ORIGINAL RESEARCH ARTICLE

Improved β-Ga₂O₃ Solar-Blind Deep-Ultraviolet Thin-Film Transistor Based on Si‑Doping

Leyun Shen1 · Xinhua Pan1,2 · Tao Zhang1 · Yunze Liu1 · Ning Wang¹ · Peng Wang¹ · Fengzhi Wang1,2 · Guangmin Zhu³ · Jiangbo Wang³ · Zhizhen Ye1,2

Received: 10 February 2022 / Accepted: 21 March 2022 / Published online: 13 April 2022 © The Minerals, Metals & Materials Society 2022

Abstract

Gallium oxide (Ga_2O_3) -based photodetectors are attracting more and more attention for their wide range of applications in optical imaging, spatial communication, etc. In this work, solar-blind deep-ultraviolet thin-flm transistors (TFTs) based on polycrystalline β-Ga₂O₃ thin film were constructed by pulsed laser deposition. The photoelectric performance of β-Ga₂O₃ TFT is effectively improved by a Si-doping method. The turn-on voltage (V_{on}) of Si-doped β-Ga₂O₃ TFT is negatively shifted by 20 V, exhibiting enhancement-mode (E-mode) operation. The optimized Si-doped $Ga₂O₃ TFT$ photodetector shows a high on/off ratio of ~ 10⁵, a turn-off current (I_{off}) of ~ 10⁻¹¹ A at drain voltage (V_D) = + 20 V, responsivity (*R*) of 3.23 A/W, detectivity (*D*^{*}) of 4.41 × 10¹³ Jones, and a photocurrent/dark current ($I_{\text{light}}/I_{\text{dark}}$) of ~ 10⁴ at gate voltage (V_G) = − 5 V, $V_D = +20$ V under 254 nm light. The obtained results suggest that the Si-doping method can effectively modulate the V_{on} of β- $Ga₂O₃ TFT$ and promote photoelectric performance.

Keywords $Ga_2O_3 \cdot$ Si-doping \cdot photodetectors \cdot thin-film transistor \cdot pulsed laser deposition

Introduction

Recently, β-phase gallium oxide (β -Ga₂O₃) has achieved great attention as a promising semiconductor material for high-power electronics. Ga_2O_3 , with an ultra-large energy band gap of \sim 4.8 eV, is of great potential in deep-ultra-violet (DUV) detection.^{[1](#page-7-0)} DUV signatures have a weak solar background interface because of strong absorption of stratospheric ozone, contributing to applications in fame detection, missile early alarm, and so on.^{[2](#page-8-0)} Therefore, photodetectors based on $β$ -Ga₂O₃ have been widely studied in recent years.^{[3–](#page-8-1)[6](#page-8-2)} Furthermore, the Baliga's figure of β -Ga₂O₃

 \boxtimes Xinhua Pan panxinhua@zju.edu.cn

State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, People's Republic of China

- ² Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, People's Republic of China
- ³ Key Laboratory of Wide Bandgap Semiconductor Materials and Devices, Yiwu 322009, Zhejiang, People's Republic of China

at 3214 is considerably higher than those of SiC at 317 and GaN at 846,⁷ which means that β -Ga₂O₃ electronics are more efficient than other wide band-gap materials.

 $β$ -Ga₂O₃ photodetectors have been developed rapidly based on various structures, such as Schottky bar-riers,^{[5](#page-8-4)[,6](#page-8-2)} p–n junctions,^{[8–](#page-8-5)10} metal–semiconductor–metal (MSM) , 11,12 11,12 11,12 etc. Recently, $Ga₂O₃$ -based thin-film transistors (TFT) have received increasing attention and been successfully demonstrated. $13-18$ TFT-type devices achieve excellent photoelectric performance through three-terminal control, and easily integrate with other devices in circuits.[19](#page-8-11) Most transistors are based on bulk single-crystal $β$ -Ga₂O₃. Jinho et al. demonstrated a dual-field singlecrystal β-Ga₂O₃ nano-field effect transistor (FET) with an off-state hard breakdown voltage exceeding $+$ 400 V.^{[15](#page-8-12)} Yaxuan et al. obtained FET solar-blind photodetectors based on high-quality single-crystalline Ga_2O_3 flakes, achieving high photocurrent/dark current $(I_{\text{light}}/I_{\text{dark}})$ of 8×10^5 , a responsivity (*R*) of 4.79×10^5 A/W, and an external quantum efficiency (EQE) of 2.34 \times 10⁶%.^{[18](#page-8-10)} However, high-quality materials always demand strict experimental conditions. Differently, β -Ga₂O₃ thin films make up for the defects of bulk materials, along with low cost, easy growth, great repeatability and flexibility, $3,10,11$ $3,10,11$ $3,10,11$ $3,10,11$ $3,10,11$

most of which show polycrystalline or amorphous phrases prepared by pulsed laser deposition (PLD), metal–organic chemical vapor deposition (MOCVD), sputtering, and spin-coating. Yuan et al. pioneered an enhancementmode solar-blind metal-oxide–semiconductor fieldefect phototransistor based on molecular beam epitaxy (MBE) homoepitaxial β -Ga₂O₃ film, obtaining a high *R* of 3 \times 10³ A/W, an EQE of 1.5 \times 10⁶%, and short rise and decay times of 100 ms and 30 ms, 17 respectively. Xi et al. presented amorphous Ga_2O_3 :CdO thin film-based TFT devices prepared by spin-coating, and demonstrated a large negative shift in the turn-on voltage (V_{on}) due to the increase in the electron concentration.^{[14](#page-8-14)} Yuan et al. investigated a solar-blind phototransistor based on lowcost magnetron-sputtered amorphous GaO_x thin film, which achieved ultra-high responsivity, detectivity (*D**), and EQE.[16](#page-8-15)

Here, we demonstrate polycrystalline β- $Ga₂O₃$ solarblind DUV TFTs with gate-tunable photodetection. PLD was used to deposit the β -Ga₂O₃ thin film on a Si/SiO₂ substrate to fabricate TFT-type devices. We discuss the characteristics of the deposited β -Ga₂O₃ thin film with and without Si-doping, including their crystallinity, morphology, and defects. Moreover, the electric and photoresponse performances of TFTs based on pure β- $Ga₂O₃$ and Si-doped $β$ -Ga₂O₃ are analyzed.

