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In this research, the constitutive relationships of BT25 titanium alloy based on regression and artificial
neural network (ANN) methods were established and studied by analyzing the results of hot compression
tests. The isothermal compression tests were conducted on a Gleeble 1500 thermo-mechanical simulator in
the deformation temperatures ranging from 940 to 1000 �C with an interval of 20 �C and the strain rates of
0.01, 0.1, 1.0, and 10.0 s21 with a height reduction of 60%. The average deformation activation energy of
the alloy was derived as 623.26 kJ/mol at strain of 0.7 by using the non-linear regression method and
assuming a hyperbolic sine equation between the stress, strain rate, and deformation temperature. On the
basis of the experimental data samples, an ANN model was proposed and trained. The hot processing
parameters of temperature, strain rate, and strain were used as the input variables and the flow stress as the
output variable. The comparison of experimental flow stresses with predicted values by ANN model and
calculated value by regression method was carried out. It was found that the predicted results by ANN are
in a good agreement with the experimental values, which indicates that the predicted accuracy of the
constitutive relationship established by ANN model is higher than that using the multivariable regression
method.
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1. Introduction

Constitutive models are a collection of representations that
describe the macroscopic response of a material to applied
stress under different combinations of strain, strain rate, and
deformation temperature. These models are widely used in the
analysis of manufacturing processes such as metal forming and
machining (Ref 1–3). However, the accuracy of such analyses
greatly depends on the accuracy of constitutive models used.
Previously, numerous investigations (Ref 4–6) have been
performed to construct the mathematical constitutive models
by the regression method, which is primarily used to represent
the behavior of the material at moderate ranges of temperature
and strain rate. For instance, Wanjara et al. (Ref 4) have
investigated the effect of process parameters on the flow stress
behavior, and determined the flow stress which related to the
parameters using an Arrhenius-type equation during isothermal
compression of IMI834 alloy in the a and a + b phase regions.
Also, the constitutive relationship of the 17-4 PH stainless steel
under the hot compression test has been investigated with the
three expressions of Zener-Hollomon parameter using regres-
sion method by Mirzadeh and Najafizadeh (Ref 5). However,
these methods are rarely satisfactory in practical applications

because of the highly non-linear and complex relationships
between the flow stress and the processing parameters, which
cost much time and are difficult to be established validly by
using regression method.

As an alternative to the traditional approach for the develop-
ment of constitutive model, there is a growing interest in artificial
neural network (ANN) as a paradigm of computational knowl-
edge representation (Ref 7–10). Generally, an ANN approach
has a number of advantages compared with the traditional
approaches. Although it does not need explicit assumptions or
knowledge regarding themathematical or physical properties, yet
the ANN method possesses an excellent learning ability of the
interrelations of large amount of data obtained from experiments
and patterns in a series of input and output data. Recently,with the
rapid development of ANN, many researchers have paid much
attention to the solution of non-linear and complex problems in
term of constitutive modeling of titanium alloys (Ref 11–15). Li
et al. (Ref 11) constructed a three-layer back-propagation (BP)
neural network to acquire the constitutive modeling of Ti-15-3
titanium alloy and concluded that the use of an ANN for the
constitutive relationship looks very encouraging. Mulyadi et al.
(Ref 13) developed an ANN constitutive model for Ti-6Sn-2Zr-
4Mn-6Mo alloy, which exhibited an ANN prediction superior to
a parametric constitutive model. Sun et al. (Ref 14) used a neural
network tool for establishing the constitutive relationship of
Ti600 alloy. Apparently, the ANN model has a strong ability to
establish the constitutive relationship based on incomplete or
noisy data information, and it can generalize rules from those
cases for which is trained, applying these rules to new stimula-
tions.

