
Vol.:(0123456789)

Journal of Electronic Materials (2024) 53:6395–6402
https://doi.org/10.1007/s11664-024-11255-x

ORIGINAL RESEARCH ARTICLE

An SoC System for Real‑Time Edge Detection

Vanama Yamini1 · Syed Ali Hussain1 · G. Chandra Sekhar1 · P. Avinash Kumar1 · P. Lehitha1 · B. Sree Venkata Teja1 ·
Swagata Samanta1 · Pradyut Kumar Sanki1

Received: 30 September 2023 / Accepted: 7 June 2024 / Published online: 3 July 2024
© The Minerals, Metals & Materials Society 2024

Abstract
This research work focuses on the design and implementation of a highly advanced field-programmable gate array (FPGA)-
based system-on-chip (SoC) solution for real-time edge detection. By utilizing a Zynq processor and leveraging the powerful
Vivado software, the aim is to overcome the significant computational challenges associated with achieving real-time edge
detection. Edge detection in real-time scenarios presents several obstacles, including the possibility of missing edges due to
noise and the substantial processing requirements of any edge detection technique. To address these challenges, the proposed
SoC system synergistically combines the computational capabilities of an FPGA board and a Zynq processor, harnessing
hardware acceleration to achieve high-performance edge detection. The OV7670 camera module serves as the primary input
medium, capturing image frames for subsequent processing. These captured frames undergo initial processing before being
seamlessly transferred to the FPGA fabric through customized intellectual property (IP) blocks. These IP blocks efficiently
handle crucial tasks such as frame capturing, conversion to AXI Stream interface signals, and integration with the video
direct memory access (VDMA) IP. The VDMA IP plays a pivotal role by facilitating high-speed data movement between
the FPGA fabric and the Zynq processor IP, thereby enabling streamlined and efficient data transfer and processing. At the
heart of this project lies the real-time edge detection algorithm, which is skillfully implemented on the Zynq processor. The
resulting edge-detected frames are then visually presented and displayed on an output device utilizing the AXI4-Stream
to Video Out IP. To ensure optimal utilization of available hardware resources, the comprehensive Vivado software suite
provides a wide array of tools for designing, implementing, and programming the FPGA fabric. By leveraging FPGA-based
systems, this project effectively addresses the critical need for real-time edge detection in time-sensitive scenarios. The result
is a portable and manageable device that exhibits versatility, as it can be employed in various applications while reliably
detecting edges in real-time situations.

Keywords FPGA · SoC · Zynq processor · Computer vision · Image processing · Hardware acceleration

 * Pradyut Kumar Sanki
 pradyut.s@srmap.edu.in

 Vanama Yamini
 yamini.va@srmap.edu.in

 Syed Ali Hussain
 alihussain_syed@srmap.edu.in

 G. Chandra Sekhar
 chetanvvdsngoli@srmap.edu.in

 P. Avinash Kumar
 avinashananda@srmap.edu.in

 P. Lehitha
 lehitharama@srmap.edu.in

 B. Sree Venkata Teja
 sreevenkatatejabollina@srmap.edu.in

 Swagata Samanta
 swagata.s@srmap.edu.in

1 Department of Electronics and Communication Engineering,
SRM University-AP, Amaravati 522502, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11664-024-11255-x&domain=pdf