Experimental

β‑Ga2O3 Preparation and Device Fabrication

A *p*-type Si substrate was cleaned in acetone, alcohol, and deionized water. PLD was used to deposit the β- Ga_2O_3 thin film on the (100)-oriented Si with a 320-nm $SiO₂$ layer. A highly purified (99.99%) $Ga₂O₃$ ceramic target and a Sidoped Ga₂O₃ ceramic target (Ga₂O₃: SiO₂ = 99.5: 0.5 wt%) were used, respectively, both of which were 50.8 mm in diameter and 5 mm in thickness. The target–substrate distance was 69 mm. The substrate temperature during deposition was fxed at 700 °C. The deposition chamber was pumped down to a base pressure of 3×10^{-5} Pa. Subsequently, a working pressure of oxygen of 0.1 Pa was introduced. A 248-nm KrF excimer laser, with a repetition rate of 3 Hz and an energy density of 5 J cm⁻², was used to deposit β-Ga₂O₃ thin films for 30 min. Next, the Ga₂O₃ thin flms were annealed at 800 °C by a rapid thermal annealing method for 30 min, reducing defects such as oxygen vacancies.²⁰ To fabricate the TFT, Si wafers with a SiO₂ layer were used as the gate electrode, gate dielectric, and substrates. The drain/source electrode regions were defned by depositing Au/Ti (50/20 nm) using e-beam evaporation through a shadow mask. The length and width of the channel were 1000 μm and 100 μm, respectively.

Material and Device Characterization

X-ray difraction (XRD; PANalytical X-pert Powder) with CuKα radiation was used to measure the crystalline properties of the flms. The surface morphologies and roughnesses of the flms were characterized by scanning electron microscopy (SEM; SU-70; Hitachi) and atomic force microscopy (AFM; Multimode-8; Bruker Nano). The defect type and content were examined by x-ray photoelectron spectroscopy (XPS; Kratos AXIS Supra). The electrical performance was measured using semiconductor parameter analyzers (Keithley 4200). A 254-nm ultraviolet (UV) light-emitting diode was provided as the light source to measure the photoresponse properties.

Results and Discussion

The XRD study was carried out on pure β -Ga₂O₃ film and Si-doped β-Ga₂O₃ film. Figure [1](#page-2-0)a shows the XRD diffraction patterns of the Ga_2O_3 films grown on the (100) Si substrate deposited at 700 °C. Both samples show polycrystalline $β$ -Ga₂O₃ with a monoclinic structure. The peaks indexed to (− 201), (110), (− 402) and (− 601) are dominant in the pure $β$ -Ga₂O₃ film, while such peaks decrease in the Si-doped $β$ -Ga₂O₃ film, indicating that the Si-doping method might have reduced the crystallinity in the presence of lattice distortion. Diferent growth temperatures and the rapid thermal annealing method are also discussed in detail in the Supporting Information (see Figures S1, S2). A cross-section SEM image of β-Ga₂O₃ is shown in Fig. [1b](#page-2-0). The thickness of the $β$ -Ga₂O₃ film is ~ 86 nm (depositing time 30 min). Figure [1c](#page-2-0) and d present the 3D AFM images of the surface of the $β$ -Ga₂O₃ films in a 5 × 5 $μm²$ area. The root-mean-square surface roughness of the Si-doped β -Ga₂O₃ films is 1.26 nm, which is smaller than that of pure β -Ga₂O₃ films (2.59 nm), suggesting that the Si-doped β -Ga₂O₃ film is relatively smooth. Pure Ga_2O_3 film exhibits a state of high resistance while the carrier density is 9.5×10^{10} cm⁻³. The Si-doped $Ga₂O₃$ film exhibits *n*-type conductance, and the resistivity and carrier density are 1986 Ω cm and 2.4 × 10¹⁶ cm⁻³, respectively, as previously reported. 21 In brief, the crystal quality is slightly reduced after Si-doping, and both flms are of good quality with fat surfaces and high uniformity.

XPS measurements were performed to identify defect types and defect concentrations. The charge–shift spectrum was calibrated using an adventitious C 1*s* peak at 284.8 eV. Figure [2](#page-2-1)a and d shows the XPS survey scan of pure β-Ga₂O₃ thin film and Si-doped β-Ga₂O₃ thin film, respectively. Both curves show characteristic peaks of Ga

Fig. 1 (a) XRD curves of pure β-Ga₂O₃ film and Si-doped β-Ga₂O₃ film. (b) Cross-section SEM image of β-Ga₂O₃ film. AFM images of (c) pure $β$ -Ga₂O₃ film and (d) Si-doped $β$ -Ga₂O₃ film.

Fig. 2 (a) XPS spectra of pure β-Ga₂O₃ thin film. (b, c) Ga 2*p* core peak and O 1*s* peak of pure β-Ga₂O₃ thin film, respectively. (d) XPS spectra of Si-doped β-Ga₂O₃ thin film. (e, f) Ga 2*p* core peak and O 1*s* peak of Si-doped β-Ga₂O₃ thin film, respectively.

