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Springback and cross-sectional ovalization are two important defects in the bending formation of tubular
parts. In this article, an analytic model considering ovalization is presented to calculate the springback and
tangential strain in tube bending. Compared with the calculation neglecting ovalization, the proposed
model could better predict the trends of springback angle over bending radius ratio and wall thickness
ratio. Moreover, calculation of the tangential strain indicates that the bending deformation is more severe in
the middle than at the ends of a bent tube. Through comparison of the results of this model and the
calculations neglecting ovalization, it is shown that the effects of ovalization on springback are negligible
only if the bending radius ratio and the wall thickness ratio are large enough. Also, the influence of
ovalization differs a lot from one material to another.
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1. Introduction

Bending forming is widely utilized to produce tubular parts
in automotive, aerospace, and oil industries. The tube bending
technology has long been limited by a series of forming defects,
including bending springback, cross-sectional distortion, wall
thickness variation, and wrinkling. Bending springback is the
change in bending angle resulting from the elastic strain
recovery during unloading. The distortion of the cross section,
which takes the form of ovalization in the case of a circular tube
(Ref 1), is an unwanted byproduct of the bending process (Ref
2). It changes the interior shape of the bent tube and thus
influences the tube�s performance in fluid transmission. Cross-
sectional distortion also influences the bending springback of a
beam (Ref 3-5). The laws of cross-sectional distortion have
been investigated and several approaches have been proposed
to control the distortion (e.g., Ref 1, 6-12).

The accurate prediction of tube bending springback has been
a challenging task. A number of analytic models have been
presented successively to calculate the springback. Al-Qureshi
(Ref 13, 14) analyzed circular tube bending assuming that the
material is ideally plastic and calculated the change in curvature
radius caused by springback. This model was further developed
by Megharbel et al. (Ref 15) by taking strain hardening into
account. As the accuracy of elbow angle is crucial in the
manufacturing and assembly of pipelines, the springback angle
has also been paid attention to Zhan et al. (Ref 16) investigated
the dependence of springback angle on bending angle and

material parameters. More recently, Daxin and Liu (Ref 17)
predicted the springback angle of 1Cr18Ni9Ti stainless steel
tubes and addressed the relations between springback angle and
geometrical parameters. This review is not exhaustive; many
experimental and numerical investigations on springback

Yafei Liu and Daxin E, School of Materials Science and Engineering,
Beijing Institute of Technology, Beijing 100081, China. Contact
e-mails: yafei.liu@mail.utexas.edu and daxine@bit.edu.cn.

Nomenclature

R bending radius (curvature radius of neutral surface

before unloading)

R¢ curvature radius of neutral surface after unloading

d outer diameter

r outer radius

t wall thickness

R/d bending radius ratio

t/d wall thickness ratio

u bending angle (angle before unloading)

u¢ angle after unloading

Du springback angle

h tangential position on the bent tube

a1, a2 circumferential positions on the cross sections of the

tube

q curvature radius before unloading

q¢ curvature radius after unloading

a length of the major axis of the distorted cross section

b length of the minor axis of the distorted cross section

E Young�s modulus

C strength coefficient

n strain hardening exponent

e tangential strain

r tangential stress

emax maximum tangential strain (tangential strain at the

extrados)

D calculation deviation rate of springback angle

B breadth of the cross section

I cross-sectional moment of inertia

M bending moment

UDR uniformly distorted region

NUDR non-uniformly distorted region

JMEPEG (2011) 20:1591–1599 �ASM International
DOI: 10.1007/s11665-010-9813-z 1059-9495/$19.00

Journal of Materials Engineering and Performance Volume 20(9) December 20011—1591



prediction and compensation have also been reported in recent
years.

Despite the insights gained, our previous model (Ref 17) has
limitations because the bending deformation of a tube is
complicated and several assumptions had to be adopted to
simplify the analysis. The cross section was considered
unchanged during bending. For the material (1Cr18Ni9Ti steel)
and processing parameters discussed, the ovalization is not
significant so that the prediction basically agree with experi-
ments after being corrected. Nevertheless, bending with larger
ovality was not addressed and the effects of ovalization are not
known. Moreover, the wall thickness was assumed to be small
compared with the tube diameter, making the analysis less
accurate when the wall thickness is thicker.

