ORIGINAL RESEARCH ARTICLE

Crystal Structure, Sintering Behavior, and Microwave Dielectric Properties of Low-Permittivity Ba₂Zr₂Si₃O₁₂ Ceramics

Yingxiang $Li^1 \cdot Deyin Liang^1 \cdot Xing Zhang^2 \cdot Zhe Xiong^2 \cdot Bin Tang^3 \cdot Feng Si^3 \cdot Zixuan Fang^3 \cdot Hao Li^4 \cdot Zitao Shi^3 \cdot Jingjing Chen^3$

Received: 21 June 2023 / Accepted: 26 July 2023 / Published online: 16 August 2023 © The Minerals, Metals & Materials Society 2023

Abstract

This study presents the dielectric properties of Ba₂Zr₂Si₃O₁₂ ceramics, synthesized using the solid state method. The cubic crystal structure of Ba₂Zr₂Si₃O₁₂ ceramics was conclusively verified through the analysis of XRD patterns and subsequent structural refinement. Refined lattice parameters of a=b=c=10.23178 Å were found, with a corresponding unit cell volume of V=1071.159026 Å³. The grain microstructure of the ceramics was characterized using SEM, which showed density of 97.6% for the Ba₂Zr₂Si₃O₁₂ ceramic. The Si-O bond valences (V_{Si-O}) were found to be closely related to the τ_f of the Ba₂Zr₂Si₃O₁₂ ceramics. The microwave dielectric properties of the Ba₂Zr₂Si₃O₁₂ ceramics sintered at 1490°C were ascertained to be $\varepsilon_r = 15.08$, $Q \times f = 14885$ GHz (f = 9.9 GHz), and $\tau_f = -78.6$ ppm/°C.

Keywords $Ba_2Zr_2Si_3O_{12}$ · cubic structure · microwave dielectric properties

Introduction

Microwave dielectric ceramics play a crucial role in communication technology as essential components in microwave electronics. These ceramics are commonly employed as resonators, filters, and substrates in integrated circuits.^{1,2} They possess three key parameters: an appropriate dielectric constant, a high quality factor, and a stable temperature coefficient of resonant frequency.^{3–5} The demand for dielectric materials with reduced size, high-frequency capability, and robust thermal stability has become increasingly urgent. Hence, there is a pressing need to investigate and produce

Yingxiang Li 408960349@qq.com

- ² Sichuan Province Key Laboratory of Information Materials and Devices Application, College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
- ³ State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 611731, China
- ⁴ College of Electrical and Information Engineering, Hunan University, Changsha 410082, China

dielectric substrates with enhanced performance. A high dielectric constant can effectively reduce the device's volume, but it simultaneously generates more heat within the integrated circuit. Conversely, a low dielectric constant can decrease the signal transmission delay, with the delay time being proportional to the dielectric constant.^{6,7} Moreover, it can increase the operating rate, thereby minimizing system energy losses. A higher quality factor can significantly improve the frequency selectivity, which is particularly critical in filters requiring precise frequency discrimination.^{8–10} In summary, materials featuring a low dielectric constant, high quality factor, and excellent thermal stability are the optimal choice for high-frequency electronic components.

Microwave ceramics with low dielectric constant have attracted the attention of many scholars because low dielectric constant can reduce signal delay. Li et al.¹¹ studied a Li₄WO₅ ceramic with rock salt structure, and the crystal phase changed from cubic to orthorhombic at 700°C. Ba₂MgWO₆ ceramics with a double perovskite structure were discovered by Wang et al.¹² The relative dielectric constant calculated based on the Fourier transform infrared (FTIR) spectrum is close to the measured value, which is about 16. Wu et al.¹³ found a spinel structure of MgGa₂O₄ ceramics, which not only has a low dielectric constant, but also has a τ_f value near zero. Jiang et al.¹⁴ studied a rock salt structure Li₅ZnSnNbO₈ ceramic with space group Fm-3 m, which

