ORIGINAL RESEARCH ARTICLE

Fabrication of CoO_x/BiVO₄ Photoanodes with Enhanced Photoelectrochemical Water Splitting

Meirong Sui¹ · Xiuquan Gu²

Received: 8 February 2024 / Accepted: 21 June 2024 / Published online: 5 July 2024 © The Minerals, Metals & Materials Society 2024

Abstract

In this work, the surface of BiVO₄ nanoporous films was modified by ultrathin CoO_x nanoparticles through a facile electrochemical deposition route. By adjusting the deposition time, the effect of CoO_x loading amount (or time) was investigated with respect to the photoelectrochemical (PEC) performance of the BiVO₄ photoanode. No significant morphological changes were observed after depositing CoO_x cocatalysts onto the BiVO₄ surface, except for a rougher surface and the appearance of nanosheets at 40 s. After optimizing the deposition time, the highest photocurrent density of 3.36 mA/cm² was achieved at 1.23 V_{RHE} for the 20-CB sample under solar irradiation, exhibiting a nearly threefold increase in the photocurrent as compared to that of pristine BiVO₄ (1.24 mA/cm²). It was found that the CoO_x loading reduced the onset potential and interfacial charge transfer resistance, leading to the significant enhancement of the PEC activity. However, when the deposition time was extended or the loading amount increased, the PEC activity actually decreased, which might be related to the increase in carrier recombination loss. This research will help us understand the mechanism of surface CoO_x modification for improving the PEC activity of semiconductor photoanodes like BiVO₄.

Keywords BiVO₄ · CoO_x · photoelectrochemical · heterostructure · cocatalyst

Introduction

Currently, the increasing energy shortage has caused people to turn their attention towards clean energy like solar and hydrogen energies. Photoelectrochemical (PEC) water splitting provides a feasible method for utilizing solar energy to produce H₂, which is usually carried out in a two-electrode or three-electrode system.^{1,2} The H₂ production rate is usually faster than powder-based photocatalytic systems and cheaper than electrocatalysis.³ At present, PEC water splitting is faced with challenges in developing a suitable photoelectrode candidate that has broad light-harvesting ability, suitable bandgap, and high catalytic activity, and which can quickly split water into H₂ or O₂ under illumination. Currently, the solar-to-hydrogen (STH) efficiency of PEC cells is still limited by the photoanode, which involves a four-electron transfer process rather than a two-electron transfer process that occurs on the cathode.⁴ As is commonly known, it is difficult to achieve ideal PEC activity in photoanodes with a single component like ZnO, TiO₂, or BiVO₄, because they have certain limitations, including narrow spectral response, slow carrier separation, and possible photo-corrosion behavior. In most cases, surface engineering techniques such as metal deposition, doping, and the construction of a heterojunction or nanocomposites are commonly employed for enhancing both the PEC activity and stability of a semiconductor electrode.^{5–7}

 $BiVO_4$ is a hot candidate for fabricating solar water-splitting photoanodes due to its suitable bandgap of 2.4 eV, good stability, environmentally friendly nature, and low cost. In theory, the conversion efficiency of the $BiVO_4$ photoanode from sunlight can reach 9.2%, corresponding to a photocurrent of 7.5 mA/cm² under solar irradiation.⁸ However, the PEC performance of $BiVO_4$ is limited by the slow water oxidation kinetic on its surface, which could be enhanced significantly by modifying its surface with cocatalysts.⁹ To date, much effort has been devoted to optimizing $BiVO_4$ photoanodes and exploring the underlying mechanism.

Meirong Sui smr2012@xzhmu.edu.cn

¹ School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China

² School of Materials Science and Physics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, China

