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In this work, different artificial neural networks (ANN) are developed for the prediction of surface
roughness (Ra) values in Al alloy 7075-T7351 after face milling machining process. The radial base (RBNN),
feed forward (FFNN), and generalized regression (GRNN) networks were selected, and the data used for
training these networks were derived from experiments conducted using a high-speed milling machine. The
Taguchi design of experiment was applied to reduce the time and cost of the experiments. From this study,
the performance of each ANN used in this research was measured with the mean square error percentage
and it was observed that FFNN achieved the best results. Also the Pearson correlation coefficient was
calculated to analyze the correlation between the five inputs (cutting speed, feed per tooth, axial depth of
cut, chip�s width, and chip�s thickness) selected for the network with the selected output (surface roughness).
Results showed a strong correlation between the chip thickness and the surface roughness followed by the
cutting speed.

Keywords face milling, feed forward, generalized regression,
radial base, surface roughness

1. Introduction

Surface roughness (arithmetic average, Ra) is commonly
used as one of the principal methods to assess high-quality
products in the manufacturing industries.

The ability of a workpiece to distribute and hold a lubricant
as well as to accept a coating, resist fatigue, friction, and wear is
related to its surface roughness. Also the interactions between
the workpiece material-cutting tool-machining system have an
impact on surface roughness, surface texture, and dimensional
deviations of the product being machined.

The idea of predicting the surface roughness prior to
machining has attracted a lot of attention, being the main goal
of a number of research efforts.

An artificial neural network (ANN) is a mathematical model
of a physical process which comprises a large number of
processing elements organized into layers.

Before a network can perform a useful task, it has to be
trained using a set of inputs and known outputs. Once trained,
the network is able to give a particular answer for a given set of
inputs.

In this article, several ANNs are developed to predict
surface roughness on Al 7075-T7351 after face milling process.
Five inputs (cutting speed, feed per tooth, axial depth of cut,
chip�s width, and chip�s thickness) were considered for the
development of the networks (Radial Base, Feed Forward and

General Regression). The networks were compared between
each other, selecting the one that achieved the best performance
when comparing the predicted and measured surface roughness
value.

2. Literature Review

Engineered components must satisfy surface texture require-
ments and, traditionally, surface roughness (arithmetic average,
Ra) has been used as one of the principal methods to assess
quality. The surface roughness value is a result of the cutting
parameters and tool wear. Moreover, surface finish influences
mechanical properties such as fatigue behavior, wear, corro-
sion, lubrication, and electrical conductivity. Thus, measuring
and characterizing surface finish can be considered for
predicting machining performance.

Luong and Spedding (Ref 1) applied neural network
technology for the prediction of machining performance in
metal cutting. Their network was trained using data from a
machining data handbook. They concluded that the network
was able to determine conditions for a given material and
required depth of cut, and to predict the performance of the
process in terms of cutting forces, surface finish, and tool life.
Also they recognized that there is a lack of guidance on
network design.

For the prediction of surface roughness, Benardos and
Vosniakos (Ref 2) used a feed forward ANN. The experimental
data was obtained after face milling Al alloy normally used in
aerospace applications. They concluded that an ANN can be
used reliably, successfully, and very accurately for the modeling
of surface roughness formation mechanism and the prediction
of its value in face milling.

In 2005, Bisht et al. (Ref 3) developed a back propagation
neural network for the prediction of flank wear in turning
operations. In their case, they included the chip width in
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addition to the existing inputs (cutting speed, feed rate, depth
of cut, and cutting forces). They concluded that the back
propagation neural network could be trained for the effective
prediction of flank wear during turning operations.

Pal and Chakraborty (Ref 4) predicted the surface roughness
in a turning process by using a back propagation neural
network. A large number of experiments were performed on
mild steel using a high-speed cutting tool. They showed the
efficacy of a back propagation neural network for predicting
surface roughness in turning.

In 2006, Basak et al. (Ref 5) developed radial basis neural
network models when turning AISI D2 cold-worked tool steel
with ceramic tool. They identified the best values of cutting
parameters for a desired value of surface roughness.