¹ College of Information Engineering, Shaoyang University, Shaoyang 422000, China

has high density and good microwave properties ($\varepsilon_r = 17.17$, $Q \times f = 51519$ GHz and $\tau_f = -28.2$ ppm/°C). In recent years, microwave ceramics based on Si and Ge have garnered significant attention from researchers owing to their exceptional microwave dielectric properties. For instance, Zou et al. reported the discovery of an anti-reductive ceramic, Ba₂ZnSi₂O₇ ($Q \times f = 27200$ GHz), ¹⁵ exhibiting low dielectric loss. Du et al. investigated an orthorhombic microwave ceramic, Li₄SrCaSi₂O₈ ($Q \times f = 90094$ GHz), ¹⁶ which demonstrated a high quality factor. Additionally, cubic microwave ceramics generally exhibit low dielectric loss, exemplified by Li₂ZnGe₃O₈ ($Q \times f = 47400$ GHz), ¹⁷ Li₄Mg₂NbO₆F ($Q \times f = 93300$ GHz), ¹⁸ Li₄NbO₄F ($Q \times f = 61,111$ GHz), ¹⁹ and Li₅GaO₈ ($Q \times f = 127040$ GHz).²⁰

In this study, we focus on the investigation of a novel microwave ceramic, $Ba_2Zr_2Si_3O_{12}$, synthesized by the traditional solid-state method. The microwave dielectric properties of $Ba_2Zr_2Si_3O_{12}$ ceramics are thoroughly explored. The crystal structure of $Ba_2Zr_2Si_3O_{12}$ ceramics is characterized using x-ray diffraction (XRD) analysis and subsequent refinement. Overall, $Ba_2Zr_2Si_3O_{12}$ ceramics with reduced dielectric loss exhibit promising potential as dielectric materials.

Experimental Procedure

Ba₂Zr₂Si₃O₁₂ ceramics were synthesized via the traditional solid-state method. High-purity raw materials, including BaCO₃ (99%, Aladdin), ZrO₂ (99%, Aladdin), and SiO₂ (99%, Aladdin), were precisely weighed according to the chemical formula ratio. Table I shows the quantity of raw materials used. The resulting powder mixture was subjected to ball milling for 8 h, utilizing alcohol as the milling medium. Subsequently, the obtained slurry was dried in an electric furnace and calcined at 1300°C for 4 h. The same process was used to produce the dried powder. The dried powder was mixed with an appropriate amount of poly(vinyl alcohol) (PVA) binder and pressed under pressure of 20 MPa to form several white cylindrical specimens. These specimens were sintered in air at temperatures ranging from 1430°C to 1510°C for 4 h. The sintered sample was thermally etched for 30 min at 50°C below the sintering temperature after polishing.

The density of the $Ba_2Zr_2Si_3O_{12}$ samples was measured using the Archimedes principle. The sample was placed into the upper tray to obtain the mass of the sample in air. Then the sample was put into the lower container, and the mass of the sample in water was obtained after complete invasion of water. Finally, the density of the sample was calculated. To

Table I Chemical materials for preparing Ba2Zr2Si3O12 ceramics

Material	BaCO ₃	ZrO ₂	SiO ₂
Mass	26.8382 g	16.7579 g	12.2563 g

investigate the phase structure of the Ba₂Zr₂Si₃O₁₂ ceramics, XRD analysis was performed. The XRD data of the samples were refined using GSAS software. The microstructure of the Ba₂Zr₂Si₃O₁₂ ceramics was investigated using scanning electron microscopy (SEM) with a Hitachi SU1510 microscope (Hitachi, Japan). The key microwave dielectric properties, namely the relative dielectric constant (ε_r), quality factor ($Q \times f$), and temperature coefficient of resonant frequency (τ_f), were ascertained using the Hakki–Coleman dielectric resonator technique. When taking τ_f measurements, a high- and lowtemperature test chamber was employed, with a temperature range of 25°C through 85°C. The τ_f value was computed using the following equation:

$$\tau_f = \frac{\Delta f}{f_0 \times \Delta t} \times 10^6 = \frac{f_{85} - f_{25}}{f_{25} \times (85 - 25)} \times 10^6 (\text{ppm/°C})$$
(1)