This article presents an improved model for tube bending
analysis. The wall thickness is no longer assumed to be very
small. More importantly, the cross-sectional ovalization is taken
into account in the analysis. The non-uniformity of cross-
sectional distortion in practical bending processes is also
considered. Furthermore, aluminum tubes (5A03) and small
bending radius ratios (R/d = 2), both of which render relatively
severe ovalization, are studied experimentally and analytically.
Based on the newly proposed model, the bending springback
angle is predicted, and the results are compared with both
experiments and the calculations neglecting ovalization. The
strain distribution alongside the tubes is also explored. The
effects of ovalization on springback and strain distribution are
discussed.

2. Analysis Neglecting Ovalization

The geometry of a bent tube is shown in Fig. 1. The
tangential length of the neutral surface is considered the same
before and after unloading (Ref 17). Thus,

Ru ¼ R0u0 ðEq 1Þ

where R is the curvature radius before unloading, or the
bending radius; and R¢ is the curvature radius after unloading;
u is the angle before unloading, or the bending angle; and u¢
is the angle after unloading.

Based on the plane�s cross section assumption, for arbitrary
fiber layer in the tube wall, there is an equation (Ref 17)

y

R
� y

R0
¼ My

EI
ðEq 2Þ

where M is the bending moment, I the cross-sectional moment
of inertia, and E the Young�s modulus of the material.

Based on Eq 1 and 2, the expression of springback angle is
obtained:

Du ¼ u� u0 ¼ MR

EI
u ðEq 3Þ

As the cross section of a circular tube is symmetric about the
neutral axis, the bending moment could be calculated as (Ref 15)
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(Eq 4)

where r and t are the outer radius and wall thickness of the
tube, respectively; C and n are the strength coefficient and
strain hardening exponent of the material, respectively. In this
expression, a power-law stress-strain relation is adopted.

The cross-sectional moment of inertia is expressed as

I ¼ p
4
r4 � r � tð Þ4
h i

ðEq 5Þ

Substituting Eq 4 and 5 into Eq 3, we obtain

Du

¼
16CR1�n R r

0 y
nþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
r2�y2

p
dy�

R r�t
0 ynþ1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r� tð Þ2�y2

q
dy

� �

pE r4� r� tð Þ4
h i u

ðEq 6Þ

Given that sin a1 = y/r, and sin a2 = y/(r� t), this equation
becomes

Du ¼ 16gCR1�nu
pE

�
rnþ3 � r � tð Þnþ3
h i

r4 � r � tð Þ4
h i ðEq 7Þ

Fig. 1 Geometry of a bent tube without cross-sectional distortion
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where

g ¼
Zp

2

0

sinnþ1a� sinnþ3a
� �

da ðEq 8Þ

Clearly, the value of g is determined by the strain hardening
exponent alone.

The maximum tangential strain, namely, the tangential strain
at the extrados, could be given as

emax ¼
r

R
ðEq 9Þ

3. Analysis Considering Ovalization

In the elastic-plastic bending of tubes, a major part of the
cross section has been plastically distorted at the end of
loading. Thus, substituting the original dimensions of the cross
section into Eq 7 and 9 will not yield the precise calculation
results of springback angle and tangential strain. An approach
with greater accuracy is to consider the shape and dimensions
of the distorted cross section in the calculation.

To begin with, consider an idealized case in which the shape
and dimensions of the distorted cross section are the same along
the length of a bent tube. Experiments have shown that the
external and internal contours of a distorted cross section could
be closely approximated by two ellipses when the ovalization is
not too severe (see Fig. 2a). Thus, the outer contour of the
distorted cross section could be approximately given as

x2

a2
þ y2

b2
¼ 1 ðEq 10Þ

where a and b are the lengths of the major and minor axes of
the ellipse, respectively. The inner contour of could be given
as

x2

a� tð Þ2
þ y2

b� tð Þ2
¼ 1 ðEq 11Þ

where t is the wall thickness of the tube. The geometry of the
distorted cross section is shown in Fig. 2(b).