 $(2p, 3p, 3d)$, O $(1s)$ and C $(1s)$, and there is no significant diference between them. Thus, a small amount of Si-doping would not have a huge impact on the composition of thin flms. Recent studies show that Si would difuse into the oxide from the Si substrate when annealed at a higher temperature.^{[22](#page-8-18),23} Similar situations have occurred in Al_2O_3 , GaN, and so on.^{[24](#page-8-20),[25](#page-8-21)} The XPS narrow scans of the Ga $2p$ core level and O 1*s* level were also conducted. Figure [2b](#page-2-1) and e shows the Ga $2p$ peaks of pure Ga_2O_3 film and Si-doped $Ga₂O₃$ film, respectively. The Ga 2p peak can be separated into two peaks, one corresponding to $Ga^+(Ga_2O)$, the other to Ga^{3+} (Ga_2O_3)⁴. For pure Ga_2O_3 , the relatively lower peak appears at 1117.8 eV $(Ga⁺)$, and its higher peak appears at 1118.1 eV (Ga³⁺). The peak ratio of Ga⁺/Ga³⁺ is 19.18%. For the Si-doped Ga₂O₃, the peak ratio increases to 38.55%, implying that the $Ga₂O₃$ content reduces and crystal quality degrades. In other words, Si-doping results in poor crystallization, which might be caused by lattice distortion and changed electron orbits. Therefore, the XPS results exactly match with the XRD curves (see Fig. [1](#page-2-0)a). From Fig. [2c](#page-2-1) and f, the O 1*s* peaks of two samples are compared and the charge–shift can be divided into two components: the lower one is assigned to lattice oxygen ions (O_I) , and the other to the oxygen ions in the oxygen vacancies regions (O_{II}) .^{[26–](#page-8-22)[28](#page-8-23)} Thus, the peak ratio of O_{II}/O_I is used to characterize the content of the oxygen vacancies, while there is little difference between the two samples, 26.01% and 25.50%, for pure Ga_2O_3 and Si-doped Ga_2O_3 , respectively. It is said that there is no obvious relevance between oxygen vacancies and Si-doping. It is worth noting that the binding energy (BE) of Si-doped samples positively shifts by 0.2–0.3 eV. Since the Si atoms are expected to be the electron donor, the carrier concentration increases correspondingly, resulting in Fermilevel movement. Absorption curves show a lower band gap of the Si-doped sample compared to the pure one (see Figure S3, Supporting Information). Therefore, the BE peaks shift to being higher because of Fermi-level movement (for the details of the XPS analysis data, see Table SI in Supporting Information). 23 23 23

The bottom-gate TFTs were fabricated employing those $β$ -Ga₂O₃ thin films as channels, and the device's schematic structure is shown in Fig. [3](#page-4-0)a. To explore the photoelectric characteristics of β-Ga₂O₃ TFT, optoelectronic performance measurements were conducted under 254-nm DUV light illumination with an intensity of 245.9 μ W cm⁻². Figure [3](#page-4-0)b presents the drain current (I_D) -gate voltage (V_G) transfer curves of pure β- $Ga₂O₃$ and Si-doped $Ga₂O₃$ TFTs in the dark and under illumination. Over the channel current, the gate shows an apparent feld-efect control ability and a low turn-off current (I_{off}) of ~ 10⁻¹¹ A. The on/off ratio of pure $β$ -Ga₂O₃ TFT is over 10⁵ at the drain voltage (*V*_D) = + 20 V, and there is a slight increase in the on/off ratio after Sidoping. Furthermore, Si-doped Ga_2O_3 TFT shows a V_{on} of -4.4 V, while the V_{on} of pure β-Ga₂O₃ TFT is 14.3 V. That is to say, the Si-doped $Ga₂O₃ TFT$ works in depletion mode and the pure $β$ -Ga₂O₃ TFT works in enhancement mode. A negative shift of V_{on} (about $-$ 20 V) is observed in the Sidoped sample. β-Ga₂O₃ prepared by PLD has a high resist-ance due to the many oxygen vacancies and other defects,^{[29](#page-8-24)} so it is inevitable that the *V*on of the device is large. It is said that pure $Ga₂O₃ TFT$ is usually turned on with difficulty. For more carriers supplied by Si-doped TFT, it is easier to present an open state when it reaches a certain value. In

addition, the estimated field-effect carrier mobility (μ_{EF}) of the pure and Si-doped samples are 0.14 cm² V⁻¹ s⁻¹ and 0.15 cm² V⁻¹ s⁻¹, respectively, verifying the effect of increasing carrier concentration on mobility. The μ_{FE} can be obtained from the following: 30

$$
\mu_{\rm FE} = \frac{L}{W} \frac{2}{C_g} \left(\frac{\partial \sqrt{I_{\rm D}}}{\partial V_{\rm G}} \right)^2,\tag{1}
$$

where *L* and *W* denote the length and width of the channel, respectively, C_{φ} is the gate dielectric capacitance per unit area, and V_G is the gate bias. Similarly, the photocurrent of the Si-doped Ga₂O₃ TFT is larger than that of pure Ga₂O₃ TFT due to a higher carrier concentration. The measured results demonstrate that the $I_{\text{light}}/I_{\text{dark}}$ is higher than 10^4 , showing ultra-high sensitivity under DUV light. In order to quantitatively assess the photoelectric performance of both $Ga₂O₃ TFTs$, key figure-of-merit of the photodetectors have been calculated. The responsivity is defned as the photocurrent generated per unit power of the incident light on the efective area of a photodetector, which can be obtained at V_D = + 20 V bias as follows:

$$
R = \frac{I_{\text{light}} - I_{\text{dark}}}{P_{\lambda} S},
$$
\n(2)

where I_{light} is the photocurrent, I_{dark} is the dark current, P_{λ} is the light intensity, and *S* is the effective illumination area of the device. As shown in Fig. [3b](#page-4-0), the *R* of the pure $Ga₂O₃ TFT$ and the Si-doped $Ga₂O₃ TFT$ are estimated to be 2.20 A/W (V_G = + 5 V) and 3.23 A/W (V_G = - 5 V), respectively, indicating the sensitivity of $β$ -Ga₂O₃ photodetectors in the solar-blind region. The EQE factor can be determined by:

$$
EQE = \frac{hc}{q\lambda} R \times 10^2\%,\tag{3}
$$

where *h* is the Plank's constant, *c* is the velocity of light, and λ is the wavelength of light. The EQE of the pure Ga_2O_3 TFT and the Si-doped Ga₂O₃ TFT are estimated to be $1.1 \times 10^{3}\%$ and $1.6 \times 10^{3}\%$, respectively, under corresponding conditions. Another important factor, *D** , which is usually used to describe the smallest detectable signal, can be expressed by:

$$
D^* = \frac{RS^{1/2}}{\left(2qI_{\text{dark}}\right)^{1/2}}.\tag{4}
$$

The *D** of the pure and Si-doped samples are calculated to be as high as 4.23×10^{13} Jones and 4.41×10^{13} Jones, respectively, surpassing most ever-reported Ga_2O_3 photode-tectors.^{[9](#page-8-26),[14](#page-8-14),31} The high D^* can offset the impact of the noise from the relatively high dark current.

Fig. 3 (a) Schematic structure of the β-Ga₂O₃ TFTs. (b) I_D-V_G transfer curves of pure β-Ga₂O₃ and Si-doped β-Ga₂O₃ TFTs in the dark and under 254-nm light illumination with an intensity of 245.9 μW cm⁻². (c, d) I_D - V_G transfer curves of pure β-Ga₂O₃ and Si-

doped β-Ga₂O₃ TFTs measured at different V_D in linear and logarithmic scales, respectively. (e, f) I_D - V_D output characteristics with V_G decreasing from 60 V to 10 V with a step voltage of -10 V in the dark.

Figure [3](#page-4-0)c and d shows the I_D-V_G transfer curves of pure β-Ga₂O₃ and Si-doped β-Ga₂O₃ TFTs measured at different V_D in linear and logarithmic scales, respectively. From the linear scale, it is clear that I_D grows as V_D increases and, when V_D reaches a certain value, I_D tends to be constant. Figure [3](#page-4-0)e and f presents the I_D-V_D curves of the two TFTs in the dark, respectively. As we can see, I_D reduces as V_G decreases from 60 V to 20 V, with a step voltage of -10 V. The comparison shows that the Si-doped sample has a higher value of I_D under different voltages.

To explore the relationship between the photo-response characteristics and light intensity, diferent light intensities varying from 38.4 μ W cm⁻² to 245.9 μ W cm⁻² have been tested. Figure [4a](#page-5-0) and b presents the I_D-V_G transfer curves of the pure β-Ga₂O₃ and the Si-doped β-Ga₂O₃ TFTs in the dark and under 254-nm light illumination, respectively, with the intensity varying from 38.4 μ W cm⁻² to 245.9 μ W cm⁻² at V_D = + 20 V. It is obvious that the photocurrent increases with increasing light intensity, showing a higher $I_{\text{light}}/I_{\text{dark}}$ ratio. No matter the value of the light intensity, the Si-doped

Fig. 4 (a and b) $I_D - V_G$ transfer curves of pure β -Ga₂O₃ and Sidoped $Ga₂O₃$ TFTs in the dark and under 254 nm light illumination, respectively, with the intensity varying from 38.4 μ W cm⁻² to 245.9 μ W cm⁻². (c and d) Time-dependent photo-responses of the pure β- $Ga₂O₃$ and the Si-doped $Ga₂O₃$ TFTs under 254 nm light with

diferent light intensities, respectively. (e and f) Experimental and ftting curves of the rise and decay process photo-responses, respectively, under 254 nm light with the intensity of 245.9 μ W cm⁻². (g and h) *R* and EQE as functions, respectively, of light intensity.

sample shows better light sensitivity. The values of the key factors R, D^* , and EQE measured under different light intensities are shown in Table SII in Supporting Information.

The $I_D - V_D$ output characteristics with V_G decreasing from 60 V to 10 V, with a step voltage of -10 V, under different light intensities, are shown in Figure S4 in Supporting

Information. By comparison, the photocurrent of the pure $Ga₂O₃ TFT$ tends to be flat as the V_G increases in the initial stage, while that of the Si-doped sample grows rapidly. Because there are large amounts of defect states in the $β$ -Ga₂O₃ thin films and the Ga₂O₃/SiO₂ interface, most of them serve as carrier-capturing centers. The traps can be populated by photo-excited carriers as V_G increases. Since there are more carriers in the Si-doped sample, the trappopulating process performs faster, and more carriers are involved in the current transmission. $14,32$ $14,32$ $14,32$

