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The structural and thermomechanical properties of zincblende ZnX (X = S, Se,
Te) compounds have been investigated based on the moment method in sta-
tistical mechanics. Expressions for the lattice constant, atomic mean-square
displacement (MSD), and elastic moduli (Young’s modulus, bulk modulus, and
shear modulus) of the zincblende compounds were derived. The results show
that the quantum-mechanical zero-point vibrations make the main contribu-
tion to the atomic MSDs at low temperature. At high temperature, due to the
predominance of anharmonicity, the atomic MSDs increase rapidly with
increasing temperature. The Young’s modulus and shear modulus of the zinc
chalcogenides ZnX (X = S, Se, Te) were calculated. The data derived from this
research can be seen as useful references for future experiments.
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INTRODUCTION

The zinc chalcogenides ZnX (X = S, Se, Te) are of
great interest not only from a fundamental point of
view but also for technological and electronic
applications. These materials are known for their
wide band gap, which makes them potential
candidates for many high-technology applications
such as photovoltaic devices,1 photodetectors,2

blue light-emitting diodes,3 solar cells,4 and cata-
lyst applications. Hence, great effort has been
devoted to obtaining deeper understanding of the
physical properties of these compounds. Besides
their many interesting properties, zinc chalco-
genides show several structural phases at various

temperatures and pressures. The two main phases
at ambient conditions have zincblende and wurt-
zite structure.5 Although extensive experimental
and theoretical studies on ZnX (X = S, Se, Te)
compounds have been reported, investigation of
their thermomechanical properties remains very
limited.6 Most previous studies on ZnX (X = S, Se,
Te) focused on the lattice parameter, bulk modu-
lus, and elastic constants.7–9 To the best of the
authors’ knowledge, almost no measurements have
been performed on the Young’s modulus or shear
modulus of zincblende-type zinc chalcogenides ZnX
(X = S, Se, Te). Furthermore, while anharmonic
effects make important contributions to thermo-
dynamic quantities at high temperature, most
previous theoretical works have found it difficult
to take into account the anharmonicity of thermal
lattice vibrations, especially above the Debye
temperature.(Received February 22, 2019; accepted June 6, 2019;

published online June 21, 2019)
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In the work presented herein, a statistical-me-
chanical method, viz. the so-called statistical
moment method (SMM), is applied to compounds
with zincblende structure. We investigate the struc-
tural and thermomechanical properties of ZnX
(X = S, Se, Te), considering the anharmonicity of
the thermal lattice vibrations. Expressions for the
temperature-induced atomic displacements, near-
est-neighbor distances between two intermediate
atoms, atomic mean-square displacements, Young’s
modulus, bulk modulus, and shear modulus of
zincblende ZnX (X = S, Se, Te) compounds are
derived based on the moment expansion technique
in the SMM scheme.

The remainder of this manuscript is organized as
follows: In ‘‘Theory’’ section, the theoretical
approach to the investigation of the thermomechan-
ical properties of zincblende compounds is pre-
sented, then numerical calculations are performed
for ZnX (X = S, Se, Te) in ‘‘Results and Discussion’’
section, where the numerical results are also dis-
cussed in detail. Finally, ‘‘Conclusions’’ section
presents the conclusions of the current work.

THEORY

Thermal Lattice Vibrations

Firstly, we present fundamental results derived
for materials with zincblende structure within the
SMM scheme. Denote the interatomic potential as
uðrÞ. The SMM approach starts with consideration
of the total force acting on a chosen central atom in
the lattice. Due to thermal lattice vibrations, the 0th
central atom is affected by a supplementary force p,
such that the total force acting on it must be zero,
thus the following force balance equation should be
satisfied:
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where ui is the displacement of the ith atom from its
equilibrium position, ui0 indicates the effective
interaction energy between the 0th and ith atoms,
and huiauicip and huiauicuigip are, respectively, the

second- and third-order moments of the thermal
average of the atomic displacement; the subscript
‘‘eq’’ denotes the thermal average taken over the
equilibrium ensemble

Based on a recurrence formula in the SMM
method,10 the power moments huiauicip and

huiauicuigip can be expressed in terms of the first-

order moment huiaip, and the differential Eq. 1 can

be rewritten in the form
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with a 6¼ c 6¼ g ¼ x; y or z directions in the Cartesian
coordinate system, kB the Boltzmann constant, and
T the absolute temperature.

The solution of the nonlinear differential equation
Eq. 2 can be written in the form

y00 ¼ y0 þ A1pþ A2p
2; ð6Þ

where A1 and A2 are constant coefficients,11 and y0

represents the atomic displacement taking into
account the anharmonic effects of the thermal
lattice vibrations of the zincblende-type semicon-
ductor. The solution for the atomic displacement y0

can be derived as11
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where the quantities a1, a2, a3, a4, a5, and a6 are
defined as in Ref. 12.