6396 V. Yamini et al.

Introduction

Detecting edges in images is essentially the initial step
for in-depth image analysis. This vital method improves
image quality and helps with a variety of analytic tasks.
When it comes to increasing the processing speed of image
processing systems, Ganesan and Sajiv1 noted that hard-
ware implementation is crucial. Essentially, our goal in
discussing edge detection implementation on hardware
such as the Edge Z7-10 board is to achieve a consider-
able improvement in image processing speed. This board
offers an effective framework for creating real-time edge
detection systems that work well by combining a field-pro-
grammable gate array (FPGA), a Zynq central processing
unit (CPU), and Vivado software.2 In real-time circum-
stances, our goal is to create a system that can quickly and
efficiently identify edges by utilizing these hardware capa-
bilities. The processing speed must be extremely fast due
to the large amount of image data that must be processed
to enable image data transmission in real time.3 The oper-
ating time of the image processing module is shortened
by the median filter, Sobel edge detection method, and
corrosion expansion algorithm when combined with the
real-time edge detection algorithm for picture data with
1280 × 720 resolution and 30 frames per second (fps).
Many embedded systems, where fast execution is signifi-
cant, call for real-time edge detection.4 Embedded multi-
processor systems provide a practical solution for meeting
the real-time demands of computationally intensive appli-
cations, particularly those that are highly parallelizable.5
In our research, we proposed a co-design approach for
multiprocessor system-on-chip (MPSoC) hardware and
software tailored for real-time Sobel edge detection. This
approach effectively integrates FPGA and IP blocks. Addi-
tionally, we focus on implementing IP blocks necessary for
this application. Edge detection represents the initial step
in image and video processing. The edges identified serve
as valuable inputs for higher-level tasks such as image
enhancement, object recognition, and object tracking,
facilitating a seamless flow in the processing pipeline.

An extremely quick system is needed to complete this
operation in real time. The software does not appear to be
a good choice for real-time implementation. We require
technology with a high degree of parallelism. As was
noted, we need a good platform for real-time implemen-
tation, so we have chosen Vivado for design. The edge
detection hardware includes a peripheral that is a 32-bit
soft RISC TSK3000A. One of the essential aspects of
the image is edge detection.6 It serves as a foundation
for many aspects of image analysis, including target area
identification, extraction, and other regional forms. The
vast variety of edges in a picture are detected by edge

detection operators such as the Canny, Sobel, and Pre-
witt operators. To create a gradient image, these operators
perform the convolution process on every pixel. Complex
convolutions are simple to implement because of several
intrinsic multipliers included in FPGA hardware compo-
nents. These resources are conveniently employed in this
design process, which promotes effective implementation.
Reliability is maintained while consuming less memory,
latency, and mathematical complexity due to algorithm
simplifications. Electronic integrated circuits based on a
matrix of reconfigurable logic blocks (CLBs) are known
as FPGAs.7 Traditionally, hardware description languages
(HDLs) have been used to set up FPGAs.

In this paper, the implementation of edge detection on
a real-time image capture is presented.8 The edge-detected
image is displayed in a video graphics array (VGA) on the
Terasic 5 megapixel (MP) camera once the video has been
recorded and interfaced with the FPGA kit. The OV7670
camera is a popular and widely used image sensor module
known for its affordability and accessibility. The module
also supports multiple output formats, including raw RGB,
YUV, and compressed JPEG, providing flexibility in data
processing and transmission. With its compact size, ease
of integration, and reasonable image quality, the OV7670
camera module has found application in areas such as robot-
ics, surveillance systems, image processing, and embedded
vision projects. Additionally, the edge-detected version of
the RGB image taken by the interfaced camera is obtained
using the Canny edge detection technique.9,10 In compari-
son with other edge detection algorithms, this one has a
low error rate. Edge detection is one of the core techniques
used in object recognition and image processing.11 Due to
its significance in image processing, the architecture must
be accurate, with low latency. An adaptive threshold edge
detection approach is created since the conventional Sobel
edge detection system is unable to meet the requirement for
precision.12 The detection system consists of a complemen-
tary metal–oxide–semiconductor (CMOS) image sensor,
an FPGA, and DDR2, among other components. High-per-
formance Cyclone IV GX series FPGA and DDR2 enable
good real-time performance. The experiment demonstrates
that the Sobel adaptive threshold-based edge detection tech-
nique may be implemented on an FPGA. Additionally, the
system exhibits great real-time performance and high pre-
cision.13 The goal is the same, but it has been approached
in different ways including sensors and DDR2 and so on.
This architecture obviously provides benefits in the areas of
energy consumption and performance dependability despite
noisy images. The proposed system finds application in
various domains, including autonomous vehicles, surveil-
lance systems, robotics, medical imaging, and remote sens-
ing. These applications benefit from accurate and real-time
edge detection, enabling improved decision-making, object

6397An SoC System for Real-Time Edge Detection

recognition, and environmental analysis. Key contributions
of the proposed work include the following:

1. Using the Canny approach at the block level addresses
problems such as an abundance of edges in smooth areas
and a lack of essential edges in detailed sections while
retaining edge detection accuracy.