Results and Discussion

The XRD pattern of the $Ba_2Zr_2Si_3O_{12}$ samples sintered at temperatures of 1430–1510°C is presented in Fig. 1. The XRD results demonstrate that the samples calcined within this temperature range exhibit consistent patterns and align well with the standard PDF card (ICDD #00-025-1466), confirming the crystal phase to be $Ba_2Zr_2Si_3O_{12}$ without any impurity phases. To further analyze the crystal structure, the XRD data of the sample were refined using the $K_2Mg_2S_3O_{12}$ compound, which shares the same structure as $Ba_2Zr_2Si_3O_{12}$. Figure 2a exhibits the refinement of the XRD data for $Ba_2Zr_2Si_3O_{12}$ sintered at 1490°C, demonstrating good agreement between the simulated and experimental

Fig.1 XRD patterns of $Ba_2Zr_2Si_3O_{12}$ ceramics calcined at 1430–1510°C.

Fig. 2 (a) Refined spectra of Ba₂Zr₂Si₃O₁₂ calcined at 1490°C and (b) corresponding crystal structure.

Table II Refinement of XRD data for Ba2Zr2Si3O12 samples	S.T. (°C)	1430	1450	1470	1490	1510
	a = b = c (Å)	10.23539	10.22607	10.25192	10.23178	10.22879
	$\alpha = \beta = \gamma$ (°)	90	90	90	90	90
	V (Å ³)	1072.291905	1069.365012	1077.495518	1071.159026	1070.220608
	$R_{\rm wp}$ (%)	11.06	10.15	10.74	10.20	10.27
	$R_{\rm p}(\%)$	7.92	7.27	7.70	7.29	7.41
	χ^2	6.978	5.319	5.871	4.705	4.782

S.T., sintering temperature

data. The refinement results of the Ba₂Zr₂Si₃O₁₂ ceramics are summarized in Table II. The R_{wp} and R_p values at various temperatures are both less than 15%, with $R_{\rm p} < R_{\rm wp}$.²¹ This finding further confirms the cubic structure of Ba₂Zr₂Si₃O₁₂, belonging to the P123 (198) space group. The atomic coordinates and occupation fractions of the Ba2Zr2Si3O12 ceramics are listed in Table III. Figure 2b shows the crystal structure of the Ba₂Zr₂Si₃O₁₂ ceramics, where a unit cell consists of four Ba₂Zr₂Si₃O₁₂ chemical formulas, eight BaO₆ octahedra, eight ZrO₆ octahedra, and 12 SiO₄ tetrahedra, with each atom occupying a specific position. The Ba and Zr atoms are situated at 4a sites, while the Si and O atoms are located at 12b positions.

SEM images of the polished and thermally etched crosssections and grain size distribution of the samples sintered at 1430–1510°C are presented in Figs. 3 and 4, respectively. As the sintering temperature increases, the average grain size of the sample continues to increase. At a calcination temperature of 1430°C, the sample exhibits a higher presence of pores between the grains, with an average grain size of 2.70 µm. Despite the presence of some pores, the sample sintered at the optimal temperature of 1490°C achieves a relative density of 97.6%. In addition, the average grain size

Table III Atomic coordinates and occupation fraction of Ba₂Zr₂Si₃O₁₂

Atom	x	у	z	Occupancy	Uiso
Ba1	0.56800	0.56800	0.56800	1	0.03505
Ba2	0.79700	0.79700	0.79700	1	0.01040
Zr1	0.08400	0.08400	0.08400	1	0.03215
Zr2	0.35000	0.35000	0.35000	1	0.02186
Si	0.03300	0.26800	0.37500	1	0.08747
01	0.01200	0.19600	0.24600	1	0.30848
02	0.17300	0.25800	0.42700	1	0.02476
03	0.02100	0.05700	0.71300	1	0.04969
04	0.00200	0.41200	0.34900	1	0.00866

of the sample is 4.03 µm. However, at 1510°C, the grain size of the sample increases dramatically, reaching an average size of 4.37 μ m.²² Additionally, the sample exhibits a greater number of pores and poorer morphological quality due to the higher temperature employed.

Figure 5a illustrates the variation in relative density as a function of temperature for the Ba₂Zr₂Si₃O₁₂ samples. The relative density increases from 90.4% to 96.1% as the temperature increases from 1430°C to 1470°C, reaches

Fig. 3 SEM images of $Ba_2Zr_2Si_3O_{12}$ ceramics calcined at various temperatures, (a) 1430°C, (b) 1450°C, (c) 1470°C, (d) 1490°C, and (e) 1510°C, for 4 h.