The breadth of the cross section at the distance y from the
neutral axis is given as

B yð Þ ¼ 2 a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2
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r
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when y< b� t or

B yð Þ ¼ 2a

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� y2

b2

r
ðEq 13Þ

when b� t< y< b.
Similar Eq 4, the bending moment could be expressed as
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(Eq 14)

The cross-sectional moment of inertia of the distorted cross
section is

I hð Þ ¼ p
4
ab3 � a� tð Þ b� tð Þ3
h i

ðEq 15Þ

Substituting Eq 14 and 15 into Eq 3, we obtain

Fig. 2 Cross section after bending deformation. (a) Photograph of a
distorted cross section. The bent tube was cut utilizing a wire cutting
machine. (b) Geometry of an elliptical cross section
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pE ab3 � a� tð Þ b� tð Þ3
h i u ðEq 16Þ
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Given that sin b1 = y/b, and sin b2 = y/(b� t), this equation
becomes

The expression of g has been given in Eq 8.
The maximum tangential strain, namely the tangential strain

at y = b, could be given as

emax ¼
b

R
ðEq 18Þ

The analytic solution of springback angle and maximum
tangential strain considering ovalization could be easily
obtained by substituting the analytic expressions of a and
b into Eq 17 and 18. In this way, springback angle and
maximum tangential strain could be expressed as functions of
geometric parameters and material parameters. However, in
order to reveal the effects of ovalization in a more precise way,
the measured dimensions of the distorted cross section will be
utilized instead.

In practical bending processes, the ovalization is not
uniform in the longitudinal direction. Schematically, Fig. 3
shows the geometry of a bent tube with non-uniform ovaliza-
tion. The tube could be divided into three regions. They will be
referred to as the uniformly distorted region (UDR), the non-
uniformly distorted region (NUDR) and the undeformed region.
The two ends of the deformed region are constrained by the
undeformed region. The forces applied by the clamps and/or
insert plugs (Ref 1) at the ends also lead to the traverse
deformation of the cross section. As a result, a non-uniformly
distorted region is produced at the ends of the deformed region.
But in the middle region far away from the undeformed region,
the effects of the transverse constrain are negligible according

to the Saint-Venant�s principle. Thus, the bending moment acts
as the only load and the ovalization is supposed to be uniform.

This region is the UDR. As a matter of fact, both the
experiments performed by Khodayari (Ref 18) and the bending
tests in this study have verified that the ovalization in the UDR
is basically uniform and larger than that in the NUDR.

Consider the cross section at arbitrary tangential position of
a non-uniformly distorted tube. The expression of the bending
moment could be written as

M ¼ 2

Zb

0

y Cen yð Þ½ �B yð Þdy ðEq 19Þ

in which

e yð Þ ¼ emax
y

b
ðEq 20Þ

where emax is the tangential strain at the extrados.
Equations 19 and 20 yield

emax ¼ b
M

2C
R b
0 ynþ1B yð Þdy

 !1=n

ðEq 21Þ

We can further obtain

q ¼ b

emax
¼ M

2C
R b
0 ynþ1B yð Þdy

 !�1
n

ðEq 22Þ

where q is the curvature radius of the neutral surface at the
same tangential position.

Fig. 3 Schematic of a bent tube with non-uniform ovalization

Du ¼
16CR1�nu abnþ2

R p
2
0 sin bnþ1

1 � sin bnþ3
1

� �
db1 � a� tð Þ b� tð Þnþ2

R p
2
0 sin bnþ1

2 � sinbnþ3
2

� �
db2

n o

pE ab3 � a� tð Þ b� tð Þ3
h i

¼ 16gCR1�nu
pE

�
abnþ2 � a� tð Þ b� tð Þnþ2
h i

ab3 � a� tð Þ b� tð Þ3
h i (Eq 17)
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Since the bending moment is considered constant along
the tube, the more oval the distorted cross section, the
smaller the integral in Eq 22 and the smaller the curvature
radius. Therefore, the curvature radius in the UDR is smaller
than that in the NUDR. Also, the curvature radius is
almost uniform in the UDR. The bending tests in this study
showed that the region u/4< h < 3u/4 could be conserva-
tively taken as the UDR. Correspondingly, the average
curvature radius in this region could reasonably be taken as
the bending radius. Thus, based on Eq 22, the bending radius
is calculated as