In 2006, Zhong et al. (Ref 6) predicted surface roughness
heights Ra and Rt of turned surfaces using a neural network.
The experiments were conducted using aluminum and copper
rods of 19 mm diameter. Their study showed the effect of the
neural network and hyperbolic tangent and sigmoid activation
functions on the accuracy of the network.

The determination of best cutting parameters leading to a
minimum surface roughness in end milling mold surfaces used
in biomedical applications was done by Oktem et al. (Ref 7).
For their research, they coupled a neural network and a genetic
algorithm (GA) providing good results to solve the optimiza-
tion of the problem.

In 2007, Lin et al. (Ref 8) developed a surface prediction
model for high-speed machining 304L stainless steel, Al 6061-
T6, SKD11, and Ti-4Al-4V. For this purpose, the finite element
method and neural network were coupled, and they concluded
that surface roughness may quickly be determined from the
prediction model developed when the process parameters
are set.

In 2007, Jesuthanam et al. (Ref 9) proposed the develop-
ment of a novel hybrid neural network trained with GA and
particle swarm optimization for the prediction of surface
roughness. The experiments were carried out for end milling
operations, and they found that the proposed hybrid neural
network is competent in terms of computational speed and
efficiency over the neural network model.

As it is observed once completing the literature review, most
of the ANN has been developed for turning process giving less
attention to face milling operations. Due to this fact and
considering the importance of the face milling process in many
industries, for example, the mold and die industry, the radial
base (RBNN), feed forward (FFNN), and generalized regres-
sion (GRNN) neural networks architecture are developed in this
research to help engineers in the manufacturing field to predict
the desire surface roughness for a specific environment by
selecting the optimum combination of cutting parameters.

3. Experimental Procedure

3.1 Workpiece Characteristics

Aluminum alloy 7075-T7351 square bars, 3339 76.29
31.75 mm3 as suggested by ISO Standard 8688-1 (Ref 10),
were used for the experiments. This material was selected for
the experiments because it is widely used where low weight is
needed such as in plates, sheet, and extrusions of airframes.
Also, this Al alloy has some advantages such as good

resistance, high strength, heat treatable, and high toughness.
Table 1 and 2 show the chemical composition and the
mechanical properties of the Al 7075-T7351 alloy, respectively.

3.2 Tool and Tip Characteristics

A standard insert holder of ØTool = 32 mm with two cutting
edges (inserts) Z = 2 were used for the experiments. As tool
insert, SDHT 120508FR-ALP CWK26 (tool nose radius of
0.8 mm), was used as recommended by the tool suppliers for
Al alloy under a wet cutting operation.

The ØTool = 32 mm was selected to machine the whole
width of the workpiece in a single pass since the tools diameter
is bigger than the workpiece�s width (ØTool = 32> 31.75 mm).

This condition (ØTool >W) as well as a symmetric position
between the tool and the workpiece will achieve a better
performance of the tool (longer tool life) as suggested by Diniz
and Filho (Ref 11). Figure 1 shows a scheme of the cutting
process.

3.3 Cutting Parameters

Cutting speed, feed per tooth, and the axial depth of cut
were the variables chosen for the study because from previous
research it was observed that these variables had the most
influence on surface roughness and tools life. A low, medium,
and high level was selected for each of the cutting parameter to
have a wide range of combinations. Also the selected values are
recommended from the tool supplier when cutting Al alloy
under wet cutting conditions.

Selected cutting parameters are shown in Table 3.

Table 1 Chemical composition of Al 7075-T7351

%Al ± 0.1 %Cr ± 0.01 %Cu ± 0.01 %Mg ± 0.01 %Zn ± 0.01

87.1-91.4 0.18-0.28 1.20-2.00 2.10-2.90 5.10-6.10

Table 2 Mechanical Properties of Al 7075-T7351

Ultimate strength, MPa 593
Yield strength, MPa 448
Brinell hardness(a) 135

(a) Load = 500 kg and Øball = 10 mm
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Fig. 1 Scheme of the cutting process
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3.4 Equipment Characteristics

A Deckel Maho, DMV 50 eVolution, high-speed vertical
machine center with a maximum spindle speed of 18,000 rpm
was used for the face milling operations.