2. Adaptive threshold computation enhances accuracy by
dynamically updating thresholds based on block char-
acteristics and local curve distribution.

3. A novel approach for estimating block-based hysteresis
thresholds using a nonuniform gradient magnitude histo-
gram is introduced to enhance edge detection accuracy.

4. Integration with current codecs and low latency allow
for quick edge identification in high-resolution media.
Furthermore, the proposed approach outperforms earlier
frame-based algorithms, particularly in noisy visual cir-
cumstances, as demonstrated by subjective and quantita-
tive assessments.

The remainder of the paper is structured as follows: sec-
tion II provides a comprehensive overview of the method-
ology, section III delves into the IPs utilized, section IV
demonstrates the results and analysis, and the culmination
of the paper is found in section V, which presents the conclu-
sion and future scope.

Methodology

The project focuses on utilizing an FPGA-based SoC archi-
tecture. FPGAs offer parallel processing capabilities, allow-
ing for the acceleration of computationally intensive tasks.
The Edge Z7-10 board, which incorporates a Zynq proces-
sor, provides a suitable platform for developing hardware-
accelerated solutions. The core of the project lies in the real-
time edge detection algorithm, which is implemented on the
Zynq processor. By integrating the Canny edge detection
algorithm, the system analyzes the input frames and accu-
rately extracts edges. The resulting edge-detected frames
are visualized and displayed on an output device via the
AXI4-Stream to Video Out IP. At the beginning of this work,
we have used Vivado software to create a new project that
enables us to experiment with various tools.

Vivado

Vivado is a powerful and comprehensive software develop-
ment environment provided by Xilinx, a leading provider of
programmable logic devices (FPGAs) and adaptive com-
pute acceleration platforms (ACAPs). Vivado is continu-
ally updated with new features, enhancements, and device
support to keep pace with the evolving needs of FPGA and

ACAP designers. It empowers designers to unleash the full
potential of Xilinx devices and deliver highly optimized and
innovative digital systems.

Key features and capabilities include design entry, design
analysis and verification, IP integration, high-level synthesis
(HLS), implementation, optimization, debugging, validation,
partial reconfiguration, and system-level integration with
its comprehensive toolset, intuitive interface, and extensive
documentation and support resources. Vivado has become
a widely adopted software platform for FPGA and ACAP
development that enables designers to achieve faster time to
market, higher performance, and greater design productiv-
ity. After starting a register transfer level (RTL) project in
Vivado, we must choose the ideal board file that meets the
project's requirements. We have used the Edge Z7-10 (or
Edge Z7-20) as the main board. This opens a Vivado Flow
Navigator, which provides us with the tools in hand to create
new things. We generated the block design for our project
using the Create Block Design feature. The primary IP that
we have added is the ZYNQ Processing System.

IPs Utilized

Zynq‑7000

The Zynq-7000 Processing System (PS) IP is a fundamental
component in the Vivado design suite provided by Xilinx.
It is specifically designed to enable seamless integration of
the processing capabilities of the ARM Cortex-A9 proces-
sor with the programmable logic fabric of Xilinx Zynq-
7000 SoC devices. It serves as the foundation for creating
advanced embedded systems and enables designers to lev-
erage the benefits of both software and hardware in a uni-
fied platform. The Zynq-7000 PS IP includes a wide range
of features and capabilities to facilitate the development of
complex embedded systems. Key features and capabilities
of the Zynq-7000 PS IP include the ARM Cortex-A9 proces-
sor, memory interfaces, system interconnect, peripherals and
interfaces, interrupt controller, clock and reset management,
debugging, and trace interfaces. We then integrate it with
the AXI Video Direct Memory Access IP, Video Timing
controller, AXI4-Stream to video out, AXI Interconnect, and
other IPs, as can be clearly observed in Fig. 1.

