters Machining Parameters 

Work Piece Parameters 

Tool Materials 

Nose Radius Speed 

Depth of Cut 

Feed 

Size and Shape 

Hardness 

Fig. 1 Parameters affecting surface roughness

Table 1 Chemical composition of 7075 Al alloy

Metal matrix Zn Mg Cu Cr Si Fe Al

Al 7075 5.62 2.52 1.63 0.22 0.06 0.18 89.77
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5. Response Surface Methodology

Response surface methodology is a collection of mathemat-
ical and statistical techniques that are useful for modeling and
analysis of problems in which a response of interest is
influenced by several variables, and the objective is to optimize
this response. By using the design of experiments and applying
regression analysis, the modeling of the desired response to
several independent input variables can be gained. In the RSM,
the quantitative form of relationship between the preferred
response and independent input variables could be represented
as (Ref 20)

y ¼ f x1; x2;x3; . . . ; xn
� �

� er ðEq 2Þ

where y is the preferred response, f is the response function
(or response surface), x1, x2, x3, …, xn are the independent
input variables, and er is fitting error.

The appearance of response function is a surface as plotting
the expected response of f. The identification of suitable
approximation of f will determine whether the application of
RSM is successful or not. In this study, the approximation of f
will be proposed using the fitted second-order polynomial
regression model, called the quadratic model. The quadratic
model of f can be written as following (Ref 21).

Y ¼ b0 þ
Xk

i¼1
biXi þ

Xk

i¼1
biiX

2
i þ

X
bijXiXj � er ðEq 3Þ

where Y is the corresponding response, and Xi�s are the values
of the ith machining process paramete rs. The terms b… are
the regression coefficients, and the residual e measures the
experimental error of the observations.

This assumed surface Y contains linear, squared, and cross
product terms of variables Xi�s. In order to estimate the
regression coefficients, a number of experimental design
techniques are available. Box and Hunter (Ref 22) have
proposed that scheme based on central composite rotatable
design fits the second-order response surface very accurately.

The second-order response surface representing the surface
roughness (Ra, lm) can be expressed as a function of cutting

parameters, such as cutting speed (A), feed (B), depth of cut
(C), and nose radius (D). The relationship between the surface
roughness and machining parameters is expressed as

Ra ¼ b0 þ b1 Að Þ þ b2 Bð Þ þ b3 Cð Þ þ b4 Dð Þ þ b5 A2
� �

þ b6 B2
� �

þ b7 C2
� �

þ b8 D2
� �

þ b9 ABð Þ þ b10 BCð Þ
þ b11 CDð Þ þ b12 ADð Þ (Eq 4)

In this phase of experimentation RSM has been used for
studying the influence of four machining parameters (cutting
speed, feed, depth of cut, and nose radius) on surface
roughness. Thirty experiments were performed. Each experi-
ment was repeated twice in each of the trial conditions. Trials
were randomized. Machining was done under dry conditions.

5.1 Planning for Experiments

Designs of experiments are considered as a very useful
strategy for arriving at clear and accurate conclusions from the
experimental observations. Experimentation technique, viz.,
RSM was used for studying the influences of the four
parameters (cutting speed, feed rate, depth of cut, and nose
radius) on surface roughness in machining of AA7075/10 wt.%
SiC composites. Face-centered-central (fcc) composite design
was preferred in this case. Experiments were performed at three
different levels. Thirty experiments were performed. Table 4
shows the experimental results and predicted values of Ra

calculated from regression equation. Table 5 represents RSM
experimental model (30 Std array).

5.2 Regression Model for Surface Roughness

The regression coefficients of the second-order equations are
obtained from the experimental data (Table 4). Consequently,

Table 2 Details of inserts and tool holders

Turning
tool holder

Type of
insert

Clearance
angle, �

Back rake
angle, �

Nose radius
(r), mm

Feed (f),
mm/rev

Depth
of cut, mm

PCLNL 2525 Carbide insert 0 7 0.8 fmin = 0.15
fmax = 0.60

apmin = 1.0
apmax = 6.0

M12 KT 809 CNMG
120404EM 0.4
120408EM 0.8
120412EM 1.2
Grade 6615

Table 3 Machining parameters and their level

Parameters Level 1 Level 2 Level 3

Cutting speed, m/min 90 150 210
Feed, mm/rev 0.15 0.2 0.25
Depth of cut, mm 0.2 0.4 0.6
Nose radius 0.4 0.8 1.2

Fig. 2 CNC turning machine
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the regression equation for the response characteristics as a
function of the four input process parameters, viz., cutting
speed, feed rate, depth of cut and nose radius considered in this
experiment is given below.