The tests were conducted under MQL (minimum quantity of
lubricant) since tool wear was not considered as a criterion that
will affect the result of the cutting process due to the fact that
Al 7075-T7351 is a very soft material and the cutting process
was conducted under wet cutting conditions.

3.5 Design of Experiments: Taguchi Method

An efficient method of experimental planning is design of
experiments (DoE), which incorporates the orthogonal arrays
(OAs), developed by Taguchi, to successfully design and
conduct fractional factorial experiments that can collect all the
statistically significant data with the minimum possible number
of repetition.

The selection of the appropriate OA is based on the
following criteria: the numbers of factors and interactions of
interest, the numbers of levels for the factors of interest, and the
desired experimental resolution or cost limitation (Ref 12).

Although a three-level factor is considered as a small OA,
due to cost and time saving the L9 array was selected, and
Table 4 shows the OA for the three cutting parameters selected.
The values 1 to 3 indicate the levels of the three cutting
parameters as these are defined in Table 3.

3.6 Roughness Measurements

A Profilometer, ProScan 2000, using a white lamp was used
for the measurement of Ra values. The sample size used for this
case was 4 mm in the X direction and 4 mm in the Y direction,
and 1335 steps with a size of 0.003 mm each to cover this
49 4 mm2 area was used in the experiments as recommended
in the ProScan manufacturer�s guide for face milling operations.

Three measurements were taken in each sample after cutting
a length of 333 mm as shown in Fig. 2.

Because there was no difference between each of the three
surface roughness measurements made in each sample, an
average of them was taken and considered as the roughness of
the specimen for a specific cutting condition.

3.7 Chip Measurement

Due to the importance of the chips geometry on the surface
roughness, since it�s related to the feed and axial depth of cut,
the chips generated from each trial were collected and measured
to include these variables as one of the inputs of the networks.

The chip�s width (Cw) was measured with an Olympus SZ61
optical magnifier at 912, and for the chip�s thickness (Ct)
measurement, a TESSA micrometer with a range of 0 to 25 mm
with a resolution of 0.01 mm was used. Each dimension (width
and thickness) was measured three times, reporting only the
average values for each of them.

3.8 The Artificial Neural Network

An ANN consists of a number of elementary units called
neurons. A neuron is a simple processor which takes one or
more inputs and produces an output. Each input has an
associated weight that determines the intensity of the input. A
network can be trained to perform certain tasks where the data
is fed into the network through an input layer. This is processed
through one or more intermediate hidden layers and finally it is
fed out to the network through an output layer as shown in
Fig. 3.

The MATLAB 6.5 software, Neural Network Toolbox
function, was used to create, train, validate, and predict the
different ANN reported in this research.

It must be highlighted that the best network architecture
is reached by trial and error after considering different

Table 3 Selected cutting parameters

Level V, m/min fz, mm/rev3 tooth ap, mm

Low (1) 600 0.1 3.0
Medium (2) 800 0.2 3.5
High (3) 1000 0.3 4.0

V, cutting speed; fz, feed per tooth; and ap, axial depth of cut

Table 4 L9 orthogonal array for the experiments

Trial V, m/min fz, mm/rev3 tooth ap, mm

1 1 1 1
2 1 2 2
3 1 3 3
4 2 1 2
5 2 2 3
6 2 3 1
7 3 1 3
8 3 2 1
9 3 3 2

Machined
surface  Cutting direction 

3  2 1

Fig. 2 Scheme indicating the areas where surface roughness mea-
surements were taken

• Cutting speed 

• Feed per tooth 

• Depth of cut 

• Chip width 

• Chip thickness 

Neural 
Network

Ra 

Inputs  Outputs

Fig. 3 Inputs and outputs of the network
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combinations of the number of neurons in the hidden layer,
number of hidden layers, spread parameter, and learning rate,
depending on the type of neural network being used.