Fig.4 Grain size distribution and average grain size analysis of $Ba_2Zr_2Si_3O_{12}$ ceramics calcined at different temperatures: (a) 1430°C, (b) 1450°C, (c) 1470°C, (d) 1490°C, and (e) 1510°C.

its maximum value at 1490°C (97.6%), and subsequently exhibits a slight decrease. The temperature-dependent curve of the relative dielectric constant is shown in Fig. 5b. Ba₂Zr₂Si₃O₁₂ ceramics exhibit a peak value of 15.08 at 1490°C and a minimum value of 13.72 at 1430°C. The observed trend indicates an initial increase followed by a decrease in the ε_r value with temperature. ε_r is influenced by various factors, including density, ionic polarizability, porosity, molecular volume, and the presence of secondary phases. The lower ε_r value of Ba₂Zr₂Si₃O₁₂ ceramics can be attributed to the low ionic polarizability of Zr^{4+} ($\alpha = 3.25 \text{ Å}^3$) and Si^{4+} ($\alpha = 0.87 \text{ Å}^3$) ions.²³ XRD and SEM analyses confirm the absence of apparent secondary phases in Ba₂Zr₂Si₃O₁₂ ceramics, indicating that secondary phases do not contribute significantly to the observed dielectric behavior. The relationship between the porosity-corrected dielectric constant (ε_{corr}) and ε_r can be expressed as:²⁴

$$\varepsilon_{\rm corr} = \varepsilon_r (1 + 1.5p) \tag{2}$$

where p represents porosity. The ε_{corr} value of Ba₂Zr₂Si₃O₁₂ ceramics sintered at 1490°C is measured to be 15.62, slightly

higher than the experimental value. The molecular volume is expected to vary inversely with the ε_r value;²⁵ however, the observed changes in the crystal volume of Ba₂Zr₂Si₃O₁₂ ceramics reported in Table II do not conform to this relationship. For instance, the sample sintered at 1470°C exhibits a larger unit cell volume than that sintered at 1450°C, while displaying an increasing trend in ε_r . This behavior can be attributed to the corresponding increase in the relative density of the sample. Similarly, the sample sintered at 1510°C shows a slightly smaller cell volume than that sintered at 1490°C, but the ε_r value decreases slightly, likely due to a decrease in relative density.

The temperature dependence of $Q \times f$ and packing fraction of Ba₂Zr₂Si₃O₁₂ ceramics is presented in Fig. 5c. $Q \times f$ is influenced by various factors including densification, impurities, secondary phases, crystal structure, and packing fraction. The $Q \times f$ value achieves a maximum of 14,885 GHz at 1490°C. Prior to 1490°C, the $Q \times f$ value presents an increasing trend with temperature, followed by a decrease at 1510°C (14,195 GHz). The packing fraction of Ba₂Zr₂Si₃O₁₂ ceramics can be calculated using the following equation:²⁶

Fig. 5 Variation curves depicting the properties of Ba₂Zr₂Si₃O₁₂ ceramics at different temperatures: (a) relative density, (b) ϵ_r , (c) $Q \times f$ and packing fraction, and (d) τ_f .

packing fraction(%) = $\frac{\text{volume of the atoms in the cell} \times Z}{\text{volume of the unit cell}}$ (3)

where Z represents the number of Ba₂Zr₂Si₃O₁₂ chemical formula units in the unit cell, with a value of 4 for Ba₂Zr₂Si₃O₁₂ ceramics. The packing fraction of Ba₂Zr₂Si₃O₁₂ ceramics calcined at 1490°C is calculated to be 62.54%. A higher packing fraction corresponds to weaker lattice vibration, resulting in lower dielectric loss, thus showing a positive correlation with $Q \times f$. However, it is observed that the packing fraction is inversely proportional to the $Q \times f$ value when the sample is calcined between 1450 and 1470°C. Importantly, the $Q \times f$ value displays a similar trend as the relative density, suggesting a significant influence of density on the $Q \times f$ of Ba₂Zr₂Si₃O₁₂ ceramics. The decrease in relative density at 1510°C is identified as a major cause for the deterioration of $Q \times f$.

