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Abstract
This research work focuses on the design and implementation of a highly advanced field-programmable gate array  (FPGA)-
based system-on-chip (SoC) solution for real-time edge detection. By utilizing a Zynq processor and leveraging the powerful 
Vivado software, the aim is to overcome the significant computational challenges associated with achieving real-time edge 
detection. Edge detection in real-time scenarios presents several obstacles, including the possibility of missing edges due to 
noise and the substantial processing requirements of any edge detection technique. To address these challenges, the proposed 
SoC system synergistically combines the computational capabilities of an FPGA board and a Zynq processor, harnessing 
hardware acceleration to achieve high-performance edge detection. The OV7670 camera module serves as the primary input 
medium, capturing image frames for subsequent processing. These captured frames undergo initial processing before being 
seamlessly transferred to the FPGA fabric through customized intellectual property (IP) blocks. These IP blocks efficiently 
handle crucial tasks such as frame capturing, conversion to AXI Stream interface signals, and integration with the video 
direct memory access (VDMA) IP. The VDMA IP plays a pivotal role by facilitating high-speed data movement between 
the FPGA fabric and the Zynq processor IP, thereby enabling streamlined and efficient data transfer and processing. At the 
heart of this project lies the real-time edge detection algorithm, which is skillfully implemented on the Zynq processor. The 
resulting edge-detected frames are then visually presented and displayed on an output device utilizing the AXI4-Stream 
to Video Out IP. To ensure optimal utilization of available hardware resources, the comprehensive Vivado software suite 
provides a wide array of tools for designing, implementing, and programming the FPGA fabric. By leveraging FPGA-based 
systems, this project effectively addresses the critical need for real-time edge detection in time-sensitive scenarios. The result 
is a portable and manageable device that exhibits versatility, as it can be employed in various applications while reliably 
detecting edges in real-time situations.
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Introduction

Detecting edges in images is essentially the initial step 
for in-depth image analysis. This vital method improves 
image quality and helps with a variety of analytic tasks. 
When it comes to increasing the processing speed of image 
processing systems, Ganesan and  Sajiv1 noted that hard-
ware implementation is crucial. Essentially, our goal in 
discussing edge detection implementation on hardware 
such as the Edge Z7-10 board is to achieve a consider-
able improvement in image processing speed. This board 
offers an effective framework for creating real-time edge 
detection systems that work well by combining a field-pro-
grammable gate array (FPGA), a Zynq central processing 
unit (CPU), and Vivado software.2 In real-time circum-
stances, our goal is to create a system that can quickly and 
efficiently identify edges by utilizing these hardware capa-
bilities. The processing speed must be extremely fast due 
to the large amount of image data that must be processed 
to enable image data transmission in real time.3 The oper-
ating time of the image processing module is shortened 
by the median filter, Sobel edge detection method, and 
corrosion expansion algorithm when combined with the 
real-time edge detection algorithm for picture data with 
1280 × 720 resolution and 30 frames per second (fps). 
Many embedded systems, where fast execution is signifi-
cant, call for real-time edge detection.4 Embedded multi-
processor systems provide a practical solution for meeting 
the real-time demands of computationally intensive appli-
cations, particularly those that are highly parallelizable.5 
In our research, we proposed a co-design approach for 
multiprocessor system-on-chip (MPSoC) hardware and 
software tailored for real-time Sobel edge detection. This 
approach effectively integrates FPGA and IP blocks. Addi-
tionally, we focus on implementing IP blocks necessary for 
this application. Edge detection represents the initial step 
in image and video processing. The edges identified serve 
as valuable inputs for higher-level tasks such as image 
enhancement, object recognition, and object tracking, 
facilitating a seamless flow in the processing pipeline.

An extremely quick system is needed to complete this 
operation in real time. The software does not appear to be 
a good choice for real-time implementation. We require 
technology with a high degree of parallelism. As  was 
noted, we need a good platform for real-time implemen-
tation, so we have chosen Vivado for design. The edge 
detection hardware includes a peripheral that is a 32-bit 
soft RISC TSK3000A. One of the essential aspects of 
the image is edge detection.6 It serves as a foundation 
for many aspects of image analysis, including target area 
identification, extraction, and other regional forms. The 
vast variety of edges in a picture are detected by edge 

detection operators such as the Canny, Sobel, and Pre-
witt operators. To create a gradient image, these operators 
perform the convolution process on every pixel. Complex 
convolutions are simple to implement because of several 
intrinsic multipliers included in FPGA hardware compo-
nents. These resources are conveniently employed in this 
design process, which promotes effective implementation. 
Reliability is maintained while consuming less memory, 
latency, and mathematical complexity due to algorithm 
simplifications. Electronic integrated circuits based on a 
matrix of reconfigurable logic blocks (CLBs) are known 
as FPGAs.7 Traditionally, hardware description languages 
(HDLs) have been used to set up FPGAs.