He et al. developed a novel, high-efficiency, solar-driven BiVO₄-related photoanode via sandwiching a photothermal CoO_r layer between a BiVO₄ photoanode film and an FeOOH/NiOOH sheet electrocatalyst, leading to a superior photocurrent density of 6.34 mA/cm² at 1.23 V versus a reversible reference electrode $(V_{\rm RHE})$.¹⁰ In their study, CoO_x plays at least two roles in enhancing the PEC activity of BiVO₄ photoanodes. First, CoO_x can be used as a photothermal material, utilizing the heat in the solar spectrum, which corresponds to the energy over the infrared band. Second, CoO_x also has a strong hole-extraction capability, making it a suitable hole cocatalyst with suitable valence band edges (VBE). In another report, Song et al. demonstrated a high photocurrent density of 5.85 mA/cm² at 1.23 V_{RHF} under solar irradiation in a BiVO₄ nanoporous photoanode through incorporating MoO₂/MXene quantum dots (MQD) into the hole transfer layer.¹¹ In addition, Seo et al. found that the colloidal CeO2 quantum dot (CeQD) layer simultaneously enhanced the charge-separation efficiency and transfer kinetics, resulting in the highest photocurrent density (4.0 mA/ cm^2) at 1.23 V_{RHE} under visible light irradiation.¹² In their study, the CeQDs with average sizes of 1.8-3.0 nm served as the hole extraction layer. However, there are currently few reports on surface modification of BiVO₄ photoanodes with CoO_r or Co_3O_4 cocatalysts, and the mechanism requires a deeper investigation. More attention has been directed towards other surface modifiers (cocatalysts) like CoO_{r} , Co₃O₄, CoPi, and CoOOH.^{13–15}

In this work, BiVO₄ nanoporous films were modified with thin CoO_x nanoparticles (NPs) via a facile electrochemical deposition route. The existence of CoO_x was firstly demonstrated by x-ray diffraction (XRD) patterns. After loading of a suitable amount of CoO_x cocatalyst, the CoO_x-modified BiVO₄ photoanode displayed the highest photocurrent density of ~3.36 mA/cm² at 1.23 V_{RHE} under simulated solar irradiation. The enhanced PEC performance was attributed to the reduced interface charge transfer resistance, as indicated by the electrochemical impedance spectroscopy (EIS) results.

Experimental Details

Preparation of BiVO₄ Nanoporous Photoanodes

The nanoporous $BiVO_4$ photoanodes used in this work were prepared according to our previous work.¹⁶ Briefly, the BiOI intermediate was obtained through electrodeposition and then converted into a $BiVO_4$ porous film by a solution drop-casting process. Specifically, a 0.04 mol/L $Bi(NO_3)_3$ solution was prepared by slowly dissolving $Bi(NO_3)_3$ ·5H₂O in 50 mL of 0.4 mol/L KI aqueous solution with pH of 1.75. Then, 20 mL of absolute ethanol containing 0.23 mol/L p-benzoquinone was mixed into the solution. The BiOI electrodeposition onto a fluorinedoped tin oxide (FTO) glass substrate was carried out in a three-electrode electrochemical cell consisting of a working electrode (WE), counter electrode (CE), and reference electrode (RE) at -0.143 V versus a saturated calomel electrode (SCE) for 10 min. Then, 0.15 mL of VO(acac)₂/ DMSO solution (0.2 mol/L) was dripped onto the BiOI films (2 × 2 cm²), followed by drying in an oven (60°C, 3 h) and annealing in air (450°C, 2 h). Finally, the pristine BiVO₄ electrodes were obtained by soaking the samples into a 1.0 mol/L NaOH aqueous solution for 30 min in order to remove the excess of V₂O₅.

Deposition of CoO_x on BiVO₄ Photoanode

The deposition of the CoOx nanosheet on the BiVO₄ photoanode comprised two steps.¹¹ First, the Co(OH)₂ nanosheet was produced by electrochemical deposition. The as-prepared BiVO₄ photoanode was used as the working electrode, the SCE as a reference electrode, and Pt foils as counter electrode. The electrolyte solution was prepared by dissolving Co(NO₃)₂·6H₂O (15 mM) in deionized (DI) water. The working electrode was applied at a constant voltage (-1.0 V versus SCE) and the amount of Co(OH)₂ deposited was controlled by varying the deposition time from 5 s to 40 s. Second, the obtained $Co(OH)_2/$ BiVO₄ film was rinsed with DI water and dried in air, followed by an annealing process in a muffle furnace at 350°C with a ramping rate of 2°C/min for 2 h. Finally, the $CoO_y/BiVO_4$ photoanode samples were designated as BVO, 5-CB, 10-CB, 20-CB, 30-CB, and 40-CB, respectively, according to the CoO_r deposition time.

