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Hexagonal boron nitride (h-BN) monolayer is an isostructural analogue to
graphene and promising dielectric. Inspired by recent experimental reports,
we focus on suspended and corrugated boron nitride nanoribbons (BNRs) as
model systems, and report an intriguing flexoelectric polar effect using a series
of ab initio-based density functional theory and tight binding calculations. Our
results decode various synergies of the complex flexoelectrical properties
including the role of corrugation height, structural deformation, and orbital
mixing in corrugated BNRs. We demonstrate structural deformation of BNRs
significantly contribute to the magnitude of electric dipole moment and
bandgap closing, converting the insulating BNRs to semiconductors. This
important finding, combined with the fundamental insights into the nature of
electromechanical coupling, provides key hypotheses for design and modula-
tion of novel nanoelectronic and nanophotonic devices.
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INTRODUCTION

Flexoelectricity is an electromechanical property
of a dielectric material whereby it generates a
voltage in response to strain gradient and exhibits
an induced electrical polarization.1–3 Flexoelectric
effect is usually small in bulk three-dimensional
(3D) solids, and evades experimental detection
unless large strain gradients are externally imposed
or artificially designed inhomogeneous metamateri-
als are used.4,5 Contrary to 3D systems, two dimen-
sional (2D) nanocrystals such as graphene and
hexagonal boron nitride (h-BN) sustain large elastic
structural distortions and exhibit unusual forms of
electromechanical coupling. For instance, the BN
sheet becomes pyroelectric when it is wrapped into a
chiral or a zigzag nanotube with a macroscopic
polarization (quadratic flexoelectric effect).6,7 2D
boron based nanosheets possess electronic

properties, offering the lightest catalyst for hydro-
gen and oxygen evolution reaction.8

The h-BN sheet has remarkable thermal stability
(air-stable up to 1000�C),9,10 exceptional hardness
and mechanical strength,11 and chemical stabil-
ity,12,13 which is suitable for fabricating devices, and
tolerating harsh environments.14 Mechanical prop-
erties of monolayer boron pnictides (BX, X ¼ N, P,
As, and Sb) show that they are stable under biaxial
strain smaller than 18%.15 One-dimensional (1D)
BN derivative, BN nanoribbons (BNRs), can be
obtained by cutting an h-BN sheet or unzipping a
BN nanotube.16 More recently, a new allotrope of
BN, i.e., haeckelite structures with octagonal and
square rings, has been studied by Roondhe et al.,17

revealing the significant electronic properties appli-
cable in sensing biomolecules as a biosensor. For
instance, the interaction of BN nanostructures with
alkaloids (caffeine and nicotine) suggests a precise
biosensor based on BN nanomaterials.18 Lopez-
Bezanilla et al.19 studied the electronic and mag-
netic properties of O- and S-functionalized BNRs,
indicating metallicity.(Received December 12, 2018; accepted April 12, 2019;

published online April 29, 2019)
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BNRs have attracted increasing attention
because of transverse electric polarization,20,21 lead-
ing to piezoelectric effects22 and half-metallic inter-
faces with graphene ribbons.23–25 Hydrogenated
side-by-side aligned BNRs will have a considerable
Coulomb interaction in addition to the van der
Waals interaction at the nanoscale interfaces. This
substantial interface interaction may afford the
formation of stable BN superstructures with differ-
ent properties.26

The mechanical properties of the h-BN films
reported by Song et al.27 show a 2D elastic modulus
in the range of 200–500 N/m, measured by nanoin-
dentation.27 They used circular wells with diameter
around 1 lm which were patterned onto a silicon
substrate by e-beam lithography and reactive ion
etching (RIE) techniques.27 A noncontact-mode
atomic force microscopy (AFM) test was used to
obtain the stress and strain applied by indenting
the center of each freestanding membrane with a
diamond tip.27 Inspired by these experimental data,
our goal is to study the variation of structural and
electronic properties induced by distortion and
corrugated BNRs with respect to pure BNRs. Using
a series of first-principles calculations and tight-
binding (TB) approach, we show that the corrugated
BNRs can indeed be polarized via considerable
structural deformation and undergo a transition
from an insulator to a semiconductor with increas-
ing indentation depth of BNRs. These results are
robust against variations in nanocomposites, and
delineate the general significance of polar nanos-
tructures to achieve a tunable polarization toward
developing nanoelectronic devices.

