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Abstract
When subjected to swift heavy ion (SHI) irradiation, a lattice acquires sufficient energy to induce desirable flaws in the mate-
rial. In this study, the physiochemical properties of Sn-doped V2O5 (SVO) synthesized by a sol–gel process were thoroughly 
examined following irradiation with Ni+11 ions at 150 MeV energy and fluence of 2.51 × 1011 ions/cm2. The successful doping 
of Sn in V2O5 was confirmed by an increase in tensile strain, as revealed by the x-ray diffraction (XRD) spectrum, and the 
presence of characteristic peaks of constituent elements detected in the energy-dispersive x-ray (EDX) spectrum. Atomic 
force microscopy (AFM) and field-emission scanning microscopy (FESEM) images revealed an increase in surface rough-
ness and transformation to an amorphous state, respectively. The Tauc plot indicated an increase in the electronic bandgap 
post-irradiation. Fourier transform infrared (FTIR) spectroscopy analysis revealed a peak shift in the fingerprint region 
indicating a change in the vibrational energy of the involved molecular bonds. These findings highlight the potential of SHI 
irradiation for the tuning of material properties, paving the way for a wide range of functional applications of the material.
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Introduction

Swift heavy ion (SHI) irradiation is a potent technique for 
inducing controlled modifications on the atomic scale. In 
this technique, ions having mass equal to or greater than 
carbon, propelled at a comparable velocity of an electron 
in Bohr orbit (106 m/s), are directed onto the material. 
Expressed in units of energy (MeV/amu), SHI experiences 
energy loss (dE/dx) along its trajectory upon interaction with 
the material.1 Elastic collision with the target dominates for 
ions having an energy of about 1 KeV/amu, which results in 

the scattering of ions without substantial energy dissipation.2 
Inelastic collision is more prevalent for ions having energy 
of about 1 MeV/amu or more, wherein a highly charged 
projectile energizes electrons in its path, causing excitation 
(10−17 to 10−15 s) and ionization (10−15 to 10−13 s) of the 
electrons. This encounter results in disruption of the charge 
distribution, as the energetic electrons are excited away from 
the ion's path, leaving behind a localized region of a positive 
core. These occurrences serve as the foundation for the ionic 
spike model. The accumulation of like charges within this 
region leads to a robust repulsion, compelling the ions to 
swiftly disperse in a coordinated movement, away from the 
centre, resulting in a Coulomb explosion.3 Soon these sepa-
rated charges recombine, and the spatial charge neutrality is 
restored.4 Nevertheless, a few electrons persist in the excited 
state, engaging in faster energy exchange with comparable 
masses, establishing a temperature deferential between elec-
trons and lattice.5 In response to the changes in atomic inter-
linkage due to highly excited electrons, the crystal lattice 
undergoes relaxation (< 10−12 s). The energy is transmit-
ted to the lattice via electron–phonon interaction within a 
very short time frame (< 10−13 s), which elevates the lattice 
temperature locally.6,7 This increase in temperature is a key 
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aspect of the thermal spike model.8 However, this model 
neglects the alterations that occur during lattice relaxation. 
In describing the course of lattice relaxation, two additional 
models have received relatively less attention in subsequent 
discussion of SHI irradiation on the material. When elec-
trons move to a higher energy level, this may disrupt the 
balance of forces within the bond, making it more suscepti-
ble to breaking. The bond-weakening model articulates the 
potential impact of electronic excitation on bond strength, 
offering insights into how this phenomenon can contribute to 
structural modifications in the material.1,9 As outlined by the 
self-trapping exciton model, the excitons formed by excited 
electrons and holes left behind possess localized energy, 
capable of breaking bonds.10

The selection of ion species, energy, and fluence dictates 
the irradiation effect on the target. Different ion species 
having distinct masses, charges, and electronic structures 
interact uniquely with the target. The energy of the ions dic-
tates their penetration depth. Low-energy ions may interact 
primarily with the surface, inducing surface modifications 
whereas highly energetic ions can penetrate deeper, caus-
ing bulk modifications and potential structural changes. 
Fluence is a measure of ions incident per unit area. Dose-
dependent effects may include defect density, phase transi-
tions, or changes in material properties.11–14 Some main-
stream applications of SHI research include conducting 
bulk material testing, simulating cosmic radiation effects, 
exploring SHI-induced sputtering, and developing ion track 
nanotechnology.2,15