The nearest-neighbor distance between two inter-
mediate atoms at temperature T can now be deter-
mined as

r1 Tð Þ ¼ r1 0ð Þ þ y0 Tð Þ; ð9Þ

where r1 0ð Þ denotes the value of the nearest-neigh-
bor distance at zero temperature, which can be
calculated from the minimum condition of the

Structural and Thermomechanical Properties of Zincblende-Type ZnX (X = S, Se, Te) 5807



potential energy of the crystal. After deriving the
nearest-neighbor distance, we evaluate the lattice
constant ahðTÞ of the zincblende compound as
ahðTÞ ¼ 4ffiffi

3
p r1ðTÞ.

Atomic Mean-Square Displacement

The temperature-dependent atomic mean-square
displacement or Debye–Waller factor u2

� �
is a

thermodynamic quantity which measures the devi-
ation of the thermal vibration of the atom. Theoret-
ically, the mean-square displacement can be derived
by using various approaches (lattice dynamic mod-
els,13 phonon density of states method14 or shell
models,15 and density functional theory).16 Experi-
mentally, the Debye–Waller factor u2

� �
can be

measured by x-ray diffraction analysis,17 Möss-
bauer absorption,18 and neutron diffraction.19 To
derive the mean-square displacement expression in
the SMM scheme, we use the following relation
between the first- and second-order moments:20
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Using this formula, an expression for the atomic
mean-square displacement can be derived as
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In the low-temperature limit (T ! 0 K), the zero-
point contribution to the mean-square displacement
characterizing the quantum effect is obtained as
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Elastic Moduli

The elastic moduli (characterized by the Young’s
modulus E, bulk modulus B, and shear modulus G)
are important mechanical properties which affect
the dynamic properties of a material.21 In previous
work considering only lattice deformations due to an

external force, Hung and Hai22 derived the follow-
ing analytical expression for the Young’s modulus E
in the SMM scheme based on the theory of lattice
vibrations:

E � 1

pr1A1
¼ 1

p½r1ð0Þ þ y0�A1
; ð15Þ

where y0 and A1 have the same forms as in Eqs. 7
and 12, respectively.

The two other elastic moduli (bulk modulus B and
shear modulus G) of the material can be derived
based on the Young’s modulus and Poisson’s ratio as

B � E

3ð1 � 2mÞ ; ð16Þ

G ¼ E

2ð1 þ mÞ ; ð17Þ

where m denotes the Poisson’s ratio characterizing
the stability of the crystal under shear deformation,
being one of the essential parameters among the
mechanical properties of a solid.

RESULTS AND DISCUSSION

The expressions derived in the previous section
are now used to determine the lattice constants,
temperature-dependent atomic mean-square dis-
placements, and elastic moduli of the zincblende-
type ZnX (X = S, Se, Te) compounds. To perform
these numerical calculations, the interaction poten-
tial among atoms is assumed to be the many-body
Stillinger–Weber potential,23 which has usually
been applied to study the physical properties of
zincblende-type semiconductors.7,24–26 This type of
many-body potential function, suggested by Still-
inger and Weber,23 consists of two-body (Uij) and
three-body (Wijk) terms as follows:
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and the three-body term corresponding to the angle
distortion energy
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where the potential parameters A and B are posi-
tive, r has dimensions of length, rij is the bond
length between the ith and jth atom, hijk is the angle
between bonds ij and ik, and b is a dimensionless
parameter representing the cutoff distance of the
interaction. The potential parameters for ZnX
(X = S, Se, Te) compounds are presented in
Table I.7,25

Tables II, III, and IV present the results of the
calculations for the lattice constants and elastic
moduli (Young’s modulus, bulk modulus, and shear
modulus) of the zincblende ZnX (X = S, Se, Te)
semiconductors at room temperature. Previous
experimental measurements8,28,29 and theoretical
calculations [force field potential calculations,7 self-
consistent tight-binding linear muffin-tin orbital
(TB-LMTO) method,8 and pseudopotential plane
wave (PP-PW) calculations30] are also presented
for comparison. As observed from these tables, the
theoretical calculations presented herein are in
agreement with previous results. The maximum
difference between the results of this work and
experiments is about 10%. Consequently, the
derived values of the lattice constants can be used
for further investigation. Figure 1 shows the cal-
culated Young’s modulus of ZnX (X = S, Se, Te) as
a function of temperature. As observed from this
figure, the Young’s modulus E is a decreasing
function of temperature, and the Young’s modulus
of ZnSe depends more strongly on temperature
than those of ZnS and ZnTe. This indicates that
the mechanical properties of ZnSe will change
quickly from hard to soft as the temperature is
increased. According to these calculations, the
mean slope of the Young’s modulus jDE=DTj for
the compounds ZnS, ZnSe, and ZnTe is 0.019 GPa/
K, 0.035 GPa/K, and 0.017 GPa/K, respectively.
Note that it seems that no experimental measure-
ments have been performed to determine the
Young’s modulus or shear modulus of zincblende
ZnX (X = S, Se, Te) compounds, thus we compare
the results of our SMM calculations with values
obtained from elastic constants.27 Indeed, the
predictions for the elastic moduli (Young’s modu-
lus, bulk modulus, and shear modulus) of zincble-
nde ZnX (X = S, Se, Te) presented herein can be
seen as useful references for future experiments.
We hope that the theoretical findings of these
thermomechanical quantities will be verified exper-
imentally in the near future.