Video Direct Memory Access (VDMA) IP

The AXI Video Direct Memory Access (VDMA) IP is a
key component in the Vivado design suite provided by
Xilinx. It is a versatile IP block that facilitates the effi-
cient transfer of video data between different modules
within a digital system. The AXI VDMA IP is specifi-
cally designed to handle high-bandwidth video streams

6398 V. Yamini et al.

and supports various video formats and resolutions. The
AXI VDMA IP is widely used in video processing and
display applications, including video surveillance systems,
video streaming, image processing, and real-time video
processing. It simplifies the design and implementation
of video processing pipelines by efficiently managing the
transfer of video data and offloading the processor from
handling data movement tasks.

AXI Interconnect IP

The purpose of the AXI Interconnect IP in this project
is to serve as a central communication hub or switch-
board, facilitating seamless connection and data exchange
between various IPs along with the modules within the
system. The AXI Interconnect IP acts as a bridge, ensur-
ing proper interfacing and communication between the
Zynq processing system, the custom IPs, and the periph-
erals. By incorporating the AXI Interconnect IP in the
project design, the system can effectively manage the com-
munication and data flow between different components,
including the Zynq processing system, custom IPs, and
peripherals. It enhances system reliability, scalability, and
performance, allowing for seamless interaction and data
exchange between various modules within the system.

AXI4‑Stream to Video Out IP

This IP can perform various operations such as video format
conversion, AXI4-Stream compatibility, timing synchroni-
zation, and integration with the Video Timing Controller
from the FPGA fabric with the video output interface. The
AXI4-Stream to Video Out IP in Vivado plays a crucial role
in bridging the gap between the processed video data in the
FPGA fabric and the video output interface. The smooth
presentation of the processed video data on the output dis-
play or device is made possible by ensuring compatibility,
timing correctness, and simplification of the integration
process.

Video Timing Controller

The Video Timing Controller IP is utilized to provide pre-
cise control and synchronization of the video timing sig-
nals required for the proper display of the processed video
data. It generates the necessary timing signals, controls the
video resolution and refresh rate, synchronizes with the
input video, and interfaces with the display controllers or
output interfaces. By providing precise timing control, the IP
ensures proper synchronization and display of the processed
video data on the output device, resulting in high-quality and

Fig. 1 Proposed IP block design for video capture.

6399An SoC System for Real-Time Edge Detection

visually appealing video. The design flow of the architecture
is shown in Fig. 2.

Internal Flow of the Model

This is a brief explanation of the internal process that
produces the edge detection output. (1) Input Media: The
OV7670 camera module is used as the input media for cap-
turing images. The camera captures frames that contain vis-
ual information, which will be processed for edge detection.
(2) Initial Processing: The captured frames undergo initial
processing to enhance the quality of the images and prepare
them for edge detection. This processing stage may include
operations such as noise reduction, color space conversion,
and image enhancement techniques. (3) Custom IP Blocks:
Custom IP blocks are developed and integrated into the sys-
tem to handle the image data. These IP blocks capture and
record the frames sent by the OV7670 camera and convert
the signals into a format compatible with the AXI–Stream
interface. The custom IP blocks play a crucial role in pre-
paring the data for further processing. These IP blocks are
responsible for capturing and recording the frames, convert-
ing signals to the AXI–Stream interface format, and integrat-
ing with the VDMA IP. By developing custom IP blocks,
the system can efficiently handle the data flow and prepare
the frames for further processing. (4) VDMA (Video Direct
Memory Access): The processed frames are transferred to
the Zynq processor using the VDMA IP, which facilitates
high-speed data movement between the FPGA fabric and the
processor. The VDMA IP utilizes the AXI Stream protocol
to efficiently transfer the processed image frames to the Zynq
processor for subsequent analysis. This enables seamless
communication and data flow within the system. (5) AXI
Interconnect IP: The AXI Interconnect IP is used to establish
communication and data flow between various IP blocks,
including the VDMA IP, and other components in the sys-
tem. It ensures smooth data transfer and proper coordination
between different modules. (6) Memory Management: This