The versatility of oxygen in its ability to combine with 
various metals and nonmetals is enormous, and the result-
ing compounds are called oxides. V2O5 is a transition metal 
oxide composed of metal vanadium (V) and oxygen (O). 
These compounds exhibit semiconductor behaviour and have 
earned favor among scientists for their wide range of appli-
cations, for example, in electrochromic devices,16,17 cataly-
sis,18 energy storage,19 and gas sensors.20,21 Doping of V2O5, 
wherein the intentional incorporation of foreign elements 
enhances their properties and behaviour, can bring about 
significant changes to their chemical, optical, and electrical 
properties.17,22–24 Employing SHI irradiation enables us to 
amend the properties of doped oxides.24,25

Over the years, Sn-doped V2O5 (SVO) has attracted atten-
tion for its commendable performance as an ammonia gas 
sensor26,27 and for its application in lithium-ion batteries 
(LIBs).28–30 Since then, several methods have been adopted 
to improve the overall efficiency of gas sensors, for exam-
ple, by manipulating the nanoarchitecture, infusing two-
dimensional (2D) nanomaterials, or establishing a hetero-
interface,31 and for LIBs by utilizing silicon as an anode,32 
carbon coatings,33 and depolarization effects,34 among 
others. Aimed at improving performance, this study delves 
into the influence of Ni+11 ion irradiation on enhancing the 

physiochemical characteristics of SVO. The induced defects 
such as vacancies, interstitials, or dislocations offer addi-
tional sites on SVO for gas molecules to adsorb, thereby 
increasing gas–surface interaction and enhancing the adsorp-
tion capacity of the material. The choice of nickel as an ion 
species was motivated by its potential as a gas sensor35,36 and 
its employment in lithium-ion batteries.37–39 Furthermore, 
the highly charged state of Ni+11 ions was considered to 
ensure deeper penetration and more significant interaction 
with the target.8

Experimental

The synthesis of Sn-doped V2O5 (SVO) was carried out 
using the standard sol–gel process. The adoption of this 
method was in consideration of cost-effectiveness, scal-
ability, and obtaining a homogenous composition, which 
is crucial for the consistent performance of materials such 
as electronic devices.40 Vanadium pentoxide (V2O5, ≥ 98%, 
Sigma-Aldrich), hydrogen peroxide (H2O2 30%, Merck), and 
tin chloride (SnCl4, ≥ 99%, Sigma-Aldrich) were used as pre-
cursor materials. The active substance was prepared using 
deionized (DI) water and 30% hydrogen peroxide (H2O2) in 
a weight ratio of 4:1, respectively. On dissolving 1 g V2O5 at 
400 rpm, a transparent reddish-brown solution was obtained. 
For doping, Sncl4 was added at a stoichiometric concentra-
tion of 4% under vigorous stirring for 3 h, resulting in a 
thick, green substance. The solution was left to dry at room 
temperature. In the next step, the sample was annealed at 
450°C for 3 h. The obtained annealed powder and its pallets 
(1 mm in thickness) were further utilized for characteriza-
tion and SHI treatment. The SVO pallets were irradiated 
by a SHI beam of Ni+11 for 8 s at 150 MeV and fluence of 
2.5 × 1011 ions/cm2 to maximize the depth of penetration.41

To investigate the impact of Ni+11 ion beam bombard-
ment onto the SVO having a density of 3.2915 g/cm3, a 
stopping and range of ions in matter (SRIM) simulation 
was conducted. The electronic energy loss (dE/dx)e, which 
determines the rate of energy loss as ions pass through the 
material, and the nuclear energy loss (dE/dx)n determining 
the dissipation of energy when ions interact with the nucleus 
were found to be 2.44 × 101 MeV/µm and 3.31 × 10−2 MeV/
µm, respectively. The range of the projectile, denoting the 
distance covered by the ion before coming to rest, was found 
to be 24.52 µm, indicating easy implantation in a 1-mm-thick 
pallet. The longitudinal and lateral straggling were identified 
as 1.09 µm and 1.28 µm, respectively. These findings help us 
understand the interaction of ions with the target.

The structural, optical, and chemical properties of SVO 
and irradiated SVO were studied in detail. X-ray diffraction 
(XRD) with the monochromatic Cu Kα line (λ = 0.154 nm) 
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on a Rigaku Ultima IV instrument was carried out for phase 
identification. Atomic force microscopy (AFM) using a 
multimode scanning probe microscope system and field-
emission electron microscopy (FESEM) using a JEOL 
JSM-7610F Plus instrument were carried out to explore the 
surface morphology. UV–visible spectroscopy (Shimadzu 
UV-2600 spectrophotometer) was utilized to study the opti-
cal properties of the material. Fourier transform infrared 
(FTIR) spectroscopy (Bruker Alpha spectrometer) was 
used in a spectral range from 500 cm−1 to 4000 cm−1 for the 
chemical analysis of the samples.