While the elastic behavior of a material can be
described by its elastic moduli (Young’s modulus E,
bulk modulus B, and shear modulus G), knowledge
of the elastic constants provides important infor-
mation concerning the stiffness, mechanical stabil-
ity, and structural phase changes of the material.21

Due to the symmetry of the stress and strain
tensors, the most general elastic stiffness tensor
only has 21 nonzero independent components. For a
cubic structure, this reduces to three independent
elastic stiffness components, viz. C11, C12, and C44.
For an isotropic material, the elastic constants C11,
C12, and C44 can be written in terms of the Young’s
modulus E and Poisson’s ratio m as follows:22

C11 ¼ Eð1 � mÞ
ð1 þ mÞð1 � 2mÞ ; ð21Þ

C12 ¼ Em
ð1 þ mÞð1 � 2mÞ ; ð22Þ

C44 ¼ E

2ð1 þ mÞ : ð23Þ

Using these formulae, the elastic constants C11, C12,
and C44 of zincblende ZnX (X = S, Se, Te) can be
easily derived and are also presented in
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Fig. 1. (Color online) Temperature-dependent Young’s modulus of
ZnX (X = S, Se, Te).

Table I. Stillinger–Weber potential parameters7,25 and Poisson’s ratio27 m of zincblende ZnX (X = S, Se, Te)
compounds

Compound A (eV) B r (Å) s k b m

ZnS 7.6488 1.1496 2.3240 1.8367 32.50 2.0353 0.370
ZnSe 7.6841 0.6022 2.1864 1.2 31.61 1.80 0.399
ZnTe 9.9589 0.9852 2.1864 1.2 37.41 1.80 0.356
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Tables II, III, and IV. Our SMM results are in
reasonable agreement with previous experimental
measurements.7,27 The values in these tables also

demonstrate that the present SMM calculations of
the elastic constants give slightly better results
compared with force field potential calculations.7

Table II. Lattice constant ah, Young’s modulus E, bulk modulus B, shear modulus G, and elastic constants of
ZnS at temperature T ¼ 300 K

ah (Å) E (GPa) B (GPa) G (GPa) C11 (GPa) C12 (GPa) C44 (GPa)

Present method 5.4630 59.77 76.63 21.81 10.57 6.21 4.36
Experiments 5.4100a – 76.9b – 10.40,c 10.2g 6.50,c 6.46g 4.00,c 4.46g

Calculations 5.3998,e 5.328h 51.3g 80.97,e 83.1f 18.7g 9.94,d 11.58h 7.44,d 7.20h 2.45,d 5.15h

5.336i 83.8,h 81.2i

aRef. 8.
bRef. 31.
cRef. 7.
dForce field potential calculations7.
eTB-LMTO method8.
fPP-PW calculations in Ref. 30.
gRef. 27.
hFirst-principles calculations in Ref. 32.
iFirst-principles calculations in Ref. 9.

Table III. Lattice constant ah, Young’s modulus E, bulk modulus B, shear modulus G, and elastic constants of
ZnSe at temperature T ¼ 300 K

ah (Å) E (GPa) B (GPa) G (GPa) C11 (GPa) C12 (GPa) C44 (GPa)

Present method 5.760 35.92 59.27 12.84 7.64 5.07 2.57
Experiments 5.667a – 69.3b – 8.57,b 8.10c 5.07,b 4.90c 4.05,b 4.40c

Calculations 5.666,e 5.582h 47.8g 67.32,e 68.9f 17.5g 7.76d 5.10d 2.33d

70.8h

ax-Ray diffraction measurements in Ref. 29.
bRef. 31.
cRef. 7.
dForce field potential calculations7.
eTB-LMTO method8.
fPP-PW calculations in Ref. 33.
gRef. 27.
hFirst-principles calculations in Ref. 9.