The photo-responses of the pure β -Ga₂O₃ and Si-doped $Ga₂O₃$ TFTs with different light intensities under alternate on and off cycles are shown in Fig. [4](#page-5-0)c and d, respectively. It can be clearly observed that the photocurrent increases step by step when the light intensity increases gradually. Meanwhile, the Si-doped Ga_2O_3 TFT shows a higher and more stable photocurrent at diferent light intensities. Figure [4e](#page-5-0) and f presents the response times of the pure β -Ga₂O₃ and Si-doped Ga_2O_3 TFTs under 254 nm light illumination with the intensity of 245.9 μ W cm⁻², respectively. The rise time (t_r) and fall time (t_d) are then defined as the times taken by the signal to vary between 10% and 90% of the saturation value. As shown in the photo-response fitting curves, the t_r are 1.1 s and 0.5 s for the TFTs made from pure Ga_2O_3 and Si-doped Ga₂O₃, respectively. And the t_d are 0.4 s and 0.9 s for the TFTs made from Ga_2O_3 without and with Si-doping, respectively. The fast-response component can be attributed to the rapid change of carrier concentration as soon as the light is turned on/off.³³ The t_r for the pure Ga_2O_3 TFT is much higher than that for the Si-doped $Ga₂O₃$ TFT. The photo-response of a semiconductor is a complex process,

including electron–hole generation, trapping, and recombination. 34 The photo-generated carriers may firstly fill the traps and reach their maximum after the traps are saturated, while a lower density of traps is involved in this process for pure β-Ga₂O₃ with better crystalline quality, Si-doping induces more carriers participating in current transfer, which shortens the time to reach the maximum value. The fast decay process indicates weak persistent photoconductivity (PPC), for which the light-induced current persists after the excitation has been removed. 34 The anion vacancies with a metastable state and the presence of surface states may contribute to the PPC behavior.^{[34–](#page-8-30)[36](#page-8-31)} According to the XRD curves (see Fig. [1a](#page-2-0)), the Si-doping method has reduced the crystallinity in the presence of lattice distortion. Dislocation defects can act as recombination centers of non-equilibrium carriers, $37,38$ $37,38$ resulting in a longer carrier lifetime in the β -Ga₂O₃ thin film. As shown in Fig. [4](#page-5-0)g and h, the *R* and EQE, respectively, of both samples decrease with increasing light intensity, which is similar to previous reports.^{16[,39](#page-9-2)} The maximum values of R and EQE of the Si-doped Ga_2O_3 TFT reach 5.8 A/W and 2.8×10^3 , respectively, under 254-nm light illumination with the intensity of 38.4 μ W cm⁻². The thermal efect-induced carrier scattering and absorption saturation may induce this phenomenon. $39,40$ $39,40$

Figure [5](#page-6-0) illustrates the mechanism of the on/off states and photo-responses of semiconductors. An energy band diagram model is proposed to describe the observed transfer characteristics in Fig. [5](#page-6-0)a–c. Due to the presence of oxygen vacancies both in bulk Ga_2O_3 and the Ga_2O_3 film, a narrow region of depletion with the positively ionized oxygen vacancies appears on the surface of the Ga_2O_3 .^{[41](#page-9-4),[42](#page-9-5)} When

Fig. 5 Schematic energy band diagrams of Ga₂O₃ TFTs. Model of transfer characteristic: (a) $V_G = 0$ V, (b) $V_G > 0$ V, (c) $V_G < 0$ V. Model of photo-conductance process: (d) in the dark without bias, (e) in the dark with bias, (f) under UV illumination with bias.

Materials	Structures	Growth method	R(A/W)	D^* (Jones)	$t_{\rm g}/t_{\rm d}$ (s)	$I_{\text{light}}/I_{\text{dark}}$ I_{dark} (A)		Ref.
Amorphous Ga_2O_3 :CdO	TFT	Spin-coating	2.17	1.71×10^{12}		1631.15	1.61×10^{-12} 14	
Amorphous Ga_2O_3	TFT	RF-magnetron sputtering	4000	2.50×10^{13}	50/>400			16
Polycrystal β -Ga ₂ O ₃	MSM	RF-magnetron sputtering	96.13		0.032/0.078	> 1000	1.43×10^{-12}	-11
Polycrystal β -Ga ₂ O ₃	MSM	Sol-gel method	0.00113		0.1/0.1	78.66	3.28×10^{-9}	33
$ZnO/Ga2O3$ Heterojunction	PN	CVD	>1000			11		9
Polycrystal β -Ga ₂ O ₃	MSM	MOCVD	26.1	1.25×10^{13}	0.48/0.18	10000	3.4×10^{-8}	45
Polycrystal β -Ga ₂ O ₃	MSM	MBE	153		5/10.3	45	7.00×10^{-8}	38
β -Ga ₂ O ₃ Nanosheet	MSM	Mechanical exfoliation	3.3	4.00×10^{12}				31
Polycrystal Si: β -Ga ₂ O ₃	TFT	PLD	3.23	4.41×10^{13}	0.57/0.9	31600	2.51×10^{-11}	This work

Table I. Comparison of the key device parameters of our Si-doped Ga₂O₃ solar-blind DUV TFT and other polycrystalline or amorphous Ga₂O₃ thin flm photodetectors

using positive V_G bias, the depletion region becomes narrower, which is attributed to conductivity (see Fig. [5](#page-6-0)b). The applied negative V_G bias expands the depletion width and reduces the effective channel thickness (see Fig. [5](#page-6-0)c), showing the off state. For the Si-doped $Ga₂O₃ TFT$, the Si atoms can provide electrons acting as donor, neutralizing the oxygen vacancies at the interface and narrowing the width of the depletion region. The photo-response of a photodetector is a complex process including electron–hole generation, trapping, and recombination. $43,44$ $43,44$ Figure [5](#page-6-0)d–f presents the photoconductance process in the $Ga₂O₃$ TFTs. Similarly, electrons flow from $Ga₂O₃$ to metal until both Fermi levels line up (see Fig. [5d](#page-6-0)). A small number of carriers are able to participate in electron transport when applying positive V_D in the dark (see Fig. [5f](#page-6-0)). Upon light-on conditions, electron–hole pairs are generated ($hv \rightarrow e^- + h^+$).^{[41](#page-9-4)} The photogenerated electrons are trapped in positive charge density in the depletion region.⁴⁴ After the recombination between the holes and the oxygen vacancies, the uncombined electrons become the major carriers which contribute to the photocurrent. Upon light-off conditions, oxygen molecules reabsorb onto the surface and current reduces to its original value.