Results and Discussion

X‑Ray Diffraction (XRD)

The XRD patterns acquired for pure V2O5, SVO, and irradi-
ated SVO were analysed. The diffraction peaks of pure V2O5 
matched with JCPDS card no. 00-001-0359, confirming 
an orthorhombic crystalline phase42 (Fig 1b). The diffrac-
tion peaks appeared at 2θ = 15.53°, 20.25°, 21.71°, 26.26°, 
31.13°, 32.41°, 34.33°, 41.30°, and 51.59° for lattice planes 
(200), (010), (110), (101), (400), (011), (301), (020), and 
(221). In the diffraction pattern obtained for SVO, the peak 
position of the lattice plane (010) was found to shift towards 

the lower 2θ value (Fig. 1a). The dopant tin (Sn) atom, with 
an atomic radius of 140 pm, is greater than the vanadium 
(V) atom, having an atomic radius of 134 pm. The presence 
of Sn atoms induces localized stress within the lattice. This 
results in lattice expansion, leading to an increase in inter-
planar spacing. This causes variations in lattice parameters 
and ultimately leads to a shift in the position of diffraction 
peaks.26,43,44

A comparative analysis of XRD patterns revealed a sig-
nificant structural alteration of SVO after SHI irradiation. 
An XRD peak with elevated background noise and lower 
peak intensity for irradiated SVO suggests a disruption of 
periodicity and a more disordered crystal lattice. A phase 
transformation was observed post-irradiation, caused by the 
emergence of a new phase V4O9 (JCPDS card no. 00-023-
0720).45 V4O9 possesses a tetragonal crystal symmetry hav-
ing space group P42/mnm (Fig. 1c). The lattice parameters 
are a = 8.23 Å, b = 8.23 Å, and c = 10.32 Å, respectively, at 
α = ꞵ = γ = 90°. In Fig. 1d, e, and f, the correlation between 
the full width at half maximum (FWHM) (β cosθ) and dif-
fraction angle (4 sinθ) is presented for SVO and irradiated 
SVO. The positive slope obtained indicates an increase in 
tensile strain post-irradiation. The calculation of crystallite 
size, performed using the Debye–Scherrer (Eq. 1) and the 
Williamson–Hall W-H methods (Eq. 2), revealed a reduction 
in crystallite size post-irradiation46 (Table I).

Fig. 1   (a) XRD spectra of V2O5, pristine SVO, and irradiated SVO. Crystal structure of (b) V2O5 and (c) V4O9. W-H plot for (d) V2O5, (e) pris-
tine SVO, and (f) irradiated SVO.
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(1)D =
K�

� cos �
,

where the crystallite size, x-ray wavelength, Scherrer con-
stant, FWHM, Bragg angle, and lattice strain are denoted by 
D, λ, K (0.9), ꞵ, ϴ, and ϵ, respectively.

Field‑Emission Scanning Microscopy (FESEM)

FESEM images for pure V2O5, SVO, and irradiated SVO 
were obtained at a resolution of micrometres (Fig. 2a, b, and 
c, respectively). The images of the irradiated SVO reveal 
more textured morphology characterized by fine lines and 

(2)� cos � =
K�

D
+ 4�� sin �,

Table I   Structural parameters of V2O5, pristine SVO, and irradiated 
SVO

Sample Strain Crystallite size

DDS DWH

V2O5 4.58 × 10−4 23.14 nm 25.00 nm
Pristine SVO 14.2 × 10−4 46.31 nm 17.55 nm
Irradiated SVO 30.6 × 10−4 29.95 nm 14.27 nm

Fig. 2   FESEM images of (a) V2O5, (b) pristine SVO, (c) irradiated SVO. Grain size distribution of (d) V2O5 and (e) pristine SVO nanobelts.

Fig. 3   EDX spectrum for V2O5 
and pristine SVO; characteristic 
peaks of Sn are shown in the 
inset.
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cracks.47 A crystallite size distribution curve was obtained 
for V2O5 and SVO (Fig. 2d and e, respectively). For doping 
confirmation, a comparative plot of the energy-dispersive 
x-ray (EDX) spectrum of V2O5 and SVO was obtained, 
revealing the characteristic peaks of constituent elements 
(Fig. 3). Two new peaks of Lα and Lβ spectral lines appeared 
at 3.44 keV and 3.66 keV in SVO, confirming the exist-
ence of Sn in SVO. Weight percentages of 13.0%, 63.1%, 
and 23.9% were found for oxygen (O), vanadium (V), and 
tin (Sn) atoms, respectively; the atomic percentages were 
36.1%, 55%, and 8.9%, respectively (Table II).