From the nine trials, six of them were picked randomly (1, 3,
5, 6, 7, and 8) and were used for training and validating the
network, and the other three trials (2, 4, and 9) were used for
predicting.

During the training of the network, the calculated output is
compared to the target output, and then the mean square error
percentage (%MSE) is calculated by using Eq 1.

%MSEX ¼
Ra � RaX

Ra

�
�
�
�

�
�
�
�
� 100; ðEq 1Þ

where %MSEX is the Mean Square Error in %, Ra is the mea-
sured surface roughness (lm). X is either trained or predicted
depending on the case.

3.8.1 Radial Base Neural Network. This network archi-
tecture can be designed in a very short period of time since
it consists of three layers: (1) input layer, (2) hidden layer, and
(3) output linear layer.

There are only two types of radial base networks, the
newrbe (exact design) and the newrb (more efficient design).
For this study, the newrb was selected since this architecture
interactively creates one neuron at a time. Neurons are added to
the network until the sum-squared error falls beneath an error
goal or a maximum numbers of neurons have been reached
(MATLAB user�s guide, Ref 13).

3.8.2 Feed Forward Neural Network. This network is
one of the most popular multi-layer architectures proving to be
an excellent universal approximation of nonlinear functions. Its
ability to map complex input-to-output relationships with
acceptable error best demonstrates its suitability. There are
many variations of feed forward networks and in this case, the
Lavenberg-Marquardt algorithm was selected. This algorithm is
designed to approach second-order training speed without
having to compute the Hessian Matrix, being the fastest method
for training moderate-sized FFNNs.

3.8.3 Generalized Regression Neural Network. This
type of network is often used for function approximation. It
has a radial basis layer and a special linear layer. The first layer
is just like the newrbe network and it has as many neurons as
there are input/target vectors.

3.9 Experimental Setup

Figure 4 shows a scheme of the experiment setup used in
this research. As it is observed once each trial was concluded,
experimental surface roughness was measured and chip was
collected for further measurement. The ANNs were developed
considering cutting parameters and chips geometry as input
variables and the surface roughness as the output variable. The
predicted surface roughness obtained from each developed
ANN was compared with experimental (measured) values of
surface roughness.

Figure 5 shows the flow chart used for the three networks
studied in this research to reach the minimum %MSE for
trained and predicted values of surface roughness.

3.10 Pearson Correlation Coefficient

To clarify the matching between surface roughness and the
inputs studied (cutting speed, feed per tooth, axial depth of cut,

chip�s width, and chip�s thickness), a correlation among these
parameters is determined.

A correlation is a statistical technique which can show
whether and how strongly pairs of variables are related. The
main result of a correlation is called correlation coefficient (or
r). It ranges from�1.0 to +1.0. The closer the r is to +1 or �1,
the more closely the two variables are related.

Face milling 
process 

Chip collection 
and measurement 

Ra, measurement 
ProScan 200 

D
at

a 
ac

qu
is

it
io

n 

Neural 
Network model 

MATLAB 

Predicted, Ra 

Fig. 4 Diagram of the experimental setup

Introduce input data

Generate initial training, 
validating and predicting data  

Evaluate the behavior for each 
of the networks studied: 

RBNN, FFNN and GRNN 

Select the best network 
architecture by changing number 
of neurons, hidden layers, etc in 

order to minimize the % MSE

Train the network; actualize the weights until the 
trained and predicted % MSE reach a minimum 

value at the same time..

%MSE > 20 %

Introduce the data again to  
re-train the net

Start 

No

yes 

end 

Fig. 5 Flow chart to reach a minimum %MSE at the same time for
trained and predicted values of surface roughness
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If r is close to 0, it means that there is no relationship
between the variables. If r is positive, it means that as one
variable gets larger, the other gets larger. If r is negative, it
means that as one gets larger, the other gets smaller (often
called an inverse correlation). There are several different
correlation techniques but the most common one is the Pearson
correlation and this is the one that has been selected for this
study.