Table [I](#page-7-1) lists several key parameters of our Si-doped $Ga₂O₃$ solar-blind DUV TFT and other photodetectors based on polycrystalline or amorphous $Ga₂O₃$ materials with diferent device structures. The main parameters of our Si-doped Ga_2O_3 solar-blind DUV TFT, such as responsivity, detectivity, and $I_{\text{light}}/I_{\text{dark}}$ and response times, are better than most other photodetectors based on polycrystalline or amorphous $Ga₂O₃$ materials. Meanwhile, the TFT structure shows its superiority, resulting in a large $I_{\text{light}}/I_{\text{dark}}$ ratio and a lower dark current. Furthermore, various methods have been employed to fabricate $Ga₂O₃$ photodetectors with high performance, but there have been no reports on PLD-prepared TFT-type Ga_2O_3 photodetectors. Our work presents a simple and convenient fabrication process which gives polycrystalline β-Ga₂O₃ TFTs a high potential for the development of photodetectors in the future.

Conclusions

A solar-blind DUV TFT based on polycrystalline $β$ -Ga₂O₃ thin film by PLD has been proposed. The Si-doping method greatly increases carrier transport, although it affects the crystal quality of the thin film. The V_{on} of the Si-doped β-Ga₂O₃ TFT, which works in enhancement mode, was modulated about − 20 V compared to a pure one. The Si-doped Ga_2O_3 TFT displayed excellent transistor characteristics with a high I_D on/off ratio of $\sim 10^5$, I_{off} of ~ 10^{-11} A at V_D = + 20 V. Both β-Ga₂O₃ TFTs showed high sensitivity to 254-nm UV light under diferent light intensities. An *R* of 3.23 A/W, an EQE of $1.5 \times 10^{3}\%$, a D^* of 4.41 \times 10¹³ Jones and an *I*_{light}/*I*_{dark} of ~ 10³ were achieved at $V_G = -5$, $V_D = 20$ V for the Si-doped device under 254-nm light illumination with the intensity of 245.9 μW cm⁻². Our work provides a new method of Sidoping to improve $β$ -Ga₂O₃ TFTs, which advances the development of DUV TFTs based on Ga_2O_3 .

Supplementary Information The online version contains supplementary material available at<https://doi.org/10.1007/s11664-022-09599-3>.

Acknowledgments This work was supported by National Natural Science Foundation of China (Grant No. 51972283, Grant No. 91833301) and the Key Research and Development Program of Zhejiang Province (2021C01030).

Conflict of interest The authors declare that they have no confict of interest.

References

1. L. Dong, J. Yu, R. Jia, J. Hu, Y. Zhang, and J. Sun, Self-Powered MSM Deep-Ultraviolet Beta-Ga₂O₃ Photodetector Realized by an Asymmetrical Pair of Schottky Contacts. *Opt. Mater. Express* 9, 1191 (2019).