An essential condition with the thermal spike model is 
a rapid cooldown after irradiation to effectively preserve 
the alterations induced by intense heating.2 In this study, 
SVO did not undergo quenching. Also, due to the lack of 
substantial evidence confirming the melting in SVO when 
subjected to SHI irradiation, the adequacy of the thermal 
spike model in accurately illustrating surface modifications 
remains uncertain.48 This model overlooks the transforma-
tive capacity of the lattice relaxation stage. As emphasized 
by the bond weakening model, an intense electronic excita-
tion induces variations in interatomic interactions, resulting 
in lattice relaxation.

In the irradiated SVO, the intense excitation of bonding 
electrons leads to the disturbance of lattice order, initiating 
structural modifications during lattice relaxation.9,49 The 
induced alterations are carried to or annealed in the heat-
ing stage.50 Heating leads to thermal expansion following 
contractions as atoms conduct heat to the surrounding lat-
tice. The resulting thermal stress causes cracks as the mate-
rial adjusts to the temperature change. The SVO transforms 
from a crystalline to an amorphous state post-irradiation. 
The amorphized SVO sample is expected to exhibit differ-
ing physical and chemical properties.51 We propose that the 

modified morphology is a product of processes set in motion 
during both the lattice relaxation and heating stages.

Atomic Force Microscopy (AFM)

AFM images of pure V2O5, SVO, and irradiated SVO are 
depicted in Fig. 4a, b, and c, respectively. AFM images were 
acquired to examine the microscale features and topographi-
cal variations induced by the irradiation process. Amplitude 
parameters were quantitively analysed for the surface profile, 
wherein the average roughness and root mean square (RMS) 
roughness denoted by (Ra) and (Rq), respectively, were 
observed to increase post-irradiation. Average roughness 
of 81.760 nm and 125.846 nm was calculated for the pris-
tine and irradiated samples, respectively. The RMS rough-
ness takes into account both the magnitude and direction 
of surface features and was calculated as 104.544 nm and 
163.085 nm for SVO and irradiated SVO, respectively. The 
roughness ratio was found to be 0.64. In the pristine sample, 
the highest peak (Rp) and deepest valley (Rv) were quantified 
in the order of nanometres (10−9). Following irradiation, 
these measurements increased to the order of micrometres 
(10−6)52–54 (Table III).

UV–Visible Spectroscopy

To better understand the electronic transitions occurring within 
the material, UV–visible absorption spectra were acquired 
for V2O5, SVO, and irradiated SVO samples. The doping of 
Sn in V2O5 results in crystal defects such as oxygen vacan-
cies that trap excited electrons, causing the absorption edge 
to shift towards a longer wavelength, leading to a reduction 
in the bandgap.55 In the case of SVO, the absorption peak 
occurring at 500 nm is attributed to the π–π* transition.56,57 
Upon Ni+11 irradiation, the peak shifted to a lower wavelength 
region, approximately 420 nm, signifying a modification in 
the electronic band structure (Fig. 5a). The material's bandgap 
plays a pivotal role in determining its optical and electronic 
properties. The bandgap, calculated using the Kubelka–Munk 
function (Eq. 3), indicates an increase from 1.65 eV to 1.82 eV 

Table II   EDX results for pristine 
SVO

Element Weight% Atomic%

O K 13.0 36.1
V K 63.1 55.0
Sn L 23.9 8.9

Fig. 4   AFM image of (a) V2O5, (b) pristine SVO, and (c) irradiated SVO.
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post-irradiation58 (Table IV). Observed modification in band-
gap indicates a shift in energy levels and electronic density of 
states, and potential modification in charge carrier behaviour. 
V4O9 has a large bandgap relative to V2O5.59 The bandgap 
variation is possibly due to the formation of the V4O9 phase. 
Also, amorphous materials formed post-irradiation lack long-
range periodicity, which can lead to localized electronic states 
wherein the electrons have limited mobility and are confined 
to smaller regions. This hinders the movement of electrons 
between the valence and conduction bands. The bandgap 
increases, as electrons now require additional energy to over-
come these barriers for transition between bands. The trans-
formed material is suitable for numerous applications includ-
ing photodetectors,60 solar cells,61 and sensors.62

where F(R∞) and R∞ denote the Kubelka–Munk function 
and the reflectance of the material with respect to the buffer 
solution used as a reference, for indirect-bandgap n =

1

2
.