Surface roughness Rað Þ ¼ þ0:72412þ 0:00324 � A
� 0:19694 � Bþ 4:19915 � C
� 0:18753 � D� 0:0000174 � A2

� 3:42419 � C2 þ 3:33125 � B � C
� 0:56484 � C � D (Eq 5)

By putting the values of cutting speed, feed rate, depth of
cut, and nose radius in Eq 4, as shown in Table 4, 30 predicted
values of surface roughness are obtained. Comparison of
experimental results and regression results of surface roughness
is made, which is shown in Fig. 3. Surface roughness scores
have shown a similar pattern between the experimental results
and regression model results.

Therefore, it could be stated that the surface roughness
results predicted by regression model are very close to
experimental values of surface roughness.

6. Optimization by Desirability Analysis

In desirability function approach, the measured properties of
each predicted response is transformed to a dimensionless

desirability value d. The scale of desirability function ranges
between d = 0 (which suggests that the response is completely
unacceptable) and d = 1 (which suggests that the response is
exactly the target value). The value of d increases as the
desirability of the corresponding response increases (Ref 23,
24). In desirability-based approach one-sided transformation is
used to transform the response into a desirability value. In this
study, the transformation of surface roughness assumes a
smaller-the-better characteristic. The response is transformed
into di following the equation below:

d ¼ �y� L

U � L

����

����

a

; L � y� � U with d ¼ 0 for y� >U ðEq 6Þ

and d = 1 for y�> L, a represents the weight, L and U are
selected according to the mathematical models in RSM.

The optimization analysis was carried out using DESIGN-
EXPERTsoftware. In recent years, desirability function approach
is used by some of the researchers for finding the optimal solutions
using multiperformance objective (Ref 23-26). In the present
study, single objective optimization is carried out using desirabil-
ity-based method. The optimization is carried out in two steps:

(i) obtaining the desirability for the response (Ra);
(ii) maximizing the desirability and identifying the optimal

value.

The input variables used and their limits and goal settings
are shown m in Table 6. In desirability-based approach,

Table 4 Experimental results and predicted value of Ra

Expt.
no.

Cutting
speed (A),
m/min

Feed (B),
mm/rev

Depth of
cut (C), mm

Nose
radius (D),

mm

Experimental
surface roughness

(Ra), lm

Predicted surface
roughness
(Ra), lm

1 90 0.15 0.20 0.40 1.499 1.527
2 210 0.15 0.20 0.40 1.284 1.288
3 90 0.25 0.20 0.40 1.562 1.574
4 210 0.25 0.20 0.40 1.338 1.337
5 90 0.15 0.60 0.40 2.269 2.221
6 210 0.15 0.60 0.40 1.923 1.984
7 90 0.25 0.60 0.40 2.412 2.402
8 210 0.25 0.60 0.40 2.189 2.164
9 90 0.15 0.20 1.20 1.251 1.285
10 210 0.15 0.20 1.20 1.071 1.050
11 90 0.25 0.20 1.20 1.302 1.339
12 210 0.25 0.20 1.20 1.115 1.097
13 90 0.15 0.60 1.20 1.826 1.802
14 210 0.15 0.60 1.20 1.569 1.564
15 90 0.25 0.60 1.20 1.999 1.982
16 210 0.25 0.60 1.20 1.732 1.744
17 90 0.20 0.40 0.80 1.913 1.903
18 210 0.20 0.40 0.80 1.688 1.666
19 150 0.15 0.40 0.80 1.797 1.791
20 150 0.25 0.40 0.80 1.862 1.904
21 150 0.20 0.20 0.80 1.461 1.375
22 150 0.20 0.60 0.80 1.991 2.046
23 150 0.20 0.40 0.40 2.064 2.012
24 150 0.20 0.40 1.20 1.698 1.688
25 150 0.20 0.40 0.80 1.879 1.845
26 150 0.20 0.40 0.80 1.851 1.845
27 150 0.20 0.40 0.80 1.848 1.845
28 150 0.20 0.40 0.80 1.824 1.845
29 150 0.20 0.40 0.80 1.821 1.845
30 150 0.20 0.40 0.80 1.802 1.845
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different solutions were obtained. The solution with high
desirability is preferred. There are 10 solutions generated for
getting the true optimal solution, and the best solution is
achieved based on the desirability.