Figure 5d displays the relationship between τ_f and temperature for Ba₂Zr₂Si₃O₁₂ ceramics. The τ_f value of Ba₂Zr₂Si₃O₁₂ ceramics reaches a maximum of -78.6 ppm/°C at 1490°C, gradually increasing from 1430°C to 1470°C, and then decreasing to -79.5 ppm/°C at 1510°C. The τ_f is closely connected to the bond valence of chemical bonds. The bond valence of Ba₂Zr₂Si₃O₁₂ ceramics can be calculated using the following formulas:²⁷

$$V_{ij} = \sum V_{ij}$$
(4)

$$v_{ij} = \exp\left[\frac{R_{ij} - d_{ij}}{b}\right]$$
(5)

where V_{ii} represents the sum of all bond valences, d_{ii} represents the bond length between atoms *i* and *j*, R_{ii} represents the bond valence parameter, and b is a constant with a value of 0.37. Figure 6 illustrates the variation in Si-O bond valence and τ_f for Ba₂Zr₂Si₃O₁₂ ceramics. Previous studies have demonstrated an inverse relationship between bond valence and $|\tau_f|$ in crystal structures.²⁸ The Si-O bond valences (V_{Si-O}) for Ba₂Zr₂Si₃O₁₂ ceramics sintered at 1450°C, 1470°C, and 1490°C are calculated as 4.82, 5.05, and 5.21, respectively. Therefore, the decrease in $|\tau_{d}|$ at 1490°C is likely attributed to the increase in bond valence. Similarly, the increase in $|\tau_{d}|$ at 1510°C can be attributed to a decrease in bond valence. As depicted in the figure, the change in τ_f is not significant, which may be attributed to the absence of secondary phases and the insensitivity of Ba₂Zr₂Si₃O₁₂ ceramic material to temperature variations.²⁹ Figure 7 shows the variation curves of ε_r and tan δ of the samples sintered at 1430–1510°C. ε_r and tan δ have the opposite trend, and tan δ first decreases and then increases. When the sintering temperature is 1430–1490°C, tan δ falls from 8.55 to the lowest point 6.65, and ε_r of the sample has

Fig. 6 The relationship between τ_f and $V_{\text{Si-O}}$ of the samples at different temperatures.

Fig. 7 The variation curves of ε_r and tan δ with sintering temperature.

a maximum value of 15.08. The tan δ of the sample sintered at 1510°C rises slightly, and ε_r declines to 14.93, which may be attributed to the decrease in the relative density of the sample.

Conclusion

In this study, we successfully synthesized a Ba₂Zr₂Si₃O₁₂ ceramic by the traditional solid-state reaction method and considered its microwave properties. Through XRD and Rietveld refinement analysis, we determined that the optimal sintering temperature range for achieving a pure cubic Ba₂Zr₂Si₃O₁₂ ceramic is 1430–1510°C. SEM images confirmed the uniformity and denseness of the sample grains when sintered at 1490°C. The microwave dielectric properties of the Ba₂Zr₂Si₃O₁₂ ceramics calcined at 1490°C for 4 h were as follows: $\varepsilon_r = 15.08$, $Q \times f = 14,885$ GHz

(f=9.9 GHz), and $\tau_f = -78.6 \text{ ppm/}^{\circ}\text{C}$. These results highlight the low loss and low dielectric constant characteristics of the Ba₂Zr₂Si₃O₁₂ ceramic, positioning it as a highly promising material for microwave dielectric ceramics applications.

Acknowledgments This work was supported by the graduate scientific research innovation project of Shaoyang University (Grant No. CX2022SY035) and the National Natural Science Foundation of China (Grant No. 52102123).