R ¼
R u2

u1
q hð Þdh

u2 � u1

¼

R u2

u1
2C
R bðhÞ
0 ynþ1B h; yð Þdy

h i1=n
dh

M1=n u2 � u1ð Þ
ðEq 23Þ

where u1 and u2 are the boundaries of the UDR; q(h) is the
curvature radius at h.

Equation 23 yields

M ¼

R u2

u1
C
R bðhÞ
�bðhÞ y

nþ1B h; yð Þdy
h i1=n

dh

R u2 � u1ð Þ

8><
>:

9>=
>;

n

ðEq 24Þ

Substituting Eq 24 into Eq 22, we obtain

q hð Þ ¼ 2C

ZbðhÞ

0

ynþ1B h; yð Þdy

0
B@

1
CA

1=n

� R u2 � u1ð Þ
R u2

u1
2C
R bðhÞ
0 ynþ1B h; yð Þdy

h i1=n
dh

¼ a hð Þb hð Þnþ2� a hð Þ � t½ � b hð Þ � t½ �nþ2
n o1=n

� R u2 � u1ð Þ
R u2

u1
a hð Þb hð Þnþ2� a hð Þ � t½ � b hð Þ � t½ �nþ2
n o1=n

dh

ðEq 25Þ

To calculate the springback angle, the bent tube is divided
into many tube segments with infinitesimally small lengths.

Within each small segment, the variation in cross-sectional
dimensions is negligible compared with the dimensions of the
cross section. Thus, it is feasible to consider each segment
(see Fig. 3) as a uniformly distorted one for approximation.
Consider the tube segment between h and h + dh. Its bending
angle is dh; the lengths of the major and minor axes of the
distorted cross section are a(h) and b(h), respectively; the
springback angle is denoted as D(dh); the curvature radius
before loading is q(h), which is expressed as Eq 25.
Therefore, similar to Eq 17, the springback angle could be
calculated as

Integrating this equation alongside the tangential direction,
we obtain the springback angle of the whole bent tube:

Based on Eq 25, the tangential strain at the extrados could
be calculated as

emax hð Þ¼ b hð Þ
q hð Þ

¼
b hð Þ

R u2

u1
a hð Þb hð Þnþ2� a hð Þ� t½ � b hð Þ� t½ �nþ2
n o1=n

dh

a hð Þb hð Þnþ2� a hð Þ� t½ � b hð Þ� t½ �nþ2
n o1=n

R u2�u1ð Þ

ðEq28Þ

The tangential strain at a position other than the extrados
could be calculated using Eq 20 and 28.

The integrals in Eq 27 and 28 are calculated though
numerical integration utilizing MATLAB. The values of
a and b were obtained experimentally.

4. Experiment

The cross-sectional dimensions after bending were obtained
through bending tests of tubes. Tubes of 1Cr18Ni9Ti stainless
steel and 5A03 aluminum alloy were tested. The mechanical
properties of both materials obtained though tensile tests are
presented in Table 1.

Bending tests were carried out utilizing a VB-100HP CNC
bending machine. Neither axial force nor internal pressure was
applied in the tests. Tests with bending angles of 45�, 90�, 145�,
and 180� were performed. The lengths of the major and minor
axes of the distorted cross sections were measured. Tubes bent
to u = 45� or 90� were measured at h = 0, h = u/2, and h = u