However, the Russian alloy BT25 is less commonly known
in the west, little public knowledge has been found regarding its
constitutive relationship and high temperature deformation
behavior. Basically, the BT25 alloy is a martensite two-phase
titanium alloy, which is designed for manufacturing compressor
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disks with excellent tensile strength and creep performance at
least at 550 �C (Ref 16, 17). In recent years, it has received
much attention in China due to its potential for manufacturing
the dual-property blisk (Ref 18). The dual-property blisk
consisting of lamellar microstructure in disc section and
equiaxed microstructure in the blades is significantly affected
by the hot processing parameters such as deformation temper-
ature, strain, and strain rate. For the purpose of achieving the
desired microstructure of the blisk, it is crucial to develop and
study the constitutive relationship of the BT25 alloy with
lamellar starting microstructures during hot deformation.

Therefore, the objective of this work is to study the hot
deformation behavior, and establish an accurate constitutive
relationship based on the ANN model, which is related to the
different deformation process parameters for the BT25 titanium
alloy with lamellar starting microstructure. Furthermore, the
comparison of flow stress between experimental values and the
data obtained by the ANN model and regression method has
been carried out.

2. Material and Experimental Procedures

2.1 Material

The nominal composition of BT25 titanium alloy under
investigation is given in Table 1. The a + b/b phase transition
temperature of the alloy is approximately 1025 �C, determined
via a technique involving heat treatment followed by metallo-
graphic observations. The testing specimens from the b-forged
disks with diameter of 240 mmweremachined into cylinder with
8 mm in diameter and 12 mm in height according to the standard
method for hot compression test. Glass lubricants were used to
coat the top and bottom surfaces of specimen, in order to reduce
the friction between the specimens and anvils. Specimens were
heated to the test temperature, and soaked for 5 min before hot
compression so as to obtain a uniform deformation temperature.
The original microstructure of the samples is shown in Fig. 1. A
typical lamellar microstructure can be markedly observed which
consists of large beta grains about 400 lm grain size and a
lamellas with a length of 20-40 lm and width of 0.5 lm. In
addition, a random orientation of lamellas was observed.

In order to develop the constitutive relationship of BT25
titanium alloy, a series of isothermal compression tests were
conducted on a Gleeble 1500 thermo-mechanical simulator in
the deformation temperature range from 940 to 1000 �C that
were all in the a + b phase field, strain rate range from 0.01 to
10 s�1 and the height reduction of 60%. The true stress-strain
curves were recorded automatically in the isothermal compres-
sion process.

3. The Structure of Neural Networks

ANNmodeling is essentially a ‘‘black box’’ linking input data
to output data using a particular set of non-linear functions.

Among the various kinds of ANN approaches that exist, the
multilayer perceptron architecture-based feed-forwardANNwith
BP learning algorithm has become the most popular in materials
modeling and materials processing control applications. It has
been used in the present study since the multilayer network has
greater representational power for dealingwith highly non-linear,
strongly coupled, multivariable system (Ref 19).

Neural networks need to be trained in a learning process
before they are applied. The following matters are extremely
important in the design or training of neural networks: (i)
architecture of the neural network, (ii) transfer function, and
(iii) training algorithm. In general, each neural network is
composed of an input layer, an output layer and one or more
hidden layers. First step, the architecture of the neural network
refers to the number of the layers in the ANN and the number
of the neurons in each layer. Thus the structure of one input,
one hidden, and one output layer was used in the present
model. The next important thing is to obtain the number of
hidden units which can determine the complexity of neural
network and precision of predicted values. As mentioned in Ref
20, if the architecture of ANN model is too simple, the model
does not have sufficient ability to learn the process correctly
during the training. Oppositely, when the model is too complex,
it may not converge or the trained data may be over fitted. In
the present model, the value of mean square error (MSE) is
used to check the ability of a particular architecture. It is
obviously seen in Fig. 2 that the mean square error of the
network decreases to the minimum value when the number of
neurons in hidden layer is 10, which indicates that the network
with 10 neurons can exhibit an optimal performance.