Results of desirability analysis are presented in Table 7. The
maximum desirability obtained in these cases is 1. Based on the
criterion of maximum desirability, the global solution is
obtained for minimizing the surface roughness in machining
of AA7075/10 wt.% SiC (particle size 10-20 lm) composites.

This is given below:

Cutting speed = 209.48 min/m
Feed = 0.18 mm/rev
Depth of cut = 0.2 mm
Nose radius = 1.19 mm

7. Genetic Algorithm Optimization

Genetic Algorithms are search algorithms for optimization,
based on the mechanics of natural selection and genetics (Ref 27,
28). The power of these algorithms is derived from a very simple
heuristic assumption that the best solution will be found in the
regions of solution space containing high proposition of good
solution, and that these regions can be identified by judicious and
robust sampling of the solution space. The mechanics of GAs is
simple, involving copying of binary strings and the swapping of
the binary strings. The simplicity of operation and computational
efficiency are the two main attractions of the GA approach. The
computations are carried out in three stages to get a result in one
generation or iteration. The three stages are (a) reproduction, (b)
crossover, and (c) mutation (Ref 27, 28).

(a) Reproduction. This is the first of the genetic operators. It
is a process in which copies of the strings are copied into
a separate string called the ‘‘mating pool,’’ in proportion

Table 5 RSM experimental model (30 Std array)

Expt.
no.

Cutting
speed (A),
m/min

Feed (B),
mm/rev

Depth of
cut (C), mm

Nose
radius (D), mm

Experimental
surface roughness

(Ra), lm
Predicted surface
roughness (Ra), lm

1 �1 �1 �1 �1 1.499 1.527
2 +1 �1 �1 �1 1.284 1.288
3 �1 +1 �1 �1 1.562 1.574
4 +1 +1 �1 �1 1.338 1.337
5 �1 �1 +1 �1 2.269 2.221
6 +1 �1 +1 �1 1.923 1.984
7 �1 +1 +1 �1 2.412 2.402
8 +1 +1 +1 �1 2.189 2.164
9 �1 �1 �1 +1 1.251 1.285
10 +1 �1 �1 +1 1.071 1.050
11 �1 +1 �1 +1 1.302 1.339
12 +1 +1 �1 +1 1.115 1.097
13 �1 �1 +1 +1 1.826 1.802
14 +1 �1 +1 +1 1.569 1.564
15 �1 +1 +1 +1 1.999 1.982
16 +1 +1 +1 +1 1.732 1.744
17 �1 0 0 0 1.913 1.903
18 +1 0 0 0 1.688 1.666
19 0 �1 0 0 1.797 1.791
20 0 +1 0 0 1.862 1.904
21 0 0 �1 0 1.461 1.375
22 0 0 +1 0 1.991 2.046
23 0 0 0 �1 2.064 2.012
24 0 0 0 +1 1.698 1.688
25 0 0 0 0 1.879 1.845
26 0 0 0 0 1.851 1.845
27 0 0 0 0 1.848 1.845
28 0 0 0 0 1.824 1.845
29 0 0 0 0 1.821 1.845
30 0 0 0 0 1.802 1.845
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Fig. 3 Comparison of experimental and regression results
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to their fitness values. This implies that strings with
higher fitness values will have a higher probability of
contributing more strings as the search progresses.

(b) Crossover. This operator, second among the genetic
operators, is mostly responsible for the progress of the
search. It swaps the parent strings partially, causing off-
spring to be generated. In this, a crossover site along the
length of the string is selected randomly, and the portions
of the strings beyond the crossover site are swapped.

(c) Mutation. It is one of last GA operators; this is the occa-
sional random alteration (with a small probability) of the

value of a string position. In binary strings, this simply
means changing 1 to 0, or vice versa.