Fourier Transform Infrared Spectroscopy (FTIR)

The infrared (IR) spectra of SVO and irradiated SVO sam-
ples are shown in Fig. 6. Some bending and stretching 
vibration peaks were observed in the fingerprint region, as 
tabulated in Table V).63,64 The bands of V=O and V–O–V 
asymmetric stretching are the signature peaks of vana-
dium oxides. The peak of V=O emerged at 1017.64 cm−1, 
1014.91 cm−1, and 994.53 cm−1 in pure V2O5, pristine 
SVO, and irradiated SVO, respectively. The peaks of V=O 

(3)[F(R∞) × hv]n = A(hv − Eg),

and V–O–V appeared at approximately the same position 
due to the presence of V2O5. In irradiated SVO, a peak 
broadening was observed due to the cumulative peak of 
V2O5 and V4O9.65 This demonstrates the formation of the 
V4O9 phase in the material. The peak of V–O–V sym-
metric stretching was observed in pure V2O5 and SVO 
samples and was found to disappear in irradiated SVO, 
revealing that symmetric vibrations were forbidden in the 
damaged lattice plane. The sharp peaks of O–Sn–O bend-
ing are indicative of well-defined and localized band vibra-
tions in SVO samples. The peak shifting in the fingerprint 
region indicates a change in the vibrational energy of the 
involved molecular bonds. The bending modes of V–O–V 
were found to shift towards lower wavenumbers post-irra-
diation, indicating that the interaction with Ni ions causes 
an increase in molecular mass.66,67 The structural modifi-
cations and decrease in bond length are induced by Ni+11 
ion bombardment.

Conclusions

This detailed characterization provides insights into the 
structural, electronic, and chemical variations induced by 
the irradiation of Ni+11 ions on SVO. The Sn doping in 
V2O5 was confirmed by the increase in the tensile strain 
as revealed by XRD and from the characteristic peaks of 
constituent elements obtained by the EDX spectrum. The 
emergence of a new phase V4O9, increase in tensile strain, 
and decrease in crystallite size suggest structural altera-
tions induced by irradiation. AFM and FESEM analysis 
revealed increases in surface roughness and a textured 
morphology with fine lines and cracks post-irradiation. Table III   Height parameters of V2O5, pristine SVO, and irradiated 

SVO

Parameters Ra Rq Rp Rv

V2O5 17.264 nm 23.474 nm 121.174 nm 142.205 nm
Pristine SVO 81.760 nm 104.544 nm 481.580 nm 511.169 nm
Irradiated 

SVO
125.846 nm 163.085 nm 0.94484 µm 0.76383 µm

Fig. 5   (a) Absorption spectra of 
V2O5, pristine SVO, and irradi-
ated SVO. (b) Graph of [F(R∞) 
× hv]1/2 versus energy for V2O5, 
pristine SVO, and irradiated 
SVO.

Table IV   Bandgap calculated using Tauc plot for V2O5, pristine SVO, 
and irradiated SVO

Sample V2O5 SVO Irradiated SVO

Bandgap (eV) 2.1 1.65 1.82
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The induced modifications are a result of the lattice relax-
ation and heating stage, where the alterations generated 
in the relaxation stage are carried to and annealed in the 
heating stage. The cracks and fine lines result from stress 
induced as the material adjusts to temperature changes. 
UV–visible spectra revealed a blue shift in the absorption 
peak, and the electronic bandgap increased from 1.65 eV 
to 1.82 eV post-irradiation, suggesting a potential modi-
fication in charge carrier behaviour. This results from the 
formation of a new phase V4O9 having a higher bandgap 
and the amorphous state of the material obtained post-
irradiation. FTIR analysis revealed a peak shift in the 
fingerprint region, indicating a change in the vibrational 
energy of the involved molecular bonds.

This comprehensive study provides insights into the 
mechanisms governing the enhanced physiochemical char-
acteristics caused by SHI irradiation. The combined results 
suggest that Ni+11 irradiation alters the material’s lattice 
parameters, crystallite size, surface morphology, and elec-
tronic band structure. The modified material holds the poten-
tial for utilization in electronic applications, as it is expected 
to show enhanced results in detecting ammonia gases and 
to be suitable for use in lithium-ion batteries. Hence, test-
ing this material for increased efficiency is an objective of 
future research.
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