Subsequently, each neuron has an associated transfer
function which can represent how the weighted sum of its
inputs is converted to the results into an output value. Hornik
et al. (Ref 21) suggested that a three-layer ANN with sigmoid
transfer functions can map any function of practical interest. In
this investigation, the sigmoid function to calculate the neuron
network was chosen as follows:

Table 1 The nominal composition of BT25 titanium alloy (wt.%)

Al Mo Zr Sn W Si Cr Cu Fe O H N C Ti

6.71 2.16 2.28 2.02 0.94 0.2 0.01 0.02 0.05 0.13 0.001 0.013 0.02 Bal

Fig. 1 The original microstructure of BT25 titanium alloy

1592—Volume 21(8) August 2012 Journal of Materials Engineering and Performance



f ðxÞ ¼ 1=½1þ expð�xÞ� ðEq 1Þ

Finally, design the training algorithm which affects the
accuracy and stability of the ANN model. In recent years, a
number of variations of the standard algorithm have been
developed (Ref 22). Particularly, the BP training usually can
give the best results in terms of model performance and training
time required. In the BP algorithm, the error between target and
the network output is calculated and this will be back
propagated using the steepest descent or gradient descent
approach. The network weights are adjusted by moving a small
step in the direction of negative gradient of error surface during
each iteration. The iterations are repeated until a specified
convergence is reached. Therefore, the neural network devel-
oped in this investigation is trained with the BP algorithm
which is able to represent a better fitting and generalization of
the model. A schematic architecture of the feed-forward neural
network in the present study is given in Fig. 3. The deformation
temperature, log strain rate and strain were determined as the
input variables of the ANN model, while the output variable is
flow stress. Instead of _e; log _e has been chosen since r usually
varies with log _e on a physical basis.

Before training the ANN model, the values usually have
different dimensions and ranges. As a result, the input and
output datasets should be normalized before being applied to
the neural network so that they were confined between 0.1 and
0.9 according to the Eq 2.

Xi ¼ 0:1þ 0:8� X � Xmin

Xmax � Xmin

� �
ðEq 2Þ

where Xi is the normalized value of a certain parameter (tem-
perature, strain, logarithm of strain rate, or flow stress), X is
the measured value for this parameter, Xmin and Xmax are the
minimum and maximum values in the database for this
parameter, respectively.

4. Results and Discussion

4.1 The True Stress-True Strain Curves

For representing the flow behavior with starting lamellar
microstructure in a + b phase filed, the typical true stress-true
strain curves of BT25 titanium alloy deformed in the deforma-
tion temperature range of 940-1000 �C and strain rate of 0.01-
10 s�1 are given in Fig. 4(a) and (b), respectively. Similar to
other titanium alloys, the flow curves exhibit a peak stress in
the early stages of deformation due to the influence of work
hardening, and then the flow stresses gradually decrease to a
certain stress level with increasing strain. In addition, it is also

Fig. 2 The training convergence curve of BP neural network

Fig. 3 The schematic of ANN for prediction of flow stress in
BT25 titanium alloy

Fig. 4 Flow stress-strain curves in the isothermal compression of
BT25 titanium alloy: (a) 940 �C and (b) 0.01 s�1
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found that the flow stress increases with the strain rate at a
certain temperature, and decreases with an increase of the
deformation temperature at a certain strain rate. Meanwhile, it
is interesting to note that at strain rate of 0.01 s�1, the curves
show a slightly serrated oscillation, which may be caused by
lamellar globularization or dynamic recrystallization. Such
phenomena reveal the fact that flow stress is closely depended
on the processing parameters (strain, strain rate, and temper-
ature). Therefore, it is meaningful and necessary to establish the
constitutive relationship of BT25 titanium alloy with starting
lamellar microstructure.

4.2 Constitutive Relationship by Regression Method

The constitutive relationship among flow stress, strain rate,
and deformation temperature during hot deformation at a given
strain can be described by the Zener-Hollomon parameter
(Ref 23):

Z ¼ _e expðQ=RTÞ ¼ A½sinhðarÞ�n ðEq 3Þ

where Z is the Zener-Hollomon parameter, r is the flow
stress, _e is the strain rate, T is the deformation temperature in
Kelvin, A, a, and n are the material constants, Q is the appar-
ent activation energy, and R is the universal gas constant.