D dhð Þ ¼
16C a hð Þb hð Þnþ2� a hð Þ � t½ � b hð Þ � t½ �nþ2

n o1=n
R u2�u1ð ÞR u2

u1
a hð Þb hð Þnþ2� a hð Þ�t½ � b hð Þ�t½ �nþ2f g1=ndh

( )1�n

pE a hð Þb hð Þ3� a hð Þ � t½ � b hð Þ � t½ �3
n o � g � dh ðEq 26Þ

Du ¼ 16gCR1�n

pE

Zu

0

a hð Þb hð Þnþ2� a hð Þ � t½ � b hð Þ � t½ �nþ2
n o1=n u2�u1ð ÞR u2

u1
a hð Þb hð Þnþ2� a hð Þ�t½ � b hð Þ�t½ �nþ2f g1=ndh

( )1�n

a hð Þb hð Þ3� a hð Þ � t½ � b hð Þ � t½ �3
n o dh ðEq 27Þ
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while those bent to u = 145� or 180� were measured at h = 0,
u/4, u/2, 3u/4, and u. Based on the measured values at these
points, the lengths of the major and minor axes of the cross
sections at all tangential positions were obtained through cubic
spline interpolation. In addition to the cross-sectional dimen-
sions, the springback angles of some bent tubes were measured
with a laser measuring instrument.

5. Results and Discussion

5.1 Strain Distribution

The ovalizations of one steel tube and two aluminum tubes
obtained through measurements and cubic spline interpolation
are shown in Fig. 4. The ovalization is characterized by the
ratio of the semi-major axis to the original tube radius (a/r) and
the ratio of the semi-minor axis to the original radius (b/r).
Based on this result, the maximum tangential strain values both
by neglecting ovalization and considering ovalization are
calculated utilizing Eq 9 and 28, respectively. Comparison
between the two calculations (see Fig. 5) indicates that
ovalization leads to a decrease in the maximum tangential
strain in both the UDR and the NUDR. Also, as a result of the
non-uniformity of ovalization, the tangential deformation is not
uniform in the longitudinal direction; the deformation is much
less severe in the NUDR than in the UDR. In the UDR, the
deformation is basically uniform, but in the NUDR, a gradual
variation in the degree of deformation is seen. Furthermore, the
ovalization of aluminum tubes is more significant than that of
steel tubes. Also, both the reduction in maximum tangential
strain and the non-uniformity of deformation are more obvious
in the aluminum tubes than in the steel tube.

The non-uniform bending deformation revealed by calcula-
tion could be verified by FE simulation and experiments.
Figure 6 shows the simulation result of a 1Cr18Ni9Ti stainless

steel tube (Ref 19). The thickness strain at the extrados (or
intrados) is the greatest in the middle and decreases toward both
ends. This means that the deformation is less severe at the ends
than in the middle. Furthermore, since it is generally considered
that the circumstantial strain is small compared with the
tangential strain and the thickness strain, it could be inferred
that the distribution of tangential strain is similar with that of
thickness strain shown in the figure. This coincides with the
calculation considering ovalization. Moreover, the calculation
result of tangential strain agrees qualitatively with published
experimental results. Al-Qureshi and Russo (Ref 14) divided a
bent tube into several segments and measured the tangential
strain in each segment. It was found that the tangential strain is
the largest in the middle; the nearer to the ends, the smaller the
tangential strain.

5.2 Springback

Taking the cross-sectional ovalization into account results in
a larger predicted springback angle as shown in Fig. 7-9. It has
been demonstrated that when the bending angle remains
constant, the springback angle increases with an increasing

Table 1 Mechanical properties of tube materials

Material E, GPa C, MPa n

Steel (1Cr18Ni9Ti) 198 1093 0.374
Aluminum (5A03) 73 273 0.160

Fig. 4 Distribution of ovalization in the longitudinal direction Fig. 6 Simulation result of the thickness strain (Ref 19)

Fig. 5 Distribution of the maximum tangential strain in the longitu-
dinal direction. The straight lines are the calculation results neglect-
ing ovalization; the curves are the calculation results considering
ovalization
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bending radius ratio (Ref 17). Equation 22 indicates that since
the distorted cross section is more ovalized in the middle than at
the ends, the curvature radius in the NUDR is greater than that
in the URD, which is considered as the bending radius.
Experiments also show that the curvature radius is not equal in
different tube sections. As a result, the actual specific
springback angle Du/u in the NUDR is greater than that
predicted using the bending radius. Moreover, ovalization
reduces the distance between the tube wall and the neutral
surface, which means that the effect of ovalization is similar to
that of a reduction in tube diameter: both of them reduce the
tangential strain, raise the portion of elastic deformation, and
thus increase the magnitude of springback (Ref 17).