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

- J. Zhang, R. Zuo, and Y. Cheng, Relationship of the structural phase transition and microwave dielectric properties in MgZrNb₂O₈–TiO₂ ceramics. *Ceram. Int.* 42, 7681 (2016).
- F. Li, Y. Li, Y. Li, X. Feng, J. Zhang, X. Liu, Y. Lu, S. Wang, Y. Liao, T. Tang, and Q. Wen, Enhanced Na⁺-substituted Li₂Mg₂Mo₃O₁₂ ceramic substrate based on ultra-low temperature co-fired ceramic technology for microwave and terahertz polarization-selective functions. J. Eur. Ceram. Soc. 43, 384 (2023).
- C. Dong, H. Wang, T. Yan, J. Zhao, J. Xu, and D. Wang, The influence of CaF₂ doping on the sintering behavior and microwave dielectric properties of CaO-B₂O₃-SiO₂ glass-ceramics for LTCC applications. *Crystals* 13(5), 748 (2023).
- S. Li, C. Li, M. Mao, K. Song, Y. Iqbal, A. Khesro, S.S. Faouri, Z. Lu, B. Liu, S. Sun, and D. Wang, High Q×f values of Zn-Ni comodified LiMg_{0.9}Zn_{0.1-x}Ni_xPO₄ microwave dielectric ceramics for 5G/6G LTCC modules. *J. Eur. Ceram. Soc.* 42(13), 5684 (2022).
- T. Yan, C. Dong, J. Zhao, A. Khesro, Z. Liu, S. Sun, J. Li, R. Sun, and D. Wang, Lead-free borosilicate glass/fused quartz composites for LTCC applications. *J. Mater. Sci. Mater. Electron.* 33(18), 15033 (2022).
- W. Bian, G. Zhou, Y. Dong, X. Lu, H. Zhu, S. Ta, L. Wang, and Q. Zhang, Structural analysis and microwave dielectric properties of a novel Li₂Mg₂Mo₃O₁₂ ceramic with ultra-low sintering temperature. *Ceram. Int.* 47, 7081 (2021).
- Y. Chen, H. Li, X. Xu, Y. Zhang, J. Du, H. Wu, L. Liu, and G. Duan, Effects of (Ba1/3Sb2/3)⁴⁺ on the structure and dielectric properties of Ce₂Zr₃(MoO₄)₉ ceramic at microwave frequency. *J. Alloy. Compd.* 939, 168804 (2023).
- Z.A. Mikhaylovskaya, E.S. Buyanova, A.I. Malkin, A.N. Korotkov, N.S. Knyazev, and S.A. Petrova, Morphological and microwave dielectric properties of Bi: SrMoO₄ ceramic. *J. Solid State Chem.* 316, 123555 (2022).
- L. Huang, S. Ding, X. Yan, T. Song, and Y. Zhang, Structure and microwave dielectric properties of BaAl₂Si₂O₈ ceramic with Li₂O– B₂O₃ sintering additive. *J. Alloy. Compd.* 820, 153100 (2020).
- R. Gupta, E.Y. Kim, H.S. Shin, G.Y. Lee, and D.H. Yeo, Structural, microstructural, and microwave dielectric properties of (Al_{1-x}B_x)₂Mo₃O₁₂ ceramics with low dielectric constant and low dielectric loss for LTCC applications. *Ceram. Int.* 49, 22690 (2023).
- J. Li, L. Fang, H. Luo, J. Khaliq, Y. Tang, and C. Li, Li₄WO₅: a temperature stable low-firing microwave dielectric ceramic with rock salt structure. *J. Eur. Ceram. Soc.* 36, 243 (2016).
- Y. Wang, J. Lv, J. Wang, F. Shi, and Z. Qi, Lattice vibrational characteristics, crystal structure and dielectric properties of Ba₂MgWO₆ microwave dielectric ceramic. *Ceram. Int.* 47, 17784 (2021).
- S. Wu, J. Xue, R. Wang, and J. Li, Synthesis, characterization and microwave dielectric properties of spinel MgGa₂O₄ ceramic materials. J. Alloy. Compd. 585, 542 (2014).