Figure 4 illustrates the flow of the way by which the GA
technique operates when optimizing a problem. Some condi-
tions for obtaining the best fitness function are

(i) The algorithm stops when the number of generations
reaches the value of generations.

(ii) The algorithm stops after running for a duration of
time in seconds equal to the time limit.

(iii) The algorithm stops when the value of the fitness func-
tion for the best point in the current population is less
than or equal to the fitness limit.

(iv) The algorithm stops when the weighted average
changes in the fitness function value.

(v) The algorithm stops if there is no improvement in the
objective function during an interval of time in seconds
equal to stall time limit.

(vi) The algorithm runs until the weighted average changes
in the fitness function value over stall generations and
is less than function tolerance.

(vii) The nonlinear constraint tolerance is not used as a
stopping criterion. It is used to determine the feasibility
with respect to nonlinear constraints.

Primarily, the evaluation process is repeated until one
chromosome with the best fitness criterion is obtained. Then,
this best fitness is taken as the optimum solution for the
problem (Ref 2).

7.1 Genetic Algorithm Optimization Solution

In this study, the target of the optimization process is to
determine the optimal values of process parameters that
contribute to make the minimum value of surface roughness
as low as possible. To formulate the optimization problem, the

Table 6 Constraints used for optimization

Name Goal
Lower
limit

Upper
limit

Lower
weight

Upper
weight Importance

Cutting speed Is in range 90 210 1 1 3
Feed Is in range 0.15 0.25 1 1 3
Depth of cut Is in range 0.2 0.6 1 1 3
Nose radius Is in range 0.4 1.2 1 1 3
Surface roughness Minimize 1.071 2.412 1 1 5

Table 7 Optimum solution for minimum surface roughness

Number
Cutting
speed Feed

Depth
of cut

Nose
radius

Surface
roughness Desirability Selection

1 209.48 0.18 0.20 1.19 1.0689 1.000 Selected
2 208.45 0.15 0.20 1.19 1.06296 1.000
3 210.00 0.22 0.20 1.20 1.0854 0.989
4 210.00 0.15 0.20 1.07 1.09272 0.984
5 210.00 0.16 0.22 1.19 1.10642 0.974
6 184.61 0.25 0.20 1.20 1.18894 0.912
7 210.00 0.25 0.20 0.73 1.23865 0.875
8 125.77 0.16 0.20 1.20 1.27617 0.847
9 99.23 0.15 0.20 1.20 1.28754 0.839
10 95.81 0.15 0.20 1.20 1.28782 0.838

Initialize parameters

Mutation

Crossover

Selection

Optimal solution

The best
fitness is
obtained?

No

Yes

Fitness function

Generate population

Fig. 4 The flow of GA for optimization (Ref 2)
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surface roughness prediction model which is proposed in Eq 5
is selected.

7.2 Problem Formulation

The problem of machining consists of determining the
process parameters, usually the cutting speed, feed, depth of
cut, and the nose radius, to optimize the objective function
(surface roughness). For effective results in the optimization
machining parameters, it is better to provide the actual values of
the process parameters, and for this purpose experimental
machining study was carried out. The following options are
selected for formulating the problem:

Number of variables = 4;
Population type = Double vector;
Population = 20;
Lower bound [90 0.15 0.20 0.40];
Upper bound [210 0.25 0.60 1.20].

7.3 Objective Function

Surface roughness is the main objective function for this
problem. The fitness function used in this study for optimiza-
tion of machining parameters is given as under.

Function y = simple_fitness(x)

y ¼ 072412þ 000325 � xð1Þ � 019694 � xð2Þ þ 419915 � xð3Þ
� 018753 � xð4Þ � 0000018 � xð1Þ2 � 342419 � xð3Þ2

þ 333125 � xð2Þ � xð3Þ � 056484 � xð3Þ � xð4Þ (Eq 7)

The minimization of the fitness function value of Eq 7 is
subjected to the boundaries (limitations) of cutting condition
values. The range of values of experimental cutting conditions
given in Table 4 is selected to present the limitations of the
optimization solution and is given as follows:

90 � A � 210 ðEq 8aÞ

0:15 � B � 0:25 ðEq 8bÞ

0:2 � C � 0:6 ðEq 8cÞ

0:4 � D � 1:2 ðEq 8dÞ

Basically, obtaining the best optimal results depends on
some criteria. By following the flow of the optimization
procedure given in Fig. 4, the major criteria most influencing
the optimal result are the number of the initial population size,
the type of selection function, the crossover rate, and the
mutation rate. The value or parameter setting for these criteria is
obtained by the process of trial and error for giving the most
optimal result that is expected from this study. As far as reviews
on the previous studies go, there is no guideline yet given by
the researchers which could be followed in recommending the
best combination for setting the value of the parameters for the
best optimal result.

By using the Matlab optimization toolbox, this study has
tried several combinations of the set values for cutting
conditions to present the best optimal results. The best
combination of these values for cutting conditions will lead
to the minimum surface roughness. Several numbers of trials
were conducted with different value settings for the cutting
conditions for searching the minimization values of surface

roughness using the Matlab optimization toolbox. The best
combination of the parameters applied, which leads to the
minimum values of the fitness function is shown in Table 8.

By using the fitness function formulated in Eq 8, the
limitations of cutting conditions formulated in Eq 8a-8d and the
GA parameters given in Table 6, the results of the Matlab
optimization toolbox are given in Fig. 5 and Table 8. From
Table 9, it can be observed that the minimum surface roughness
value is 1.039 lm. The set values of cutting conditions, which
lead to the minimum surface roughness value are 207.055 m/min
for cutting speed, 0.151 mm/rev for feed rate, 0.201 mm for
depth of cut, and 1.199 mm for nose radius. It is also indicated
that the optimal solution is obtained at the 54th generation
(iteration) of the GA algorithm. As discussed in section 7.1, in
order to get an optimal solution, the generated population is
evaluated by employing a certain fitness criteria.

Based on the result of Table 9, it is observed that the
criterion used by the GA algorithm to stop extending from the
further process of finding the optimal solution is the weighted
average change in the fitness function value over stall a
generation which is less than function tolerance. From Fig. 5,
the plot functions indicate that the mean fitness value is
1.053 lm with the best fitness value being 1.039 lm.

Table 8 Combination of GA parameter rates leading to
the optimal solution

Parameters Setting value

Population size 20
Mutation rate 0.8
Crossover rate 0.2
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Fig. 5 Plot functions of the best fitness

Table 9 Results of the Matlab optimization toolbox

Results

Minimum fitness function
Surface roughness 1.039 lm

Optimal cutting conditions
Cutting speed 207.055 m/min
Feed 0.151 mm/rev
Depth of cut 0.201 mm
Nose of radius 1.199 mm
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7.4 Evaluation of the GA Result

To evaluate the GA result, the issues concerned in this study
are

(i) Surface roughness value (best fitness function) predicted
by GA is expected to be lower than the minimum (small-
est) Ra value of the experimental, regression model, and
desirability analysis.

(ii) GA average-predicted surface roughness value (the
mean fitness) is expected to be lower than the average
(mean) surface roughness value of the experimental and
regression model.

(iii) Optimal cutting conditions obtained at the last iteration
of GA, which lead to the best fitness function are
expected to be in the same range of values as those
with the cutting conditions of the experimental design.

For the first issue, by referring to Table 4, the minimum
surface roughness value for the real machining experiment is
1.071. By referring to Table 4, the minimum surface roughness
value for the regression model is 1.050. Table 8 shows that the
best-predicted surface roughness value of GA is 1.039 lm.
Therefore, it can be concluded that the GA technique has given
the minimum result of surface roughness value compared to the
result of the experimental and regression model.

Since the optimal values that are estimated by GA for each
cutting condition are in the range of the actual setting cutting
conditions, it can be stated that the minimum (best) fitness
function of the surface roughness value (Ra = 1.039 lm) could
be obtained if used in the real machining experiment.