In this paper, the implementation of edge detection on 
a real-time image capture is presented.8 The edge-detected 
image is displayed in a video graphics array (VGA) on the 
Terasic 5 megapixel (MP) camera once the video has been 
recorded and interfaced with the FPGA kit. The OV7670 
camera is a popular and widely used image sensor module 
known for its affordability and accessibility. The module 
also supports multiple output formats, including raw RGB, 
YUV, and compressed JPEG, providing flexibility in data 
processing and transmission. With its compact size, ease 
of integration, and reasonable image quality, the OV7670 
camera module has found application in areas such as robot-
ics, surveillance systems, image processing, and embedded 
vision projects. Additionally, the edge-detected version of 
the RGB image taken by the interfaced camera is obtained 
using the Canny edge detection technique.9,10 In compari-
son with other edge detection algorithms, this one has a 
low error rate. Edge detection is one of the core techniques 
used in object recognition and image processing.11 Due to 
its significance in image processing, the architecture must 
be accurate, with low latency. An adaptive threshold edge 
detection approach is created since the conventional Sobel 
edge detection system is unable to meet the requirement for 
precision.12 The detection system consists of a complemen-
tary metal–oxide–semiconductor (CMOS) image sensor, 
an FPGA, and DDR2, among other components. High-per-
formance Cyclone IV GX series FPGA and DDR2 enable 
good real-time performance. The experiment demonstrates 
that the Sobel adaptive threshold-based edge detection tech-
nique may be implemented on an FPGA. Additionally, the 
system exhibits great real-time performance and high pre-
cision.13 The goal is the same, but it has been approached  
in different ways including sensors and DDR2 and so on. 
This architecture obviously provides benefits in the areas of 
energy consumption and performance dependability despite 
noisy images. The proposed system finds application in 
various domains, including autonomous vehicles, surveil-
lance systems, robotics, medical imaging, and remote sens-
ing. These applications benefit from accurate and real-time 
edge detection, enabling improved decision-making, object 
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recognition, and environmental analysis. Key contributions 
of the proposed work include the following:

1. Using the Canny approach at the block level addresses 
problems such as an abundance of edges in smooth areas 
and a lack of essential edges in detailed sections while 
retaining edge detection accuracy.

2. Adaptive threshold computation enhances accuracy by 
dynamically updating thresholds based on block char-
acteristics and local curve distribution.

3. A novel approach for estimating block-based hysteresis 
thresholds using a nonuniform gradient magnitude histo-
gram is introduced to enhance edge detection accuracy.

4. Integration with current codecs and low latency allow 
for quick edge identification in high-resolution media. 
Furthermore, the proposed approach outperforms earlier 
frame-based algorithms, particularly in noisy visual cir-
cumstances, as demonstrated by subjective and quantita-
tive assessments.

The remainder of the paper is structured as follows: sec-
tion II provides a comprehensive overview of the method-
ology, section III delves into the IPs utilized, section IV 
demonstrates the results and analysis, and the culmination 
of the paper is found in section V, which presents the conclu-
sion and future scope.

Methodology

The project focuses on utilizing an FPGA-based SoC archi-
tecture. FPGAs offer parallel processing capabilities, allow-
ing for the acceleration of computationally intensive tasks. 
The Edge Z7-10 board, which incorporates a Zynq proces-
sor, provides a suitable platform for developing hardware-
accelerated solutions. The core of the project lies in the real-
time edge detection algorithm, which is implemented on the 
Zynq processor. By integrating the Canny edge detection 
algorithm, the system analyzes the input frames and accu-
rately extracts edges. The resulting edge-detected frames 
are visualized and displayed on an output device via the 
AXI4-Stream to Video Out IP. At the beginning of this work, 
we have used Vivado software to create a new project that 
enables us to experiment with various tools.

Vivado

Vivado is a powerful and comprehensive software develop-
ment environment provided by Xilinx, a leading provider of 
programmable logic devices (FPGAs) and adaptive com-
pute acceleration platforms (ACAPs). Vivado is continu-
ally updated with new features, enhancements, and device 
support to keep pace with the evolving needs of FPGA and 

ACAP designers. It empowers designers to unleash the full 
potential of Xilinx devices and deliver highly optimized and 
innovative digital systems.