efficiently manages the memory resources to ensure smooth
data transfer and processing. It sets aside the proper amount
of memory buffers to hold gradients, edge data, and picture
frames. The AXI4-Stream and VDMA IP interfaces can be
used to read and write video data to memory. (7) Timing and
Synchronization: The timing constraints and synchronization
requirements to ensure proper coordination between the dif-
ferent components are considered. This includes synchroniz-
ing the input frames from the camera, coordinating the trans-
fer of data between modules, and synchronizing the output
frames for display. (8) Testing and Debugging: The imple-
mentation is thoroughly tested to validate its correctness and
performance. Test images or video sequences are used to
verify the edge detection results. Debugging of any issues
or errors that may arise during testing ensures that the algo-
rithm functions as expected. (9) Edge Detection Algorithm:
Once the processed image frames are available in the Zynq
processor, a real-time edge detection algorithm is applied.
The specific edge detection algorithm used can vary based
on the project requirements, but popular techniques such as
Canny, Sobel, or Laplacian edge detection can be employed.
The Canny edge detection algorithm is implemented in a
programming language that is compatible with the Zynq
processor, such as C/C++. (10) Performance Optimization:
The algorithm parameters and hardware configurations are
fine-tuned to optimize the performance of the real-time edge
detection system. This may involve adjusting the smoothing
kernel size and threshold values, or exploring parallelization
techniques to fully leverage the capabilities of the FPGA
fabric. (11) Output and Display: The resulting edge-detected
frames are visualized and displayed on an output device.
This involves converting the processed frames to a format
compatible with the AXI4-Stream to Video Out IP, which
connects to the output display, such as a High-Definition
Multimedia Interface (HDMI) monitor. The visualization
of the edge-detected frames enables real-time analysis and
evaluation of the algorithm’s performance.

Fig. 2 Design flow of video timing controller.

6400 V. Yamini et al.

Process

After connecting all the required IPs together, we validate
the design and then select Create HDL Wrapper. This cre-
ates a hierarchy with the wrapper on the top. Next, we
generate output products. We proceed with Generate
Bitstream. Generating a bitstream is a crucial step in the
FPGA design flow as it produces a binary file that con-
tains the configuration information for the FPGA device. It
configures the FPGA device, facilitates design verification
and optimization, enables integration with the system, and
provides flexibility in deployment and programmability.
It is a critical process in realizing the desired functional-
ity and performance of an FPGA-based system. We then
select Export File to export the hardware information.
It contains PS configuration information. Also, we must
select to include the generated bitstream. Then we select
Launch Software Development Kit (SDK). In SDK, we
open a New Application Project with the Empty Applica-
tion Feature, which enables us to add the source files we
need. The Edge Zynq board appears as shown in Fig. 3.

Now, we connect the Edge Zynq board to the system,
connect the board with the system that powers up the
board, and then connect a monitor with an HDMI cable.
With the board connected to the system, we can now pro-
gram the board with our code to work for our functionality.
To view our results, we run the project. This will start the
camera, and the output of the image will be observed in
the display.