4. Results and Discussions

Once all the experiments were concluded, the following
results were obtained and divided in five subsections for better
understanding.

4.1 Values of Surface Roughness (Ra) Measured
with the ProScan 2000 Profilometer

Table 5 shows the surface roughness average values
obtained once the face milling process was concluded for
specific cutting conditions.

4.2 Chip Measurement

Table 6 shows the average value of the chip�s width and
thickness once the face milling process was concluded for a
specific cutting condition.

As reported in section 3.7, chip�s area (width and thickness)
depends on the axial depth of cut and the feed per tooth. As it
can be observed, chip�s width values obtained and reported in
Table 6 are almost the same as the axial depth of cut values
selected for the experiments, but there are some differences in
the values of the chip�s thickness reported in Table 6 when
compared to the feed per tooth values used in this work. This
result is probably due to the fact that since new tips are screwed
into the tool holder for each trial, generating a discrepancy in
the location of the cutting tools teeth and the cutter axis
inclination with regards to the direction that must be maintained
during the cutting process. This is what Franco et al. (Ref 14)
called tool errors or radial and axial runouts.

4.3 Artificial Neural Network

4.3.1 Radial Base Neural Network. To start the training
of this neural network, five inputs (cutting speed, feed per
tooth, axial depth of cut, chip�s width, and chip�s thickness), six
neurons in the hidden layer, a goal of 0.01, and a spread
parameter of 0.8 varying it every 0.05 were considered.

In Fig. 6, goal�s performance for this radial base network is
observed. Also, this figure shows how a goal of 0.01 is reached
around 2.6 epochs.

Since the goal value of 0.01 was reached so soon (before
reaching 3 epochs), then three neurons instead of six were
considered in the hidden layer.

Figure 7 shows the architecture of the RBNN selected and
used in this study, where number 5 represents the number of
inputs, number 3 the number of neurons in the hidden layer,
and number 1 the number of outputs, in our case the surface
roughness value.

Table 7 shows the surface roughness (RaT) obtained by
training the network for a goal of 0.01 and different spread
parameter. Also, measured surface roughness (Ra) is shown.

Due to the small amount of values for training the network,
it is observed that a spread parameter from 0.05 to 0.3 gave
smaller %MSE, but as it was consulted in the literature
(MATLAB user�s guide), the spread parameter must be large

Table 5 Surface roughness and average surface
roughness obtained from face milling operations under
different cutting conditions

Trial
V,

m/min
fz, mm/

rev3 tooth
ap,
mm

Ra 1,
lm

Ra 2,
lm

Ra 3,
lm

Ra aver(a),
lm

1 600 0.1 3.0 0.645 0.650 0.713 0.699
2 600 0.2 3.5 1.075 1.078 0.899 1.017
3 600 0.3 4.0 1.566 1.472 1.662 1.566
4 800 0.1 3.5 0.626 0.586 0.679 0.630
5 800 0.2 4.0 0.8 0.85 0.864 0.838
6 800 0.3 3.0 0.6 0.657 0.682 0.646
7 1000 0.1 4.0 0.712 0.702 0.723 0.712
8 1000 0.2 3.0 0.892 0.831 0.872 0.865
9 1000 0.3 3.5 0.72 0.697 0.717 0.711

(a) Ra, average of measured surface roughness which will be consid-
ered as the surface roughness of the specimen for a specific cutting
condition

Table 6 Chip�s width (Cw) and thickness (Ct) obtained
from face milling operations under different cutting
conditions

Trial V, m/min fz, mm/rev3 tooth ap, mm Cw, mm Ct, mm

1 600 0.1 3.0 3.0 0.20
2 600 0.2 3.5 3.5 0.20
3 600 0.3 4.0 4.0 0.45
4 800 0.1 3.5 3.5 0.22
5 800 0.2 4.0 4.0 0.17
6 800 0.3 3.0 3.0 0.22
7 1000 0.1 4.0 3.8 0.18
8 1000 0.2 3.0 3.0 0.3
9 1000 0.3 3.5 3.5 0.35