Key features and capabilities include design entry, design 
analysis and verification, IP integration, high-level synthesis 
(HLS), implementation, optimization, debugging, validation, 
partial reconfiguration, and system-level integration with 
its comprehensive toolset, intuitive interface, and extensive 
documentation and support resources. Vivado has become 
a widely adopted software platform for FPGA and ACAP 
development that enables designers to achieve faster time to 
market, higher performance, and greater design productiv-
ity. After starting a register transfer level (RTL) project in 
Vivado, we must choose the ideal board file that meets the 
project's requirements. We have used the Edge Z7-10 (or 
Edge Z7-20) as the main board. This opens a Vivado Flow 
Navigator, which provides us with the tools in hand to create 
new things. We generated the block design for our project 
using the Create Block Design feature. The primary IP that 
we have added is the ZYNQ Processing System.

IPs Utilized

Zynq‑7000

The Zynq-7000 Processing System (PS) IP is a fundamental 
component in the Vivado design suite provided by Xilinx. 
It is specifically designed to enable seamless integration of 
the processing capabilities of the ARM Cortex-A9 proces-
sor with the programmable logic fabric of Xilinx Zynq-
7000 SoC devices. It serves as the foundation for creating 
advanced embedded systems and enables designers to lev-
erage the benefits of both software and hardware in a uni-
fied platform. The Zynq-7000 PS IP includes a wide range 
of features and capabilities to facilitate the development of 
complex embedded systems. Key features and capabilities 
of the Zynq-7000 PS IP include the ARM Cortex-A9 proces-
sor, memory interfaces, system interconnect, peripherals and 
interfaces, interrupt controller, clock and reset management, 
debugging, and trace interfaces. We then integrate it with 
the AXI Video Direct Memory Access IP, Video Timing 
controller, AXI4-Stream to video out, AXI Interconnect, and 
other IPs, as can be clearly observed in Fig. 1.

Video Direct Memory Access (VDMA) IP

The AXI Video Direct Memory Access (VDMA) IP is a 
key component in the Vivado design suite provided by 
Xilinx. It is a versatile IP block that facilitates the effi-
cient transfer of video data between different modules 
within a digital system. The AXI VDMA IP is specifi-
cally designed to handle high-bandwidth video streams 
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and supports various video formats and resolutions. The 
AXI VDMA IP is widely used in video processing and 
display applications, including video surveillance systems, 
video streaming, image processing, and real-time video 
processing. It simplifies the design and implementation 
of video processing pipelines by efficiently managing the 
transfer of video data and offloading the processor from 
handling data movement tasks.

AXI Interconnect IP

The purpose of the AXI Interconnect IP in this project 
is to serve as a central communication hub or switch-
board, facilitating seamless connection and data exchange 
between various IPs along with the modules within the 
system. The AXI Interconnect IP acts as a bridge, ensur-
ing proper interfacing and communication between the 
Zynq processing system, the custom IPs, and the periph-
erals. By incorporating the AXI Interconnect IP in the 
project design, the system can effectively manage the com-
munication and data flow between different components, 
including the Zynq processing system, custom IPs, and 
peripherals. It enhances system reliability, scalability, and 
performance, allowing for seamless interaction and data 
exchange between various modules within the system.

AXI4‑Stream to Video Out IP

This IP can perform various operations such as video format 
conversion, AXI4-Stream compatibility, timing synchroni-
zation, and integration with the Video Timing Controller 
from the FPGA fabric with the video output interface. The 
AXI4-Stream to Video Out IP in Vivado plays a crucial role 
in bridging the gap between the processed video data in the 
FPGA fabric and the video output interface. The smooth 
presentation of the processed video data on the output dis-
play or device is made possible by ensuring compatibility, 
timing correctness, and simplification of the integration 
process.

Video Timing Controller

The Video Timing Controller IP is utilized to provide pre-
cise control and synchronization of the video timing sig-
nals required for the proper display of the processed video 
data. It generates the necessary timing signals, controls the 
video resolution and refresh rate, synchronizes with the 
input video, and interfaces with the display controllers or 
output interfaces. By providing precise timing control, the IP 
ensures proper synchronization and display of the processed 
video data on the output device, resulting in high-quality and 

Fig. 1  Proposed IP block design for video capture.
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visually appealing video. The design flow of the architecture 
is shown in Fig. 2.