- 2. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J. Kim, M.J. Tadjer, and M.A. Mastro, A Review of $Ga₂O₃$ Materials, Processing, and Devices. *Appl. Phys. Rev.* 5, 011301 (2018).
- 3. X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, and D. Shen, Self-Powered Solar-Blind Photodetector with Fast Response Based on Au/beta-Ga₂O₃ Nanowires Array Film Schottky Junction. *ACS Appl. Mater. Interfaces* 8, 4185 (2016).
- 4. L.-X. Qian, Z.-H. Wu, Y.-Y. Zhang, P.T. Lai, X.-Z. Liu, and Y.-R. Li, Ultrahigh-Responsivity, Rapid-Recovery, Solar-Blind Photodetector Based on Highly Nonstoichiometric Amorphous Gallium Oxide. *ACS Photonics* 4, 2203 (2017).
- 5. Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, Self-Powered Diamond/Beta-Ga₂O₃ Photodetectors for Solar-Blind Imaging. *J. Mater. Chem. C* 6, 5727 (2018).
- 6. H. Wang, H. Chen, L. Li, Y. Wang, L. Su, W. Bian, B. Li, and X. Fang, High Responsivity and High Rejection Ratio of Self-Powered Solar-Blind Ultraviolet Photodetector Based on PEDOT:PSS/ beta-Ga₂O₃ Organic/Inorganic p–n Junction. *J. Phys. Chem. Lett.* 10, 6850 (2019).
- 7. H.A. Mantooth, M.D. Glover, and P. Shepherd, Wide Bandgap Technologies and Their Implications on Miniaturizing Power Electronic Systems. *IEEE Trans. Emerg. Sel. Topics Power Electron.* 2, 374 (2014).
- 8. M. Yu, H. Wang, W. Wei, B. Peng, L. Yuan, J. Hu, Y. Zhang, and R. Jia, Analysis of Electronic Structure and Properties of $Ga₂O₃/$ CuAlO2 Heterojunction. *Appl. Surf. Sci.* 568, 150826 (2021).
- 9. M. Chen, B. Zhao, G. Hu, X. Fang, H. Wang, L. Wang, J. Luo, X. Han, X. Wang, C. Pan, and Z. Wang, Piezo-Phototronic Efect Modulated Deep UV Photodetector Based on $ZnO-Ga₂O₃$ Heterojuction Microwire. *Adv. Funct. Mater.* 28, 1706379 (2018).
- 10. B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, and X. Fang, An Ultrahigh Responsivity (9.7 mA W-1) Self-Powered Solar-Blind Photodetector Based on Individual ZnO-Ga₂O₃ Heterostructures. *Adv. Funct. Mater.* 27, 1700264 (2017).
- 11. K. Arora, N. Goel, M. Kumar, and M. Kumar, Ultrahigh Performance of Self-Powered Beta-Ga₂O₃ Thin Film Solar-Blind Photodetector Grown on Cost-Efective Si Substrate Using High-Temperature Seed Layer. *ACS Photonics* 5, 2391 (2018).
- 12. S. Oh, C.-K. Kim, and J. Kim, High Responsivity Beta-Ga₂O₃ Metal-Semiconductor-Metal Solar-Blind Photodetectors with Ultraviolet Transparent Graphene Electrodes. *ACS Photonics* 5, 1123 (2018).
- 13. L. Dong, S. Zhou, K. Pu, C. Yang, B. Xin, B. Peng, and W. Liu, Electrical Contacts in Monolayer Ga_2O_3 Field-Effect Tansistors. *Appl. Surf. Sci.* 564, 150386 (2021).
- 14. X. Xiao, L. Liang, Y. Pei, J. Yu, H. Duan, T. Chang, and H. Cao, Solution-Processed Amorphous Ga_2O_3 :CdO TFT-Type Deep-UV Photodetectors. *Appl. Phys. Lett.* 116, 192102 (2020).
- 15. J. Bae, H.W. Kim, I.H. Kang, and J. Kim, Dual-Field Plated $β$ -Ga₂O₃ Nano-FETs with an Off-State Breakdown Voltage Exceeding 400 V. *J. Mater. Chem. C* 8, 2687 (2020).
- 16. Y. Qin, S. Long, Q. He, H. Dong, G. Jian, Y. Zhang, X. Hou, P. Tan, Z. Zhang, Y. Lu, C. Shan, J. Wang, W. Hu, H. Lv, Q. Liu, and M. Liu, Amorphous Gallium Oxide-Based Gate-Tunable High-Performance Thin Film Phototransistor for Solar-Blind Imaging. *Adv. Electron. Mater.* 5, 1900389 (2019).
- 17. Y. Qin, H. Dong, S. Long, Q. He, G. Jian, Y. Zhang, X. Zhou, Y. Yu, X. Hou, P. Tan, Z. Zhang, Q. Liu, H. Lv, and M. Liu, Enhancement-Mode Beta-Ga₂O₃ Metal-Oxide-Semiconductor Field-Efect Solar-Blind Phototransistor with Ultrahigh Detectivity and Photo-to-Dark Current Ratio. *IEEE Electron Device Lett.* 40, 742 (2019).
- 18. Y. Liu, L. Du, G. Liang, W. Mu, Z. Jia, M. Xu, Q. Xin, X. Tao, and A. Song, Ga₂O₃ Field-Effect-Transistor-Based Solar-Blind Photodetector with Fast Response and High Photo-to-Dark Current Ratio. *IEEE Electron Device Lett.* 39, 1696 (2018).
- 19. J. Yu, K. Javaid, L. Liang, W. Wu, Y. Liang, A. Song, H. Zhang, W. Shi, T.C. Chang, and H. Cao, High-Performance Visible-Blind Ultraviolet Photodetector Based on IGZO TFT Coupled with p–n Heterojunction. *ACS Appl. Mater. Interfaces* 10, 8102 (2018).
- 20. H. Altuntas, I. Donmez, C. Ozgit-Akgun, and N. Biyikli, Electrical Characteristics of β-Ga₂O₃ Thin Films Grown by PEALD. *J*. *Alloys Compd.* 593, 190 (2014).
- 21. C.X. Xu, H. Liu, X.H. Pan, and Z.Z. Ye, Growth and Characterization of Si-Doped β-Ga₂O₃ Films by Pulsed Laser Deposition. *Optic. Mater.* 108, 110145 (2020).
- 22. K. Henkel, K. Karavaev, M. Torche, C. Schwiertz, Y. Burkov, and D. Schmeißer, Al-Oxynitride Interfacial Layer Investigations for PrXOYon SiC and Si. *J. Phys. Conf. Ser.* 94, 012004 (2008).
- 23. M.K. Yadav, A. Mondal, S. Das, S.K. Sharma, and A. Bag, Impact of Annealing Temperature on Band-Alignment of PLD Grown Ga₂O₃/Si (100) Heterointerface. *J. Alloys Compd.* 819, 153052 (2020).
- 24. M. Fleischer, W. Hanrieder, and H. Meixner, Stability of Semiconducting Gallium Oxide Thin-Films. *Thin Solid Films* 190, 93 (1990).
- 25. Y. Liu, S.P. Singh, L.M. Kyaw, M.K. Bera, Y.J. Ngoo, H.R. Tan, S. Tripathy, G.Q. Lo, and E.F. Chor, Mechanisms of Ohmic Contact Formation and Carrier Transport of Low Temperature Annealed Hf/Al/Ta on In_{0.18}Al_{0.82}N/GaN-on-Si. *ECS J. Solid State Sci. Technol.* 4, P30 (2014).
- 26. D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, Zero-Power-Consumption Solar-Blind Photodetector Based on Beta-Ga₂O₃/NSTO Heterojunction. *ACS Appl. Mater. Interfaces* 9, 1619 (2017).
- 27. N. Xu, L.F. Liu, X. Sun, X.Y. Liu, D.D. Han, Y. Wang, R.Q. Han, J.F. Kang, and B. Yu, Characteristics and Mechanism of Conduction/Set Process in TiN/ZnO/Pt Resistance Switching Random-Access Memories. *Appl. Phys. Lett.* 92, 232112 (2008).
- 28. Y. An, S. Wang, L. Duan, J. Liu, and Z. Wu, Local Mn structure and room temperature ferromagnetism in Mn-doped In_2O_3 films. *Appl. Phys. Lett.* 102, 212411 (2013).
- 29. Y. Berencen, Y. Xie, M. Wang, S. Prucnal, L. Rebohle, and S. Zhou, Structural and Optical Properties of Pulsed-Laser Deposited Crystalline Beta-Ga₂O₃ Thin Films on Silicon. *Semicond. Sci. Technol.* 34, 035001 (2019).
- 30. J. Kim, M.J. Tadjer, M.A. Mastro, and J. Kim, Controlling the Threshold Voltage of Beta-Ga₂O₃ Field-Effect Transistors Via Remote Fluorine Plasma Treatment. *J. Mater. Chem. C* 7, 8855 (2019).
- 31. W. Feng, X. Wang, J. Zhang, L. Wang, W. Zheng, P. Hu, W. Cao, and B. Yang, Synthesis of Two-Dimensional Beta-Ga₂O₃ Nanosheets for High-Performance Solar Blind Photodetectors. *J. Mater. Chem. C* 2, 3254 (2014).
- 32. M. Fang, W. Zhao, F. Li, D. Zhu, S. Han, W. Xu, W. Liu, P. Cao, M. Fang, and Y. Lu, Fast Response Solar-Blind Photodetector with a Quasi-Zener Tunneling Efect Based on Amorphous In-Doped Ga₂O₃ Thin Films. *Sensors* 20, 129 (2020).
- 33. H. Shen, Y. Yin, K. Tian, K. Baskaran, L. Duan, X. Zhao, and A. Tiwari, Growth and Characterization of Beta-Ga₂O₃ Thin Films by Sol-Gel Method for Fast-Response Solar-Blind Ultraviolet Photodetectors. *J. Alloys Compd.* 766, 601 (2018).
- 34. X.Z. Liu, P. Guo, T. Sheng, L.X. Qian, W.L. Zhang, and Y.R. Li, Beta-Ga₂O₃ Thin Films on Sapphire Pre-Seeded by Homo-Self-Templated Bufer Layer for Solar-Blind UV Photodetector. *Opt. Mater.* 51, 203 (2016).
- 35. P. Sen, M. Balasubrahmaniyam, D. Kar, and S. Kasiviswanathan, Size-Dependent Persistent Photocurrent and Its Origin in DC Sputtered Indium Oxide Films Under UV and Sub-Band Gap Illuminations. *J. Appl. Phys.* 121, 185303 (2017).
- 36. P. Sen, D. Kar, R. Laha, M. Balasubrahmaniyam, and S. Kasiviswanathan, Hot Electron Mediated Enhancement in the Decay