The calculation of Q has been performed according to the
following relationships:

Q ¼ Rns ðEq 4Þ

n ¼ d lnð _eÞ
d ln½sinhðarÞ� ðEq 5Þ

s ¼ d ln½sinhðarÞ�
dð1=TÞ ðEq 6Þ

where n and s are represented the average slope of the lines
in the lnð _eÞ against ln½sinhðarÞ� and ln½sinhðarÞ� against
1000/T as shown in Fig. 5(a) and (b), respectively.

The average value of Q at strain of 0.7 was derived as
623.26 kJ/mol for the present alloy. Figure 6 displays the
variation of Z with ln½sinhðarÞ�, indicating that a single line can
be drawn through the experimental data. The values of A, a, and
n were calculated as 2.191025, 0.0104, and 2.98, respectively.
Substituting the value of constants in Eq 3, the constitutive
equation of the alloy at strain of 0.7 is developed as follows:

Z ¼ _e expð623:26=RTÞ ¼ 2:1� 1025½sinhð0:0104rÞ�2:98

ðEq 7Þ

Although these constants of Eq 3 depending on the material
are calculated as special values, they cannot fit the whole data
set to one set of equation parameters very well. In other words,
it is complicated and time-consuming to capture the essence of
the specific deformation characteristics using the fit of one
equation or a set of equation parameters to the whole strain
range. Fortunately, the ANN is an effective approach that can
deal with the problems mentioned above very well.

4.3 Evaluation of Artificial Neural Network Model

ANN is a sort of more simple and accurate technique to
predict the flow stress of materials. An important and primary
step in using ANN is the separation of the dataset into training
and testing datasets, because the better the representation of the
data in the training dataset, the better its predictive capabilities
within those input ranges. In the present study, the normalized
data set at strain of 0.1-0.6, and 0.8 were chosen as training set
and the data set at the strain of 0.7 were remained as testing set.

Fig. 5 Dependence of the stress at strain of 0.7 on hot processing
parameters: (a) strain rate and (b) deformation temperature

Fig. 6 Variation of the Zener-Hollomon parameter with flow stress
(e = 0.7)
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The generalization capability of the trained network is
quantified in terms of the correlation coefficient (R) and the
mean absolute relative error (MARE), based on the target
output and predicted values according to the following
equations:

R ¼
PN

i¼1 ðEi � �EÞðPi � �PÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðEi � �EÞ2

PN
i¼1 ðPi � �PÞ2

q ðEq 8Þ

MARE ð%Þ ¼ 1

N

XN
i¼1

Ei � Pi

Ei

����
����� 100 ðEq 9Þ

where E is the experimental value and P is the predicted
value obtained from the network model. �E and �P are the mean
values of E and P, respectively. N is the total number of data
employed in the investigation. The correlation coefficient is a
commonly used statistic and provides information on the
strength of linear relationship between experimental and pre-
dicted values. For perfect prediction, all the data points should
lie on the line inclined at 45� from the horizontal.

Figure 7 shows the predicted flow stress by the ANN model
versus the experimental value for the total training dataset. It
can be seen that the predicted results from ANN model agree
well with the experimental value, as is also indicated by the
correlation coefficient (R) value of 0.998. Thus, the well-trained
network model has excellent accuracy in predicting the flow
stress of BT25 titanium alloy. After the training procedure, the
network model is tested by unused data sets for the sake of
checking whether the predicted results agree with the exper-
imental results. Figure 8 shows the plot of experimental flow
stress and predicted value by ANN model at strain of 0.7. The
correlation coefficient is obtained to be 0.999, indicating that a
desired predicted accuracy between the predicted and experi-
mental value has been achieved. Additionally, combined with
the established constitutive equation, the performance of the
ANN model trained with BP algorithm is investigated by
analysis of the relative error (RE) of neural network predictions
for testing data (at strain of 0.7) which was unused earlier. The
comparison of relative error between the experimental, calcu-
lated data by regression method and predicted data by ANN are
shown in Fig. 9. The results demonstrate that the relative error
obtained from the ANN model varied from �9 to 5%.
However, the relative error is in the range of �16.5 to 21.3%
for the regression method. Thus, the flow stress values are fitted
better in the ANN model than the regression method. For
perfect comparison, the constitutive equation model is
employed to predict the flow stress and compared with the
experimental values as shown in Fig. 10. The correlation
coefficient is 0.988, which is lower than that acquired from the
ANN model. Meanwhile, the standard deviation (SD) of the
results pertaining to ANN model and constitutive equation
developed by regression method are 1.776 and 11.237,
respectively (Fig. 8 and 10). This means that the accuracy of
predicted flow stress based on the ANN model is higher than
that using the regression method and a good correlation
between the predicted and experimental data has been achieved
by the ANN model.