Theoretically, to validate the result of optimal cutting
conditions that are produced by GA techniques, these values
will be transferred into the regression model Eq 5, and the best
regression model equation, which is taken as the objective
function of the optimization GA solution, is used to validate the
optimal cutting conditions. With x1 = optimal solution of the
cutting speed, x2 = optimal solution of the feed rate, x3 = opti-
mal solution of the depth of cut, and x4 = optimal solution of
the nose radius, the solution is obtained as follows:

Ra ¼þ 0:72412þ 0:00324 � 207:055� 0:19694 � 0:151
þ 4:19915 � 0:201� 0:18753 � 1:199
� 0:0000174 � 207:055ð Þ2�3:42419 � 0:201ð Þ2

þ 3:33125 � 0:151 � 0:201� 0:56484 � 0:201 � 1:199
Ra ¼1:0633 (Eq 9)

By transferring the optimal cutting values of GA into Eq 5,
as shown in Eq 9, the predicted surface roughness value
obtained is 1.0633 lm. This value is compared to the minimum
fitness function value of the GA technique. As shown in
Table 9, the minimum fitness function value of the GA
technique is 1.039 lm. This is very close to the result of the
transformation process. This can be taken as the indicator that
the same result (Ra = 1.039 lm) might be obtained when the
set optimal cutting conditions that are estimated by means of
the GA technique are used in the real experiment process.

8. Discussion

This study has applied the GA technique to estimate the
optimal solutions of cutting conditions that lead to the
minimum surface roughness value. By reviewing the applica-
tion of GA for the machining optimization problem involving
machining parameter in the turning process of AA 7075/
10 wt.% SiC, which focuses on the surface roughness perfor-
mance measure as discussed in the literature review, it has been
found that this issue has not yet been taken up by other
researchers. Hence, it can be said that this study has given a
new contribution to the machining area of study.

In the evaluation of the GA result, the output of GA is
evaluated and discussed in term of three issues. The first and
second issues are related, respectively, to the best point and
average values estimated by the GA technique. The results of
the GA outputs discussed in point 7.4 have been summarized in
Table 10. The classification of cutting conditions scale for
comparing the optimal results is shown in Table 11.

Table 10 Summary of the GA result

Variables
Consideration

factors
Issue 1: the best

point of Ra

Issue 2:
average
of Ra

Issue 3:
optimal A, B, C
and D of GA Remarks

Ra Experimental result 1.071 1.728
Regression result 1.050 1.727
GA result 1.039 1.063 Compared to the experimental and

Regression, the GA technique
gave the more minimal value of
the best andaverage Ra values

Cutting speed (A) Required
range: 90-210

207.055

Feed (B) Required
range: 0.15-0.25

0.151 All optimal points of A, B, C and D
cutting conditions of the GA
techniquewere in the range
of required values.

Depth of cut (C) Required range: 0.2-0.6 0.201
Nose radius (D) Required range: 0.4-1.2 1.199
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9. Conclusions

From Table 12, as indicated at the last column, it is clear
that this study has found that the GA technique has been the
effective technique for estimating the better results in terms of
the best point and average minimum values of surface
roughness compared to the experimental and desirability
analysis results. It has also been discovered that the optimal
value for each of the cutting conditions recommended by the
GA which leads to the minimum surface roughness values are
satisfied by the cutting conditions range applied in the real
experiment.

From Table 12, it is observed that the GA technique
outperforms the RSM technique by looking to the best
(minimum) surface roughness predicted value. With the highest
speed, the minimum feed rate, the minimum depth of cut, and
the maximum nose radius of the cutting conditions scale, the
best surface roughness value estimated by desirability analysis
is 1.069 lm. However, with the highest speed, the lowest feed
rate, the minimum depth of cut, and the maximum nose radius
of the cutting conditions scale, the GA technique estimates the
lower value 1.039 lm of the best surface roughness value
compared to the desirability analysis technique.

As highlighted before, the aim of the optimization process in
this study is to determine the optimal values of decision
variables, which could lead to make the minimum value of
surface roughness as low as possible. Therefore, with the best
surface roughness value (1.039 lm) as shown in Table 12, the
percentage ratio of GA to decrease the minimum surface
roughness is calculated. When comparing the best surface
roughness values of the experiment sample data (1.071 lm),
the regression model (1.050 lm), and the desirability analysis
(1.069 lm), it has been found that the GA techniques decrease
the surface roughness values which are about 3%, 1%, and
2.8%, respectively, in respect of the three models.
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