Rates of Persistent Photocurrent in Gold Nanoparticles Embedded Indium Oxide Films. *Appl. Phys. Lett.* 114, 211103 (2019).

- 37. Z. Alaie, S.M. Nejad, and M.H. Yousef, Recent Advances in Ultraviolet Photodetectors. *Mater. Sci. Semicond. Process.* 29, 16 (2015).
- 38. L.X. Qian, Y. Wang, Z.H. Wu, T. Sheng, and X.Z. Liu, Beta-Ga₂O₃ Solar-Blind Deep-Ultraviolet Photodetector Based on Annealed Sapphire Substrate. *Vacuum* 140, 106 (2017).
- 39. W. Kong, G. Wu, K. Wang, T. Zhang, Y. Zou, D. Wang, and L. Luo, Graphene-Beta-Ga₂O₃ Heterojunction for Highly Sensitive Deep UV Photodetector Application. *Adv. Mater.* 28, 10725 (2016).
- 40. W.J. Yu, Y. Liu, H. Zhou, A. Yin, Z. Li, Y. Huang, and X. Duan, Highly Efficient Gate-Tunable Photocurrent Generation in Vertical Heterostructures of Layered Materials. *Nat. Nanotechnol.* 8, 952 (2013).
- 41. L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U.K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, Deep-Ultraviolet Solar-Blind Photoconductivity of Individual Gallium Oxide Nanobelts. *Nanoscale* 3, 1120 (2011).
- 42. J. Ma, and G. Yoo, Surface depletion efect on negative bias stress instability of beta-Ga₂O₃ (100) nanomembrane FETs. *Jpn. J. Appl. Phys.* 58, SBBD01 (2019).
- 43. D. Guo, J. Wang, C. Cui, P. Li, X. Zhong, F. Wang, S. Yuan, K. Zhang, and Y. Zhou, ZnO@TiO₂ Core–Shell Nanorod Arrays with Enhanced Photoelectrochemical Performance. *Sol. Energy* 95, 237 (2013).
- 44. D.Y. Guo, Z.P. Wu, Y.H. An, X.C. Guo, X.L. Chu, C.L. Sun, L.H. Li, P.G. Li, and W.H. Tang, Oxygen Vacancy Tuned Ohmic– Schottky Conversion for Enhanced Performance in Beta-Ga₂O₃ Solar-Blind Ultraviolet Photodetectors. *Appl. Phys. Lett.* 105, 023507 (2014).
- 45. D. Zhang, W. Zheng, R.C. Lin, T.T. Li, Z.J. Zhang, and F. Huang, High Quality Beta-Ga₂O₃ Film Grown with N₂O for High Sensitivity Solar-Blind-Ultraviolet Photodetector with Fast Response Speed. *J. Alloys Compd.* 735, 150 (2018).

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.