In order to make a direct analysis, Fig. 11 shows the plot of
experimental value of flow stress and predicted value by both
ANN and regression model at strain of 0.7 and deformation
temperature of 940 and 980 �C. It can be observed that the

Fig. 7 Comparison of experimental and predicted values using
training set

Fig. 8 Comparison between experimental and predicted values by
ANN model using testing set at strain of 0.7

Fig. 9 Comparison of relative error of predicted value by ANN and
calculated value by regression method with experimental value
(e = 0.7)
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results by ANN model agree well with the experimental, while
the results by regression method give a fair estimate of the flow
stress under the most deformation conditions except for the
large error which occurred at strain rate of 10 s�1. Additionally,
Eq 7 developed using the regression model can only provide
the values of flow stress at strain of 0.7, which is limited in
describing the true stress-true strain curves in the whole strain
range. Alternatively, the technique of ANN is more beneficial
to predict the flow stress and establish the constitutive
relationship of BT25 titanium alloy under the condition of
various strains. Figure 12 shows the comparison of the
predicted values by ANN model with experimental values in
the whole range of strain. It indicates that the established
network model can offer an accurate and precise evaluation of
flow stress at all the deformation conditions, and the predicted
data can track the feature of dynamic softening very well.

Therefore, it can be concluded that the ANN model based on
the BP learning algorithm is a more effective tool to represent
the dynamic deformation behavior of the BT25 titanium alloy
during high temperature deformation. Also, the results imply

that the developed constitutive relationship model using ANN
for the BT25 titanium alloy are consistent with what is expected
from fundamental theory of hot deformation, which suggests
that the established network model possesses excellent capa-
bility to predict the work hardening and flow softening stages.
Although the regression model can represent the flow behavior
as a fit of one equation or a set of equation parameters under a
certain condition, it cannot capture the essence of the specific
deformation characteristics.

5. Conclusions

The modeling of flow behavior of BT25 titanium alloy
under various hot deformation conditions was accomplished
through the flow stress prediction using ANN and constitutive
equation, respectively. The following conclusions can be drawn
from the results:

1. The flow stress curves exhibit work hardening and flow
softening in BT25 titanium alloy at low to medium
strains depending on the magnitudes of deformation tem-
perature and strain rate.

2. Using the non-linear regression method and assuming a
hyperbolic sine equation between the stress, strain rate,

Fig. 10 Comparison between experimental and calculated values
by regression method (e = 0.7)

Fig. 11 Comparison of the flow stresses obtained from experimen-
tal versus ANN model and regression method at 940 and 980 �C
(e = 0.7)

Fig. 12 Comparison of the ANN prediction with experimental va-
lue at (a) 940 �C and (b) 0.01 s�1

1596—Volume 21(8) August 2012 Journal of Materials Engineering and Performance



and deformation temperature, the average value of defor-
mation activation energy of the alloy was derived as
623.26 kJ/mol at strain of 0.7.

3. The developed ANN model with BP neural network is
able to predict the flow stress of the present alloy over
the ranges of strain, strain rate, and temperature used in
this study.

4. The ANN model has a better prediction at the whole
deformation conditions while the hyperbolic sine equa-
tion developed by regression method has a weaker pre-
diction compared with the ANN model.
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