- Y. Jiang, Y. Shen, J. Yang, Z. Fang, X. Zhang, P. Zhao, and B. Tang, A novel ultra-low loss ceramic Li₅ZnSnNbO₈ with a rock salt structure. *Mater. Chem. Phys.* 277, 125457 (2022).
- Z.Y. Zou, K. Du, X.K. Lan, W.Z. Lu, X.C. Wang, X.H. Wang, and W. Lei, Anti-reductive characteristics and dielectric loss mechanisms of Ba₂ZnSi₂O₇ microwave dielectric ceramic. *Ceram. Int.* 45, 19415 (2019).
- Q. Du, Q. Wen, L. Jiang, S. Liu, L. Ma, and H. Li, A novel lowtemperature sintering microwave dielectric ceramic Li₄SrCaSi₂O₈ with low-er and low loss. *Ceram. Int.* 49, 22617 (2023).
- H. Xiang, L. Fang, W. Fang, Y. Tang, and C. Li, A novel low-firing microwave dielectric ceramic Li₂ZnGe₃O₈ with cubic spinel structure. *J. Eur. Ceram. Soc.* 37, 625 (2017).
- S. Zhai, P. Liu, and S. Zhang, A novel high-Q oxyfluoride Li₄Mg₂NbO₆F microwave dielectric ceramic with low sintering temperature. *J. Eur. Ceram. Soc.* 41, 4478 (2021).
- X. Chu, J. Jiang, J. Wang, Y. Wu, L. Gan, and T. Zhang, A new high-*Q*×*f*Li₄NbO₄F microwave dielectric ceramic for LTCC applications. *Ceram. Int.* 47, 4344 (2021).
- 20. L. Ao, Y. Tang, J. Li, W. Fang, L. Duan, C. Su, Y. Sun, L. Liu, and L. Fang, Structure characterization and microwave dielectric properties of LiGa₅O₈ ceramic with low- ε_r and low loss. *J. Eur. Ceram. Soc.* 40, 5498 (2020).
- G. Yao, J. Yan, J. Tan, C. Pei, P. Liu, H. Zhang, and D. Wang, Structure, chemical bond and microwave dielectric characteristics of novel Li₃Mg₄NbO₈ ceramics. *J. Eur. Ceram. Soc.* 41, 6490 (2021).
- C.F. Xing, J. Bao, Y.F. Sun, J.J. Sun, and H.T. Wu, Ba₂BiSbO₆: A novel microwave dielectric ceramic with monoclinic structure. *J. Alloy. Compd.* 782, 754 (2019).
- R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993).
- K. Du, C.Z. Yin, Y.B. Guo, C. Zhang, X.C. Wang, W.Z. Lu, and W. Lei, Phase transition, infrared spectra, and microwave dielectric properties of temperature-stable CaSnSi_{1-x}Ge_xO₅ ceramics. *Ceram. Int.* 47, 24781 (2021).
- 25. E.S. Kim, C.J. Jeon, and P.G. Clem, Effects of crystal structure on the microwave dielectric properties of ABO₄ (A = Ni, Mg, Zn and B = Mo, W) ceramics. *J. Am. Ceram. Soc.* 95, 2934 (2012).
- X. Zhang, Z. Fang, Y. Jiang, M. Wang, S. Gee, L. Zhou, H. Yang, F. Si, P. Zhao, Z. Xiong, S. Zhang, and B. Tang, Microwave dielectric properties of a low firing and temperature stable lithium magnesium tungstate (Li₄MgWO₆) ceramic with a rock-salt variant structure. *J. Eur. Ceram. Soc.* 41, 171 (2021).
- J. Li, L. Fang, H. Luo, Y. Tang, and C. Li, Structure and Microwave dielectric properties of a novel temperature stable low-firing Ba₂LaV₃O₁₁ ceramic. *J. Eur. Ceram. Soc.* 36, 2143 (2016).
- W.S. Xia, L.X. Li, L.J. Ji, P. Zhang, P.F. Ning, and Q.W. Liao, Phase evolution, bond valence and microwave characterization of (Zn_{1-x}Ni_x)Ta₂O₆ ceramics. *Mater. Lett.* 66, 296 (2012).
- 29. J. Li, Y. Tang, Z. Zhang, W. Fang, L. Ao, A. Yang, L. Liu, and L. Fang, Two novel garnet Sr₃B₂Ge₃O₁₂ (B = Yb, Ho) microwave dielectric ceramics with low permittivity and high *Q. J. Eur. Ceram. Soc.* 41, 1317 (2021).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.