Material Characterization

The structural analysis of samples was carried out by X-ray diffraction (XRD, Haoyuan DX-2700) with a Cu Ka source. The surface morphology of the as-prepared photoanodes was determined by field-emission scanning electron microscopy (FESEM, Hitachi SU8220 next-generation, Japan) equipped with X-ray energy-dispersive spectroscopy (EDS) system. The light absorption properties of as-prepared samples were measured by ultraviolet–visible (UV–Vis) diffuse reflectance spectroscopy (DRS, Cary 300 UV–Vis spectrophotometer, Varian Co.), in which a BaSO₄ whiteboard was used as the internal reflectance standard.

PEC Measurements

The PEC measurements of photoanodes were performed using a CHI 660E electrochemical workstation in a standard three-electrode system. The obtained photoanode working electrode, SCE reference electrode, and a Pt foil counter electrode were used. An aqueous solution of 0.1 M Na₂SO₄ (pH=7) was used as the electrolyte after N₂ bubbling for 0.5 h. The intensity of simulated sunlight was controlled at 100 mW/cm² using a 300 W Xe arc lamp with an AM 1.5G filter (CHF-XM-500 W. Beijing Changtuo Technology Co., Ltd.). All photoanodes were illuminated by simulated sunlight through the FTO side (i.e., a backside illumination). The tested area of the photoanode controlled by epoxy resin was about 6.0 cm^2 . The photocurrent–potential curves were measured by scanning with a continuous voltage change at a scan rate of 20 mV/s. The measured potentials versus SCE electrode were converted to the reversible hydrogen electrode (RHE) using the Nernst equation:

 $V_{\rm RHE} = V_{\rm NHE} + 0.059 \text{ pH} = V_{\rm SCE} + 0.059 \text{ pH} + 0.24$ (1)

where V_{RHE} is the converted potential versus RHE, and V_{SCE} is the experimentally measured potential against the SCE reference electrode. In addition, the electrochemical impedance spectra were recorded under irradiation over a frequency range of $0.1-5 \times 10^4$ Hz with an amplitude of 20 mV and an applied potential of 0.0 V versus SCE.

Results and Discussion

Structure and Surface Morphology

The BiVO₄ photoanode was prepared via the electrodeposition solution drop-casting process. Figure 1 presents the FESEM images of BiVO₄ and CoO₂/BiVO₄ heterostructure photoanodes. Pure BiVO₄ possesses a network structure composed of interconnected rod-like particles (200-300 nm in diameter) with a smooth surface and no impurities present on its surface. The nanoporous structure and vertically oriented worm-like morphology of the BiVO₄ photoanode was retained even after loading of a large amount of CoO_x cocatalysts. Such a surface morphology is beneficial for obtaining a large surface area and electrolyte infiltration. The above results also indicate that the CoO_x cocatalyst is so small that it does not block the pores of BiVO₄ and could not be distinguished by SEM. It was also found that the CoO_r loading would roughen the BiVO₄ particle surface, but there were no CoO_x nanosheets until the electrodeposition time reached 40 s (Fig. 1f).

Figure 2 compares the XRD patterns of BiVO₄ and the BiVO₄/CoO_x heterostructure with different deposition times (from 5 s to 40 s). For the pure BiVO₄ sample, all the diffraction peaks are assigned to the monoclinic scheelite crystal structure (JCPDS no. 14-0688) of BiVO₄ and the rutile crystal structure (JCPDS no. 41-1445) of SnO₂ derived from the FTO. No diffraction peaks of other phases or impurities were observed, indicating the high crystal quality and purity of the samples. There are no obvious peaks of CoO_x species in the XRD pattern, which might be ascribed to a low deposition amount of Co(OH)₂ as well as overlapping

Fig. 1 Typical FESEM images of (a) $BiVO_4$ and (b–f) $BiVO_4$ modified with different deposition time of CoO_x : (b) 5 s, (c) 10 s, (d) 20 s, (e) 30 s, and (f) 40 s. The scale is 1 μ m.

Fig. 2 XRD patterns of BiVO₄ porous photoanodes with and without CoO_x modification. The character "40-CB" represents the sample with an electrodeposition time of 40 s.