Fig. 6 Goal performance for radial base network
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enough that the radial base neurons respond to overlapping
regions of the input space, but not so large that all the neurons
will respond in essentially the same manner. For this reason, the
network was trained again, but in this case, the network was
stopped when the calculated surface roughness values obtained
when training the network (RaT) and the predicted surface
roughness values (RaP) showed at the same time the minimum
%MSE when comparing them to the target output which is the
measured surface roughness (Ra). In our case, this value was
reached when using a spread parameter of 0.6.

Table 8 shows the measured and predicted surface rough-
ness value (Ra and RaP) obtained when using three neurons in
the hidden layer, a goal of 0.01, and a spread parameter of 0.6.

As it can be observed in Table 8, a %MSE of 17.32 between
the measured (Ra) and the predicted values of surface
roughness (RaP) was obtained by using the selected RBNN.

Figure 8 shows the results obtained with the measured and
trained surface roughness, and Fig. 9 shows the results of the
measured and predicted values of surface roughness.

4.3.2 Feed Forward Network. For this neural network,
same as the RBNN, five inputs (cutting speed, feed per tooth,
depth of cut, chip width, and chip thickness) were considered.

The Lavenberg-Marquardt algorithm was selected and from
trial and error, a maximum of two hidden layers and a
maximum of nine neurons were used. The activation function
for the three layers architecture network (input layer, hidden
layer, and output layer) were tansig and purelin, and the
activation function for the four layers architecture network
(input layer, hidden layer 1, hidden layer 2, and output layer)
were tansig, logsig, and purelin. Also, a goal of 0.01, 100
epochs, and a maximum of 400 iterations were used. This
number of iterations corresponds to the minimum %MSE
obtained by the trained and predicted values of surface
roughness at the same time.

Table 9 shows just few numbers of the total iterations, the
FFNN architecture, the trained surface roughness (RaT), and the
trained and predicted mean square error, %MSET and %MSEP,
respectively.

As it is observed in Table 9, the FFNN architecture that
achieved the minimum %MSE for both trained and predicted

Fig. 7 Radial base network architecture used in this study

Table 7 Spread parameter, measured and trained
surface roughness (Ra, RaT), and %MSE obtained
by training the RBNN with a goal of 0.01 and 3 neurons
in the hidden layer

Ra, lm 1 3 5 6 7 8

%MSE

0.699 1.566 0.838 0.646 0.712 0.865

RaT, lm 1 3 5 6 7 8

Spread
0.05 0.686 1.566 0.838 0.686 0.686 0.865 7.42
0.1 0.686 1.566 0.838 0.686 0.686 0.865 7.42
0.15 0.686 1.566 0.838 0.686 0.686 0.865 7.42
0.2 0.686 1.566 0.838 0.686 0.686 0.865 7.42
0.25 0.686 1.566 0.838 0.686 0.686 0.865 7.42
0.3 0.686 1.566 0.838 0.686 0.686 0.865 7.43
0.35 0.686 1.566 0.838 0.686 0.686 0.865 7.48
0.4 0.685 1.566 0.837 0.687 0.685 0.865 7.64
0.45 0.685 1.566 0.837 0.689 0.685 0.865 7.93
0.5 0.685 1.566 0.835 0.691 0.684 0.865 8.31
0.55 0.685 1.566 0.833 0.693 0.682 0.866 8.68
0.6 0.688 1.566 0.831 0.695 0.680 0.866 8.97
0.65 0.692 1.566 0.829 0.695 0.677 0.867 9.16
0.7 0.699 1.566 0.827 0.694 0.672 0.869 9.34
0.75 0.707 1.565 0.825 0.691 0.667 0.871 9.61
0.8 0.716 1.564 0.824 0.687 0.661 0.873 10.11

Table 8 Measured and predicted surface roughness and
mean square error when training the RBNN with a goal
of 0.01 and a spread of 0.6