To evaluate the degree to which the springback angle is
raised, a parameter D is introduced:

D ¼ DuOval � DuCirc

DuCirc

� 100% ðEq 29Þ

where DuOval and DuCirc are the predicted springback angles
by considering ovalization (Eq 27) and neglecting ovalization
(Eq 7), respectively. D will be referred to as the ‘‘calculation
deviation rate’’ in the following discussions.

In tube bending, the springback angle is determined by
material parameters (including C, E, and n) and geometrical

parameters (the bending angle u, the outer diameter d, the wall
thickness t, and the bending radius R). Without considering the
size effect (Ref 20), the springback angles of tubes of the same
material and bending angle are equal only if the R:d:t ratios are
the same. That is to say, there are only three independent
geometrical parameters: bending angle u, wall thickness ratio t/
d, and bending radius ratio R/d. In this section, the effects of
these three parameters on D will be discussed. The effects of
material properties will also be addressed by comparing the
aluminum tubes with the steel tubes.

5.2.1 Bending Angle. Bending angle does not have a
significant effect on the calculation deviation rate. Table 2
shows that the D value is basically the same for different
bending angles (except 45�). What is more, the two tubes in the
table have similar geometrical parameters, but the D values of
the aluminum tube are much larger than those of the steel tube.
The ovalization of the steel tube is negligible for approximate
calculation while the ovalization of the aluminum tube must be

Fig. 9 Calculated springback angles with various bending radius
ratios. (a) steel tubes; (b) aluminum tubes

Fig. 8 Theoretical and experimental springback angles with various
wall thickness ratios

Fig. 7 Calculated springback angles with various wall thickness
ratios

Table 2 Calculation deviation rates with different
bending angles

Material

D, %

45� 90� 135� 180�

Steel 4.3 7.4 8.6 7.6
Aluminum 46.7 36.2 37.4 35.4
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considered. That is to say, whether ovalization is negligible is
considered on a case-to-case basis; it depends largely on the
mechanical property of the tube material.

5.2.2 Wall Thickness Ratio. The springback angle
increases as the wall thickness ratio increases as shown in Fig. 7.
According to the calculation in Ref 17, the springback angle
increases first and reduces afterward with the increase of
t/d. Obviously, the monotonic relation is more realistic.

If ovalization is taken into consideration, it results in larger
predicted springback angles for all the wall thickness ratios.
Table 3 shows that as t/d increases, the ovality reduces. The
influence of ovalization on springback also becomes less
significant; it becomes very insignificant when t/d reaches 1/3.
Moreover, the smaller the R/d, the more significant the
influence of ovalization on springback. When R/d ‡ 2.5 (see
Fig. 7), the predicted springback angle considering ovalization
increases with the increase of t/d, though the slope is smaller
than its counterpart when neglecting ovalization. However, in
the case of R/d = 2 (see Fig. 8), the trend of springback angle
over wall thickness ratio has been changed by the pronounced
ovalization. The experimental data in Fig. 8 indicate that
considering ovalization renders a more accurate prediction of
the trend of springback over t/d. The experimental results have
been divided by a factor (1.56 for this specific material and
bending process) so that they could be better compared with the
calculations. Therefore, the analytic results could be well
applied to production after proper correction. As for the
quantitative discrepancy between experimental and analytical
results, it is mainly due to an undesirable deformation of the
straight portion of the tube (Ref 16, 17).

5.2.3 Bending Radius Ratio. The severity of ovalization
is a function of the bending radius ratio. Table 4 presents the
ovality (characterized by (r� b)/r, the rate of change of the
minor axis) at the mid span and the consequential calculation
deviation rates. Clearly, with a decreasing R/d, the bending
deformation becomes more severe, and the ovality thus
increases. The D values also increase, which means that the
discrepancy between the calculations considering ovalization
and that neglecting ovalization becomes larger (see Fig. 9).
That is to say, R/d influences the calculation deviation rate
indirectly through affecting the degree of ovalization. However,
it should be noted that even if both the dimensions and the
degree of ovalization of two bent tubes are the same, their
D values are usually different if their materials are different.
Actually, in Eq 7 and 27, n exists in the integral terms that
incorporate the major and minor axes and thus has an effect on
D while C and E do not influence the D value directly.