Internal Flow of the Model

This is a brief explanation of the internal process that 
produces the edge detection output. (1) Input Media: The 
OV7670 camera module is used as the input media for cap-
turing images. The camera captures frames that contain vis-
ual information, which will be processed for edge detection. 
(2) Initial Processing: The captured frames undergo initial 
processing to enhance the quality of the images and prepare 
them for edge detection. This processing stage may include 
operations such as noise reduction, color space conversion, 
and image enhancement techniques. (3) Custom IP Blocks: 
Custom IP blocks are developed and integrated into the sys-
tem to handle the image data. These IP blocks capture and 
record the frames sent by the OV7670 camera and convert 
the signals into a format compatible with the AXI–Stream 
interface. The custom IP blocks play a crucial role in pre-
paring the data for further processing. These IP blocks are 
responsible for capturing and recording the frames, convert-
ing signals to the AXI–Stream interface format, and integrat-
ing with the VDMA IP. By developing custom IP blocks, 
the system can efficiently handle the data flow and prepare 
the frames for further processing. (4) VDMA (Video Direct 
Memory Access): The processed frames are transferred to 
the Zynq processor using the VDMA IP, which facilitates 
high-speed data movement between the FPGA fabric and the 
processor. The VDMA IP utilizes the AXI Stream protocol 
to efficiently transfer the processed image frames to the Zynq 
processor for subsequent analysis. This enables seamless 
communication and data flow within the system. (5) AXI 
Interconnect IP: The AXI Interconnect IP is used to establish 
communication and data flow between various IP blocks, 
including the VDMA IP, and other components in the sys-
tem. It ensures smooth data transfer and proper coordination 
between different modules. (6) Memory Management: This 

efficiently manages the memory resources to ensure smooth 
data transfer and processing. It sets aside the proper amount 
of memory buffers to hold gradients, edge data, and picture 
frames. The AXI4-Stream and VDMA IP interfaces can be 
used to read and write video data to memory. (7) Timing and 
Synchronization: The timing constraints and synchronization 
requirements to ensure proper coordination between the dif-
ferent components are considered. This includes synchroniz-
ing the input frames from the camera, coordinating the trans-
fer of data between modules, and synchronizing the output 
frames for display. (8) Testing and Debugging: The imple-
mentation is thoroughly tested to validate its correctness and 
performance. Test images or video sequences are used to 
verify the edge detection results. Debugging of any issues 
or errors that may arise during testing ensures that the algo-
rithm functions as expected. (9) Edge Detection Algorithm: 
Once the processed image frames are available in the Zynq 
processor, a real-time edge detection algorithm is applied. 
The specific edge detection algorithm used can vary based 
on the project requirements, but popular techniques such as 
Canny, Sobel, or Laplacian edge detection can be employed. 
The Canny edge detection algorithm is implemented in a 
programming language that is compatible with the Zynq 
processor, such as C/C++. (10) Performance Optimization: 
The algorithm parameters and hardware configurations are 
fine-tuned to optimize the performance of the real-time edge 
detection system. This may involve adjusting the smoothing 
kernel size and threshold values, or exploring parallelization 
techniques to fully leverage the capabilities of the FPGA 
fabric. (11) Output and Display: The resulting edge-detected 
frames are visualized and displayed on an output device. 
This involves converting the processed frames to a format 
compatible with the AXI4-Stream to Video Out IP, which 
connects to the output display, such as a High-Definition 
Multimedia Interface  (HDMI) monitor. The visualization 
of the edge-detected frames enables real-time analysis and 
evaluation of the algorithm’s performance.

Fig. 2  Design flow of video timing controller.
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Process

After connecting all the required IPs together, we validate 
the design and then select Create HDL Wrapper. This cre-
ates a hierarchy with the wrapper on the top. Next, we 
generate output products. We proceed with Generate 
Bitstream. Generating a bitstream is a crucial step in the 
FPGA design flow as it produces a binary file that con-
tains the configuration information for the FPGA device. It 
configures the FPGA device, facilitates design verification 
and optimization, enables integration with the system, and 
provides flexibility in deployment and programmability. 
It is a critical process in realizing the desired functional-
ity and performance of an FPGA-based system. We then 
select Export File to export the hardware information. 
It contains PS configuration information. Also, we must 
select to include the generated bitstream. Then we select 
Launch Software Development Kit (SDK). In SDK, we 
open a New Application Project with the Empty Applica-
tion Feature, which enables us to add the source files we 
need. The Edge Zynq board appears as shown in Fig. 3.