Fig.3 Cross-sectional SEM image of a $BiVO_4$ photoanode modified with CoO_x cocatalyst (40-CB).

of the CoO_x -related peaks with those of BiVO_4 . It is worth noting that the dominant peak of CoO_x located at 18.9° was overlapped with the (011) crystal plane of BiVO_4 .

Figure 3 displays the cross-sectional SEM image of a typical $CoO_x/BiVO_4$ sample (40-CB). As can be seen, the $BiVO_4$ film, the FTO conductive layer, and glass substrate are identified with clear interfaces. The $BiVO_4$ nanoporous film displays a thickness of ~700 nm and worm-like porous morphology, where a small amount of CoO_x nanosheets appear on the $BiVO_4$ microparticles.

Figure 4 presents the surface morphology of a typical $BiVO_4/CoO_x$ sample (40-CB) and its EDS elemental mapping results. As shown in Fig. 4a, the CoO_x nanosheets are identified on the surface of $BiVO_4$ nanoporous film. Four elements (including O, Bi, V, and Co) are distributed

uniformly over the whole sample (Fig. 4b, c, d, and e), suggesting the successful loading of CoO_x cocatalysts. Quantitative EDS analysis reveals that the atomic Co/Bi ratio is 1.46:23.61, corresponding to an overall CoO_x loading of ~5.8% (relative to BiVO₄). Although EDS is not a precise technique for determining the film composition, it confirms the existence of CoO_x cocatalyst on the BiVO₄ surface.

Optical Absorption Properties

Figure 5a compares the UV–Vis absorption spectra and their corresponding Tauc plots for the abovementioned $CoO_x/BiVO_4$ electrode samples. Apparently, $BiVO_4$ displays an excellent visible-light response with a sharp absorption edge around 470 nm due to its wide bandgap of ~2.45 eV. Both the UV and visible-light absorption of $BiVO_4$ were enhanced significantly after surface modification with the CoO_x cocatalysts due to the narrower bandgap of CoO_x ($E_g = ~1.6 \text{ eV}$). With increasing the deposition time, the optical absorbance is enhanced over the entire band, indicating the effect of CoO_x as a narrow-bandgap material. The 40-CB sample has the highest visible light absorption. Figure 5b shows the Tauc plot of nanoporous $BiVO_4$ and $CoO_x/BiVO_4$ films, which displays a bandgap of 2.45 eV for pure $BiVO_4$ through a linear fitting of the curve.

PEC Performance

Figure 6 compares the PEC performance of BiVO₄ nanoporous photoanodes before and after modifying with CoO_x cocatalysts. It is found that the pristine BiVO₄ photoanode exhibits a photocurrent of 1.24 mA/cm² at 1.23 V_{RHF} under simulated solar irradiation. After modifying with CoO_r , the photocurrent density of BiVO₄ is enhanced significantly along with a reduction in the onset potential. The highest photocurrent density (3.36 mA/cm²) at 1.23 V_{RHE} appears in the 20-CB sample, which is nearly three times that of the pure BiVO₄ photoanode. Apparently, the value is comparable with those reported in other published articles, as listed in Table I. The enhanced PEC performance might be ascribed to a more efficient visible light harvesting and a lowering of the interfacial charge transfer resistance. It is speculated that these CoO_x cocatalysts act as the holeextraction layer, leading to a significant enhancement of hole-injection efficiency (from photoanode to electrolyte). Nevertheless, it is strange that as the deposition time is further prolonged to 30 s or 40 s, the photocurrent (1.23 V_{RHF}) of the obtained sample decreases. Namely, 30-CB exhibits lower photocurrent than 20-CB, while that of 40-CB is even lower than that of 30-CB. Overall, 20-CB exhibits the highest PEC activity among all samples. Although the photocurrent of 40-CB is comparable to that of the unmodified $BiVO_4$ (1.23 V_{RHE}), the former has a significantly lower

Fig. 4 Typical SEM image (a) and EDS elemental mapping data of a typical $BiVO_4/CoO_x$ sample (40-CB) for the elements O (b), Bi (c), V (d), and Co (e). and total spectrum (f) in the 40-CB sample.