Figure 9 shows the calculated springback angles of alum-
imum tubes and steel tubes. Within the range of R/d shown in
the figure, the predicted springback angle neglecting ovaliza-
tion increases almost linearly with the increase of R/d. For the
steel tubes, there is a slight influence of ovalization on
springback, and the shape of the curve has been changed little.
However, for aluminum tubes, taking ovalization into account
has resulted in a marked change. When R/d is small enough
(less than 2.5), the increment in predicted springback angle
caused by considering ovalization will offset the reduction
caused by the decrease of R/d. Thus, the calculation result of
R/d = 2 is almost the same with that of R/d = 2.5, which is
verified by experiments (see Table 5).

5.2.4 The Condition on Which Ovalization is Negligi-
ble. The discussions above show that the bending angle does
not have a significant effect on the calculation deviation rate;
instead, the material properties, bending radius ratio, and wall
thickness ratio are found to be the most influential factors. For
each tube material, the limit condition on which the effect of
ovalization on springback is negligible is obtained empirically
as shown in Fig. 10. Utilizing different colors, the calculation
deviation rates corresponding to various R/d and t/d values are
shown. When R/d + 8t/d> 4.25, the calculation deviation rate
is less than 3%. When R/d + 15t/d> 6.5, the rate is less than
2%. The limit condition of other materials could also be
obtained in the same way. This method could be useful in
designing and engineering calculation.

6. Conclusions

In this study, a model considering non-uniform ovalization
has been developed to calculate the springback angle and
tangential strain in tube bending. Through comparing the
calculation results by considering ovalization and those by
neglecting ovalization with experimental data, it is shown that
the proposed model is more accurate. The qualitative correla-
tion between springback angle and geometrical parameters
(R/d and t/d) shown in experiments could be better predicted

Fig. 10 Calculated deviation rates of steel tubes

Table 5 Experimental springback angles with small
bending radius ratios

R/d Du, �

2 3.2
2.5 3.3

The tubes are aluminum ones with t/d = 0.0833 bent to 180�

Table 3 Calculation deviation rates of steel tubes
with various wall thickness ratios (R/d = 3)

t/d 0.0625 0.125 0.15 0.1667 0.1875 0.25 0.3333

(d� b)/d, % 6.15 3.99 3.57 4.15 3.11 0.99 0.58
D, % 4.0 3.2 2.3 2.8 2.6 1.7 0.7

Table 4 Ovality and calculation deviation rates
of aluminum tubes with various bending radius ratios

R/d 2 2.5 3 3.5

(r� b)/r, % 14.58 9.02 8.18 4.36
D, % 36.8 13.6 11.3 7.7
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using the model considering springback. After simple correc-
tion, the predicted values could be well applied to practical
bending processes.

Taking ovalization into account leads to a larger predicted
value of springback. The inaccuracy caused by neglecting
ovalization various greatly with bending radius ratio and wall
thickness ratio. The smaller the R/d and t/d the values, the more
significant the influence of ovalization on springback. More-
over, the influence of ovalization differs a lot from one material
to another. The ovalization of the aluminum tubes is much more
influential than that of the steel tubes. For aluminum tubes with
relatively small R/d and t/d values, ovalization must be
considered to obtain a precise calculation.

The effects of ovalization on strain distribution have also
been explored. Calculation indicates that ovalization leads to a
reduction in the maximum tangential strain. Moreover, non-
uniform ovalization results in non-uniform deformation; the
bending deformation is the most severe in the middle segment
of the bent tube.

The authors believe that this research could facilitate future
explorations into the bending deformation of tubes. Though
only circular tubes have been dealt with in this article, cross
sections with other shapes could also be studied with a similar
approach. It is also believed that the results of strain distribution
will be helpful in investigating springback as well as other
defects in tube bending.
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