Results and Analysis

The synthesis and implementation process in the Vivado
software environment begins with the creation of a bit-
stream file once the design and validation steps have been
completed. This bitstream contains the configurable hard-
ware design and is subsequently included in the project for
export to the desired hardware platform. After exporting
the bitstream to the device, we start the SDK program. The
SDK offers a full development environment for custom-
izing the target board to meet unique requirements. Here,
we will develop and compile the software code essential to
control physical components and perform specified tasks.
After creating the SDK environment, the next step is to
integrate the necessary source files into the project. These
source files contain the code modules that interface with
the OV7670 camera module, implement the edge detec-
tion method, and control the video output pipeline. After
completing the project setup, we proceed to execute the
project within the SDK environment. This includes com-
piling the programming for the whole project and initial-
izing the hardware components. As a consequence, the
camera module is engaged, recording live video feeds as
shown in Figs. 4 and 5 ,which are later analyzed using
the established edge detection algorithm. Finally, the pro-
cessed video output is shown on the specified monitor giv-
ing a real-time preview of the collected video stream with
edge detection enabled as shown in Fig. 6. This iterative
procedure enables the smooth integration of hardware and
software components, resulting in the effective implemen-
tation of our system’s capabilities.

Fig. 3 Edge Zynq 7010 FPGA board. Fig. 4 Live image capturing.

6401An SoC System for Real-Time Edge Detection

Conclusion and Future Scope

The proposed technique represents a significant advance-
ment in FPGA-based SoC methods, especially in the field
of real-time edge detection. We successfully created and
implemented a complex system capable of collecting live
video feeds from the OV7670 camera module and trans-
mitting them over HDMI, combining the computational
capabilities of a Zynq processor and the flexible Vivado
software package. This breakthrough is a critical step
toward real-time video processing and transmission. In
addition, by incorporating an edge detection algorithm into
the system, we add another layer of capability that allows
us to extract crucial information from collected photos.
We solved frequent problems such as excessive edges in
smooth areas and a lack of critical edges in detailed parts
by implementing the Canny method at the block level.
This upgrade ensures that the performance of our system’s

edge detection capabilities remains high, without sacrific-
ing accuracy or efficiency.

Looking ahead, we anticipate significant enhancements
to our system. We want to incorporate edge detection
directly into the live video stream, allowing for the detec-
tion of dynamic changes while emphasizing only essential
features. This iterative development will increase the sys-
tem’s usability and applicability considerably, especially
in situations where real-time analysis of changing settings
is critical.

Furthermore, we anticipate our technology being used in
a variety of applications beyond its existing capabilities. For
example, in satellite imaging for remote sensing and obser-
vation, our system’s capacity to recognize and highlight crit-
ical aspects in real time might be extremely useful for moni-
toring environmental changes, identifying possible threats,
and supporting informed decision-making. In essence, our
findings demonstrate the promise of FPGA-based SoC solu-
tions for handling difficult computational tasks, notably
real-time video processing and analysis. With continued
improvement and refinement, our technology has the poten-
tial to revolutionize how we interact with and extract insights
from visual data in a wide range of applications.

Limitations

While our method is novel, it has several limitations that
should be noted. The Zynq 7010 FPGA board we used has
limited processing power. Complex edge detection tech-
niques or high-resolution video feeds may exceed its real-
time processing capabilities. Furthermore, our solution is
dependent on particular hardware components, such as the
OV7670 camera module and HDMI output, which may
limit interoperability with different cameras or display
interfaces. Setting and programming the FPGA board can
be difficult and requires expertise. Despite gains in edge
recognition accuracy at the block level using the Canny
algorithm, difficulties with recognizing edges, particularly
in noisy images, may continue. Delays in data transport
and processing may also impede real-time performance.
Finally, the capacity to manage many cameras or greater
processing requirements may be limited without signifi-
cant modifications. These factors are critical for determin-
ing the usefulness and breadth of our system.

Acknowledgments We acknowledge the support from the Department
of Science and Technology-Science and Engineering Research Board
(DST-SERB), Government of India ([CRG/2022/007866]), for fund-
ing the project.

Conflict of interest The authors declare that they have no conflict of
interest.

Fig. 5 Live image capturing.

Fig. 6 Edge detection for captured images.

6402 V. Yamini et al.

References

 1. P. Ganesan and G. Sajiv, A comprehensive study of edge detection
for image processing applications, in 2017 International Confer-
ence on Innovations in Information, Embedded and Communica-
tion Systems (ICIIECS) (2017). https:// doi. org/ 10. 1109/ ICIIE CS.
2017. 82759 68, pp. 1–6.