Fig. 5 (a) UV–Vis diffusion absorption spectra and (b) Tauc plots of BVO/CoO_x samples with different CoO_x deposition times (10–40 s).

onset potential than the latter. In addition, the applied bias photon-to-current conversion efficiency (ABPE) plots of the pristine $BiVO_4$ and $BiVO_4/CoO_x$ photoanodes are presented in Fig. 6b. The ABPE values were calculated using the following equation¹⁹:

$$\eta(\%) = \frac{J \times (1.23 - V_{RHE})}{P_{in}}$$
(1)

where J refers to the photocurrent density (mA/cm), $V_{\rm RHE}$ refers to the applied bias, and $P_{\rm in}$ is the input light power intensity (100 mW/cm²). As shown in Fig. 6b, 20-CB displays the maximum ABPE value of 0.72% at ~0.8 $V_{\rm RHE}$, which is about four times that of pristine BiVO₄ (only 0.14% at 1.0 $V_{\rm RHE}$). It is also noted that 20-CB exhibits the highest ABPE peak value of all, which is consistent with the aforementioned linear sweep voltammetry (LSV) results.

Figure 6c presents a comparison of the Nyquist plots of pristine BiVO₄ and BiVO₄/CoO_x photoanodes under simulated solar irradiation, and the fitted results are shown in Table II. The Nyquist plots of all the samples consist of an arc and a semicircle, where the smaller arc shows the kinetics of charge transfer in the photoelectrode, while the larger semicircle represents the charge transfer resistance (R_{CT}) from the impedance at the solid/liquid interface. It was found that BiVO₄ had the largest semicircle diameter, indicating a high charge transfer resistance occurring at the solid/liquid interface. The CoO_x loading can effectively reduce the interfacial transfer resistance, leading to the enhancement of the charge injection efficiency (towards the electrolyte). As a result, 20-CB has the smallest semicircle diameter and interface charge transfer resistance (39.0 Ω). However, a further increase in the deposition time would lead to a significant increase in the semicircle diameter (or $R_{\rm CT}$). The

Fig. 6 (a) LSV plots, (b) APBE plots, (c) Nyquist plots, and (d) M–S plots of different photoanode samples under simulated solar irradiation. Note that the M–S plots are based on measurements in the dark. The inset in (c) displays an equivalent circuit model for fitting the Nyquist plots.

Table IComparison of the
optimal PEC performance of
BiVO4-based photoanodes
in the published articles
with our present results. All
measurements were carried
out under simulated solar
irradiation (AM1.5G)

Photoanode	Electrolyte	Photocurrent density at 1.23 $V_{\rm RHE}$	Ref. (year)
CoO _x /BiVO ₄	$0.1 \text{ M Na}_2 \text{SO}_4 (\text{pH}=7.0)$	3.36 mA/cm ²	This work (2024)
FeOOH/Au/BiVO ₄	$0.1 \text{ M Na}_2 \text{SO}_4 (\text{pH}=7.0)$	4.64 mA/cm ²	16 (2021)
FeOOH/NiOOH/CoO _x /BiVO ₄	0.5 M KPi (pH=7.0)	6.34 mA/cm ²	10 (2021)
MoOx/MXene/BiVO ₄	0.5 M KBi (pH=9.3)	5.58 mA/cm ²	11 (2022)
CeQD/BiVO ₄	0.5 M KPi (pH=7.4)	4.0 mA/cm ²	12 (2022)
CoFeBi/BiVO ₄	$0.5 \text{ M K}_3 \text{BO}_3 (\text{pH}=9.3)$	4.4 mA/cm^2	17 (2023)
NiFeO _x /CuSCN/ BiVO ₄	0.5 M KBi (pH=9.3)	5.6 mA/cm^2	18 (2024)

In this table, KPi represents a KH_2PO_4 and K_2HPO_4 buffer solution, while KBi represents potassium borate (K_3BO_3).