Table IV. Lattice constant ah, Young’s modulus E, bulk modulus B, shear modulus G, and elastic constants of
ZnTe at temperature T ¼ 300 K

ah (Å) E (GPa) B (GPa) G (GPa) C11 (GPa) C12 (GPa) C44 (GPa)

Present method 6.135 43.67 50.54 16.10 7.208 3.98 3.22
Experiments 6.009,a 6.089b – 52.8b – 7.10,c 7.15f 4.10,c 4.08f 3.10,c 3.11f

Calculations 6.063e 63.2g 50.54e 15.4g 6.39d 3.92d 1.96d

aRef. 28.
bRef. 8.
cRef. 7.
dForce field potential calculations7.
eTB-LMTO method8.
fRef. 31.
gRef. 27
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Figures 2, 3, and 4 present SMM calculations for
the temperature-dependent mean-square displace-
ments u2

� �
of atoms in the zincblende-type ZnX

(X = S, Se, Te) compounds together with experi-
mental measurements34 and other theoretical
results.15,16 As can be seen from these figures, the
SMM results are in agreement with those of previ-
ous works15,16,34 at temperatures below 600 K.
Beyond 600 K, a slight difference starts to appear.
At low temperature T � 50 K, a quantum effect
(zero-point vibration) can be observed from the
mean-square displacement curves and the atomic
vibration contribution of the light atom is greater
than that of the heavier one in ZnX (X = S, Se, Te).
In detail, the zero-point contributions of Zn and S in

ZnS are, respectively, 0.0018 Å2 and 0.0025 Å2;
those of Zn and Se in ZnSe are, respectively,
0.0021 Å2 and 0.0020 Å2; those of Zn and Te in
ZnTe are, respectively, 0.0024 Å2 and 0.0018 Å2.
Table V presents the atomic mean-square displace-
ments of Zn and X (X = S, Se, Te) atoms for the ZnX
materials at room temperature. Interestingly, the
ratio between the Debye-Waller factors of Zn and X
(X = S, Se, Te) at zero temperature is almost equal
to the square root of their inverse mass ratio, viz.ffiffiffiffiffiffiffiffiffiffiffiffiffi

m Xð Þ
p

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m Znð Þ

p
� 0:7002, 1.0990, and 1.3970 for

X = S, Se, and Te, respectively. However, this
difference between the mean-square displacements
of Zn and X (X = S, Se, Te) progressively disappears
as the temperature increases.

Furthermore, it is worth mentioning that the
quantum-mechanical zero-point vibrations make
the main contributions to the atomic mean-square
displacements at low temperature. At high temper-
ature, due to the predominance of anharmonicity
due to the increasing oscillation amplitude of the
atoms, the atomic mean-square displacements
increase rapidly with increasing temperature.
Equation 14 indicates that the temperature depen-
dence of the mean-square displacement u2

� �
is

specified by the factor h3. This means that the
atomic mean-square displacement function u2

� �

grows with temperature T to the power of 3.

CONCLUSIONS

The thermomechanical properties of ZnX (X = S,
Se, Te) were investigated using the many-body
Stillinger–Weber potential in the statistical-mechan-
ical moment method formalism, providing analytical
expressions for the lattice constant, atomic mean-
square displacements, and elastic (Young’s, bulk, and
shear) moduli of zincblende-type semiconductors.
The agreement between the present calculations
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Fig. 3. (Color online) Temperature-dependent mean-square
displacements of Zn and Se. Density functional theory calculations
performed by Schowalter et al.16 are shown for comparison.
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Fig. 2. (Color online) Temperature-dependent mean-square
displacements of Zn and S. Density functional theory calculations
performed by Schowalter et al.16 are shown for comparison.
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and other theoretical results for the atomic mean-
square displacements is fairly good over the whole
temperature region from 0 K to 600 K, much higher
than the Debye temperature. The results presented
herein confirm that the present SMM formalism can
take into account quantum-mechanical zero-point
vibrations as well as higher-order anharmonic terms
in the atomic displacements.
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Table V. Comparison of atomic mean-square displacements (Å2) in zincblende-type ZnX (X = S, Se, Te)
compounds at room temperature

Compound Element

Mean-Square Displacement (Å2)

SMM Expt.34 Shell Model15 Ab Initio16

ZnS Zn 0.0072 0.0111 0.0108 0.0102
S 0.0075 0.0090 0.0093 0.0078

ZnSe Zn 0.0106 0.0129 0.0125 0.0130
Se 0.0106 0.0090 0.0084 0.0095

ZnTe Zn 0.0132 0.0164 0.0169 0.0160
Te 0.0131 0.0096 0.0121 0.0120
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