Trial Ra, lm RaP, lm %MSE

2 1.017 0.969
4 0.630 0.731 17.32
8 0.711 0.741

0
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0 1 2 3 4 5 6 7 8 9
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Fig. 8 Measured and trained values of surface roughness for differ-
ent trials using the selected RBNN architecture
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Fig. 9 Measured and predicted values of surface roughness for dif-
ferent trials using the selected RBNN architecture
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surface roughness value is 5-3-7-1. Also it observed an error of
8.5% between the measured roughness (Ra) and the trained
surface roughness (RaT), and an error of 5.5.% between the
measured roughness (Ra) and the predicted surface roughness
(RaP), was obtained.

Figure 10 shows the architecture of the selected feed
forward network.

Table 10 shows the measured and predicted surface rough-
ness values (Ra and RaP, respectively) obtained when using this
5-3-7-1 FFNN architecture on trials 2, 4, and 9.

Figure 11 shows the results obtained with the measured and
trained surface roughness, and Fig. 12 shows the results of the
measured and predicted values of surface roughness for the 5-3-
7-1 FFNN architecture.

4.3.3 Generalized Regression Neural Network. To start
the training of this GRNN, a spread parameter of 0.8 varying it
every 0.05 was selected, and from this result, it was observed
that the minimum % MSE was obtained with a spread
parameter of 0.3.

Due to this fact, an extra training was done with a spread
parameter of 0.3 but varying this last one every 0.005. Also, the

algorithm was built to show the minimum %MSE between the
measured and the trained and predicted value of surface
roughness at the same time.

Table 9 FFNN architecture, trained surface roughness (RaT), MSET, and MSEP

No. of
hidden layer

No. of
iterations

Network
architecture Ra1T Ra3T Ra5T Ra6T Ra7T Ra8T %MSET %MSEP

1 43 5-2-1 0.686 1.518 0.856 0.630 0.712 0.711 18.4 14.6
1 2 5-3-1 0.744 1.453 0.812 0.680 0.675 0.720 21.0 15.4
2 278 5-2-4-1 0.652 1.434 0.861 0.672 0.702 0.756 17.4 12.9
2 23 5-2-5-1 0.711 1.518 0.852 0.620 0.704 0.713 18.5 13.7
2 6 5-2-6-1 0.690 1.418 0.860 0.631 0.706 0.870 10.2 9.5
2 61 5-2-7-1 0.694 1.539 0.833 0.687 0.749 0.974 15.2 13.5
2 222 5-3-6-1 0.683 1.564 0.819 0.697 0.683 0.752 16.1 9.6
2 107 5-3-7-1 0.701 1.434 0.838 0.647 0.703 0.861 8.5 5.5
2 4 5-7-2-1 0.712 1.548 0.812 0.776 0.728 0.894 20.8 16.3
2 81 5-7-3-1 0.812 1.551 0.773 0.625 0.718 0.778 20.8 21.6
2 200 5-7-4-1 0.721 1.520 0.839 0.677 0.678 0.762 14.4 16.2
2 92 5-7-5-1 0.662 1.572 0.746 0.675 0.616 0.825 19.2 21.4
2 108 5-7-6-1 0.727 1.527 0.796 0.572 0.727 0.715 21.9 16.3
2 86 5-7-7-1 0.733 1.523 0.883 0.733 0.734 0.733 22.0 18.2
2 15 5-8-3-1 0.704 1.323 0.864 0.649 0.712 0.861 15.8 11.5
2 93 5-9-8-1 0.718 1.461 0.899 0.746 0.735 0.742 23.6 18.4

Fig. 10 Feed forward architecture network selected for the study

Table 10 Measured (Ra) and predicted (RaP) surface
roughness and %MSE when using a feed forward
architecture network 5-3-7-1

Trial Ra, lm RaP, lm %MSEP

2 1.017 1.0188
4 0.63 0.6457 5.5
9 0.711 0.74569
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Fig. 11 Measured and trained surface roughness for a 5-3-7-1 feed
forward architecture network
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Fig. 12 Measured and predicted surface roughness for a 5-3-7-1
feed forward architecture network
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The selected GRNN architecture showed a minimum
%MSE with a spread parameter of 0.295.