Table II Calculated electronicparameters from the Nyquistcurves under illumination

Sample	$R_{\rm S}\left(\Omega\right)$	$R_{\rm CT}\left(\Omega\right)$
BiVO ₄	16.95	315.3
5-CB	13.44	65.2
10-CB	15.66	62.8
20-CB	16.37	39.0
30-CB	21.35	44.6
40-CB	16.42	151.9

40-CB sample displays a significantly higher R_{CT} value than the other BiVO₄/CoO_x samples. This may be related to the thick coating layer, which increases the interfacial carrier recombination loss. This is also why an ultrathin cocatalyst layer is used in most reports. In other words, a larger number of holes are lost during the transport process before reaching the electrolyte. Figure 6d compares the Mott–Schottky (M–S) plots of BiVO₄, 20-CB, and 40-CB measured in the

Fig.7 Schematic model for the charge transfer process occurring at the BVO_4/CoO_x interface under solar illumination.

dark. It is known that both the carrier density $(N_{\rm D})$ and flatband potential $(V_{\rm FB})$ of a semiconductor can be calculated from the M–S plots, since there is a direct relationship between $N_{\rm D}$ and $V_{\rm FB}$ as follows²⁰:

$$\frac{1}{C^2} = \frac{2}{e\varepsilon\varepsilon_0 N_{\rm D}} \left(V - V_{\rm FB} - \frac{kT}{e} \right) \tag{2}$$

$$N_{\rm D} = \frac{2}{\mathrm{e}\varepsilon\varepsilon_0} \left[d\left(\frac{1}{C^2}\right) / \mathrm{d}V \right]^{-1} \tag{3}$$

where C is the depletion layer capacitance, $e = 1.6 \times 10^{-19}$ C, ε is the dielectric constant (68 for BiVO₄), ε_0 is the permittivity in vacuum (8.85×10^{-12} F/m), A represents the active irradiation area, V is the applied potential, and kT/e is a temperature-dependent correction term. As shown in Fig. 6d, the BiVO₄ photoanode displays an $N_{\rm D}$ value of 3.76×10^{19} cm⁻³ with a $V_{\rm FB}$ value of 0.22 V. The modification of CoO_x cocatalyst reduces $V_{\rm FB}$ of BiVO₄ significantly while increasing the carrier concentration. The 20-CB sample shows a low $V_{\rm FB}$ value (0.05 V_{RHE}), while 40-CB shows a lower V_{FB} value (just 0 $V_{\rm RHE}$). That is to say, the $V_{\rm FB}$ decreases with increasing the CoO_x deposition time, of which the variation trend is consistent with that of the onset potential (Fig. 6a). Obviously, the negative shift of $V_{\rm FB}$ is beneficial for achieving better PEC performance, which depends not only on $V_{\rm FB}$, but also on several factors including visible-light absorption and interfacial transfer resistance.

Figure 7 presents a schematic model to reveal the mechanism for the enhanced PEC activity of a BiVO₄ photoanode. As can be seen, CoO_x acts as an oxygen evolution reaction (OER) cocatalyst. Under solar illumination, the electrons inside BiVO₄ are excited, leaving the holes in the valence band (VB). Due to the loading of CoO_x cocatalysts, the holes migrate to the VB of CoO_x for water oxidation (into \cdot OH or O_2). Apparently, the CoO_x loading not only increases the carrier concentration in photoanode, but also enhances the band bending at the solid/liquid interface, leading to a more negative V_{FB} . Although the V_{FB} value becomes more negative, 40-CB still shows much lower PEC activity than 20-CB, which may be associated with its larger interfacial transfer resistance, as mentioned before (Fig. 6c). It is well known that increasing the deposition time is beneficial for achieving a thicker CoO_x layer, leading to an increase in the interfacial transfer resistance value.

Conclusion

In summary, BiVO₄ nanoporous photoanodes were modified with CoO_x cocatalysts through a facile electrodeposition route. The successful loading of CoO_x cocatalysts was verified by EDS mapping, XRD, and PEC measurements. It was found that the PEC activity of BiVO₄ was greatly influenced by the electrodeposition time. Loading CoO_x can enhance visible-light absorption and reduce the onset potential, resulting in higher photocurrent (1.23 V_{RHE}). Nevertheless, extending the electrodeposition would result in a significant reduction of the PEC activity. The optimal PEC activity was obtained with the 20-CB sample (with a deposition time of 20 s). Although 40-CB has a similar photocurrent at 1.23 $V_{\rm RHE}$ with the BiVO₄ sample, the onset potential of the former is much lower than the latter. We hope that this study will contribute to a deeper understanding of the semiconductor PEC process.