 2. A. Geetha Devi, B. Surya Prasada Rao, S. Abdul Rahaman, and V.
Sri Sai Akhileswar, Real-time video image edge detection system,
in International Conference on Ubiquitous Computing and Intel-
ligent Information Systems (Springer, 2021), pp. 389–397.

 3. X. Wei, G.M. Du, X. Wang, H. Cao, S. Hu, D. Zhang, and Z. Li,
FPGA implementation of hardware accelerator for real-time video
image edge detection, in 2021 IEEE 15th International Confer-
ence on Anti-counterfeiting, Security, and Identification (ASID)
(IEEE, 2021), pp. 16–20.

 4. I. Nita, T. Costachioiu, V. Lazarescu, and T. Seceleanu, Multi-
processor real-time edge detection using FPGA IP cores, in 2011
IEEE 7th International Conference on Intelligent Computer Com-
munication and Processing (IEEE, 2011), pp. 331–334.

 5. N. Gajjar, V. Patel, and A.J. Shukla, Implementation of edge
detection algorithms in real time on FPGA, in 2015 5th Nirma
University International Conference on Engineering (NUiCONE)
(IEEE, 2015), pp. 1–4.

 6. P.K. Chakravathi, K.V. Kumar, P.D. Pradeep, and D. Suresh,
FPGA based architecture for real-time edge detection. In 2015
Global Conference on Communication Technologies (GCCT)
(IEEE, 2015), pp. 12–17.

 7. Z. Tan and J.S. Smith, Real-time canny edge detection on FPGAs
using high-level synthesis, in 2020 7th International Conference
on Information Science and Control Engineering (ICISCE) (IEEE,
2020), pp. 1068–1071.

 8. R. Jeyakumar, M. Prakash, S. Sivanantham, and K. Sivasankaran,
FPGA implementation of edge detection using Canny algorithm,
in 2015 Online International Conference on Green Engineering
and Technologies (IC-GET) (IEEE, 2015), pp. 1–4.

 9. Q. Xu, S. Varadarajan, C. Chakrabarti, and L.J. Karam, A distrib-
uted canny edge detector: algorithm and FPGA implementation.
IEEE Trans. Image Process. 23, 2944 (2014).

 10. V. Raghavendra and L. Shrinivasan, Time efficient design and
FPGA implementation of distributed canny edge detector algo-
rithm, in 2018 3rd IEEE International Conference on Recent
Trends in Electronics, Information & Communication Technol-
ogy (RTEICT), 2135–2139 (IEEE, 2018).

 11. N.M. Yusoff, I.S.A. Halim, N.E. Abdullah, et al., Real-time Hevea
leaves disease identification using Sobel edge algorithm on FPGA:
a preliminary study, in 2018 9th IEEE Control and System Gradu-
ate Research Colloquium (ICSGRC) (IEEE, 2018), pp. 168–171.

 12. J. Tian, J. Wu, and G. Wang, Realization of real-time Sobel adap-
tive threshold edge detection system based on FPGA, in 2015
IEEE International Conference on Information and Automation
(IEEE, 2015), pp. 2740–2743.

 13. L. Guo and S. Wu, FPGA implementation of a real-time edge
detection system based on an improved canny algorithm. Appl.
Sci. 13, 870 (2023).

Publisher's Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of
such publishing agreement and applicable law.

https://doi.org/10.1109/ICIIECS.2017.8275968
https://doi.org/10.1109/ICIIECS.2017.8275968

	An SoC System for Real-Time Edge Detection
	Abstract
	Introduction
	Methodology
	Vivado

	IPs Utilized
	Zynq-7000
	Video Direct Memory Access (VDMA) IP
	AXI Interconnect IP
	AXI4-Stream to Video Out IP
	Video Timing Controller
	Internal Flow of the Model

	Process

	Results and Analysis
	Conclusion and Future Scope
	Limitations
	Acknowledgments
	References