Figure 13 shows the architecture of the GRNN, with five
inputs, six neurons in the hidden layer, and 1 output.

Table 11 shows the result of measured, trained, and
predicted surface roughness as well as the minimum %MSE
obtained with the selected GRNN architecture.

4.4 Performance Assessment

The performance of each ANN used in this research was
measured with the mean square error (%MSE).

Table 12 shows the minimum %MSE obtained for each
selected architecture, and Fig. 14 and 15 illustrates this
performance for trained and predicted values of surface
roughness, respectively.

When comparing the %MSE of the three selected studied
architecture shown in Table 12, it is observed that the FFNN
shows the closest and minimum result when training the
network and when predicting the values of roughness. In this
case, a 5.5% of difference between the predicted and the
measured values of surface roughness can be interpreted as a
very good approach.

Also, it is observed that a low %MSET = 0.012 is obtained
when training the GRNN and this is due to the fact that this
type of net uses a maximum number of neurons equal to the
maximum numbers of trials used to train the net; with this fact
and an adequate spread parameter, the difference between the
measured and the trained roughness is null since an exact
RBNN (newrb) was used.

4.5 Pearson Correlation Coefficient Analysis

Table 13 shows the Pearson correlation coefficient obtained
for each parameter.

From Table 13 it can be observed that there is a strong
correlation between the chip thickness (Ct) and the chip width
(Cw) on the surface roughness since a correlation coefficient
value of 0.53 and 0.50 was obtained, respectively. From the
cutting parameters, the strongest correlation is between the
cutting speed and the surface roughness (�0.49), but in this
case, it is a negative correlation, which means that the
magnitude of surface roughness is increased as the cutting
speed is decreased. This result is in agreement with previous
researches (Ref 15, 16).

5. Conclusions

In this study, ANNs with five inputs have been developed to
predict arithmetic surface roughness (Ra) when face milling Al
7075-T7351.

FFNN showed the best results (%MSEP = 5.5) but it took
more time training this network compared to the RBNN and the
GRNN.

Fig. 13 Generalized regression architecture network selected for the
study

Table 11 Measured (Ra) and predicted (RaP) surface
roughness, %MSET, and %MSEP when using a GRNN
with a spread of 0.295

Trial Ra, lm RaP, lm %MSET %MSEP

2 1.017 1.0268
4 0.630 0.7525 0.011 20.90
9 0.711 0.7650

Table 12 Minimum %MSE predicted obtained
for the different selected ANN architecture

Network Architecture %MSET %MSEP

RBNN 5-3-1 8.97 17.32
FFNN 5-3-7-1 8.5 5.5
GRNN 5-6-1 0.012 20.90
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Fig. 14 Comparison of trained and measured surface roughness ob-
tained for each selected network for different trials
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Fig. 15 Comparison of predicted surface roughness obtained for
each selected network for different trials

Table 13 Pearson correlation coefficient among surface
roughness and inputs studied

V fz ap Cw Ct Ra

V 1.00 0.00 0.00 �0.07 0.10 �0.49
fz 0.00 1.00 0.00 0.07 0.68 0.43
ap 0.00 0.00 1.00 0.99 0.10 0.44
Cw �0.07 0.07 0.99 1.00 0.16 0.50
Ct 0.10 0.68 0.10 0.16 1.00 0.53
Ra �0.49 0.43 0.44 0.50 0.53 1.00
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Due to the fact that the outcome of the training greatly
depends on the initialization of the weights, which is done
randomly by the MATLAB software, each ANN must be
trained few times until the minimum %MSE between the
trained and predicted surface roughness against the measured
surface roughness is achieved.

From Pearson correlation analysis, the cutting speed is the
most important cutting parameter affecting the machined
surface quality.
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