Acknowledgments This work is financially supported by Fundamental Research Funds for the Central Universities (2019ZDPY04).

Conflict of interest The authors declare that they have no conflict of interest.

References

- T. Hisatomi, J. Kubota, and K. Domen, *Chem. Soc. Rev.* 43, 7520 (2014).
- R. Tang, S. Zhou, Z. Zhang, R. Zheng, and J. Huang, *Adv. Mater*. 33, 2005389 (2021).
- J.H. Kim, D. Hansora, P. Sharma, J.W. Jang, and J.S. Lee, *Chem. Soc. Rev.* 48, 1908 (2019).
- T. Li, J. He, B. Peña, and C.P. Berlinguette, *Angew. Chem. Int. Ed.* 55, 1769 (2016).
- Q. Wang, J. He, Y. Shi, S. Zhang, T. Niu, H. She, Y. Bi, and Z. Lei, *Appl. Catal. B Environ.* 214, 158 (2017).
- X. Li, J.Q. Wan, Y.W. Ma, Y. Wang, and X.T. Li, *Chem. Eng. J.* 404, 127054 (2021).
- B. Zhang, H.P. Zhang, Z.Y. Wang, X.Y. Zhang, X.Y. Qin, Y. Dai, Y.Y. Liu, P. Wang, Y.J. Li, and B.B. Huang, *Appl. Catal. B Environ.* 211, 258 (2017).
- P.M. Rao, L. Cai, C. Liu, I.S. Cho, C.H. Lee, J.M. Weisse, P. Yang, and X. Zheng, *Nano Lett.* 14, 1099 (2014).
- C. Zachaus, F.F. Abdi, L.M. Peter, and R. van de Krol, *Chem. Sci.* 8, 3712 (2017).
- B. He, S.R. Jia, M.Y. Zhao, Y. Wang, T. Chen, S.Q. Zhao, Z. Li, Z.Q. Lin, Y.L. Zhao, and X.Q. Liu, *Adv. Mater.* 33, 2004406 (2021).

- Y.R. Song, X.M. Zhang, Y.X. Zhang, P.L. Zhai, Z.W. Li, D.F. Jin, J.Q. Cao, C. Wang, B. Zhang, J.F. Gao, L.C. Sun, and J.G. Hou, *Angew. Chem. Int. Ed.* 61, e202200946 (2022).
- 12. D.H. Seo, S.Y. Hong, T.H. You, A. Sivanantham, and I.S. Cho, *Chem. Eng. J.* 450, 137917 (2022).
- 13. Z.Y. Liu, X.F. Wu, B.N. Zheng, Y. Sun, C.M. Hou, J. Wu, K.K. Huang, and S.H. Feng, *Chem. Commun.* 58, 9890 (2022).
- 14. T.T. Pan, Y.M. Tang, Y.X. Liao, J.C. Chen, Y.P. Li, J. Wang, L.S. Li, and X. Li, *Mol. Catal.* 549, 113527 (2023).
- R. Yalavarthi, R. Zbořil, P. Schmuki, A. Naldoni, and Š Kment, J. Power. Sources 483, 229080 (2021).
- H.M. Geng, P.Z. Ying, Y.L. Zhao, and X.Q. Gu, *Int. J. Hydrog.* Energy 46, 35380 (2021).
- 17. X.J. Zhao, Y.F. Rui, Y. Bai, J.W. Huang, H.D. She, J.H. Peng, and Q.Z. Wang, *CrystEngComm* 25, 6677 (2023).
- J.K. Wang, J.D. Sun, Y.L. Liu, X. Zhang, K. Cheng, Y.P. Chen, F.Z. Zhou, J.J. Luo, T.B. Li, J.J. Guo, and B.S. Xu, J. Colloid Interface Sci. 666, 57 (2024).

- Z. Li, W. Luo, M. Zhang, J. Feng, and Z. Zou, *Energy Environ.* Sci. 6, 347 (2013).
- 20. H.P. Maruska and A.K. Ghosh, Sol. Energy 20, 443 (1978).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.