Now, we connect the Edge Zynq board to the system, 
connect the board with the system that powers up the 
board, and then connect a monitor with an HDMI cable. 
With the board connected to the system, we can now pro-
gram the board with our code to work for our functionality. 
To view our results, we run the project. This will start the 
camera, and the output of the image will be observed in 
the display.

Results and Analysis

The synthesis and implementation process in the Vivado 
software environment begins with the creation of a bit-
stream file once the design and validation steps have been 
completed. This bitstream contains the configurable hard-
ware design and is subsequently included in the project for 
export to the desired hardware platform. After exporting 
the bitstream to the device, we start the SDK program. The 
SDK offers a full development environment for custom-
izing the target board to meet unique requirements. Here, 
we will develop and compile the software code essential to 
control physical components and perform specified tasks. 
After creating the SDK environment, the next step is to 
integrate the necessary source files into the project. These 
source files contain the code modules that interface with 
the OV7670 camera module, implement the edge detec-
tion method, and control the video output pipeline. After 
completing the project setup, we proceed to execute the 
project within the SDK environment. This includes com-
piling the programming for the whole project and initial-
izing the hardware components. As a consequence, the 
camera module is engaged, recording live video feeds as 
shown in Figs. 4 and 5 ,which are later analyzed using 
the established edge detection algorithm. Finally, the pro-
cessed video output is shown on the specified monitor giv-
ing a real-time preview of the collected video stream with 
edge detection enabled as shown in Fig. 6. This iterative 
procedure enables the smooth integration of hardware and 
software components, resulting in the effective implemen-
tation of our system’s capabilities.

Fig. 3  Edge Zynq 7010 FPGA board. Fig. 4  Live image capturing.
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Conclusion and Future Scope

The proposed technique represents a significant advance-
ment in FPGA-based SoC methods, especially in the field 
of real-time edge detection. We successfully created and 
implemented a complex system capable of collecting live 
video feeds from the OV7670 camera module and trans-
mitting them over HDMI, combining the computational 
capabilities of a Zynq processor and the flexible Vivado 
software package. This breakthrough is a critical step 
toward real-time video processing and transmission. In 
addition, by incorporating an edge detection algorithm into 
the system, we add another layer of capability that allows 
us to extract crucial information from collected photos. 
We solved frequent problems such as excessive edges in 
smooth areas and a lack of critical edges in detailed parts 
by implementing the Canny method at the block level. 
This upgrade ensures that the performance of our system’s 

edge detection capabilities remains high, without sacrific-
ing accuracy or efficiency.

Looking ahead, we anticipate significant enhancements 
to our system. We want to incorporate edge detection 
directly into the live video stream, allowing for the detec-
tion of dynamic changes while emphasizing only essential 
features. This iterative development will increase the sys-
tem’s usability and applicability considerably, especially 
in situations where real-time analysis of changing settings 
is critical.

Furthermore, we anticipate our technology being used in 
a variety of applications beyond its existing capabilities. For 
example, in satellite imaging for remote sensing and obser-
vation, our system’s capacity to recognize and highlight crit-
ical aspects in real time might be extremely useful for moni-
toring environmental changes, identifying possible threats, 
and supporting informed decision-making. In essence, our 
findings demonstrate the promise of FPGA-based SoC solu-
tions for handling difficult computational tasks, notably 
real-time video processing and analysis. With continued 
improvement and refinement, our technology has the poten-
tial to revolutionize how we interact with and extract insights 
from visual data in a wide range of applications.

Limitations

While our method is novel, it has several limitations that 
should be noted. The Zynq 7010 FPGA board we used has 
limited processing power. Complex edge detection tech-
niques or high-resolution video feeds may exceed its real-
time processing capabilities. Furthermore, our solution is 
dependent on particular hardware components, such as the 
OV7670 camera module and HDMI output, which may 
limit interoperability with different cameras or display 
interfaces. Setting and programming the FPGA board can 
be difficult and requires expertise. Despite gains in edge 
recognition accuracy at the block level using the Canny 
algorithm, difficulties with recognizing edges, particularly 
in noisy images, may continue. Delays in data transport 
and processing may also impede real-time performance. 
Finally, the capacity to manage many cameras or greater 
processing requirements may be limited without signifi-
cant modifications. These factors are critical for determin-
ing the usefulness and breadth of our system.
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