COMPUTATIONAL METHODS

Tight-Binding (TB) Model and Green’s
Function

BNRs not only follow the structure of graphene
nanoribbons (GRs), as they consist of two different
types of sublattices, A and B, but also appear in two
different types of atoms, boron and nitrogen, as
illustrated in Fig. 1. For such a system, we model p
and p� band energy dispersion employing a simple
nearest-neighbor TB parameterization. In this way,
the wave function of A (B) sublattice can be shown
as28,29:

wAðBÞ

�
�
�

E

¼ 1

NAðBÞ

Xn

i¼1

X

xAiðBiÞ

eikx:xAiðBiÞ/AðBÞðiÞ AiðBiÞj i ð1Þ

where /AðBÞðiÞ is the component for A (B) sublattice
in the y direction, which is perpendicular to the
edge. For BNRs with solid boundaries (considering
hard-wall boundary condition by Zheng et al.29), the
transverse wave vector q is introduced as:
qy ¼ 2ffiffi

3
p

a

pp
nþ1 ; p ¼ 1; 2; . . . ;n:

After constructing the wave function for our
system, we now focus on the Hamiltonian. We start

with the case of interaction between equivalent
atoms (belonging to the same sub-lattice). We have:

HAA ¼ 1

N

X
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eikðRA0 �RAÞ /Aðr� RAÞh jH /Aðr�RA0 Þj i
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where N is the number of unit cells, and RA and RA0

are the position of atoms A and A0. epz
describes the

energies of electrons on the 2pz orbitals. By keeping
just three nearest neighbors in mind along with
interaction between electrons bound to nonequiva-
lent atoms and using the fact that there is transla-
tional invariance in a Bravais lattice, the sum over
each atom of a sub-lattice is done N times and
therefore Eq. 2 becomes:

HAB ¼ 1
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eikðRB�RAÞ /Aðr�RAÞh jH /Bðr� RBÞj i

¼ c eikR11 þ eikR12 þ eikR13
� �

ð3Þ

where c denotes the hopping parameter and R1i are
distances between an atom and its three nearest
neighbors. By defining the function f ðkÞ and taking
into account the three mentioned distances we have:

f ðkÞ ¼ eikR11 þ eikR12 þ eikR13 ¼ e
�iakxffiffi

3
p þ 2e

iakx
2
ffiffi
3

p
cos a

2 q
� �

,
in which the mentioned transverse wave function is
held. The matrix form of the Hamiltonian is ready
with all provided parameters as:

H ¼ eb cf ðkÞ
cf ðkÞ� en

� �

ð4Þ

where eb and en are the on-site energies at boron and
nitrogen sites. The eigenvalues of Hamiltonian H
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Fig. 1. Structure of BN nanoribbons (BNRs). The dashed rectangle
shows the unit cell, a = 2.5 Å is lattice constant from Ref. 24 and N
defines the ribbon width.
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(Eq. 4), are given by: E ¼ E0 � 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2
g þ 4 fj j2

q

, where

E0 ¼ ebþen

2 and Eg ¼ eb � en is the band gap. Here, �
denotes the conduction and valance bands, respec-
tively. Figure 2a shows the energy dispersion for
BNRs with width N = 7. For this, we set on-site
energies eb = 0.0 eV and en = � 4.57 eV, and also
hopping parameter c = 1.95 eV from earlier
reports30,31 with a little change to adjust the Fermi
level. The density of states (DOS) is plotted in
Fig. 2b, while the computational details of the DOS
using Green’s function are given in the Appendix.

DFT Computational Methods

All the structural optimization and electronic
calculations are performed within the framework
of density functional theory (DFT) as implemented
in the VASP code. A number of calculations, such as
the Kohn–Sham equation, are performed based on a
projector-augmented wave approach with a plane
wave basis set. The electronic self-consistent field
(SCF) is converged to 10�5 eV per cell.32–34 A
generalized gradient approximation (GGA) of the
Perdew–Burke–Ernzerhof (PBE) functional is
employed for the exchange correlation potential.35

The BNRs are modeled by a supercell as shown in
Fig. 4a, with a vacuum of 50 Å.

BNRs are modeled within a supercell as shown in
Figs. 4 and 6 with at least 30 Å of vacuum (non-
interacting cells), which contains 48 BN atoms. All
configurations are relaxed with a force tolerance of
0.01 eV/Å. The geometry optimization was pursued
until the convergence criterion was less than
10�5 eV for total energy and less than 0.01 eV/Å
for forces and with maximum stress of 0.02 GPa. We
adopt a fine 70 9 1 9 1 Monkhorst–Pack k-points
grid for sampling of the Brillouin zone, and cutoff of
300 Ry for numerical integrals in a real space.

We tested several cutoff and K-points sampling
for flat and distorted BNRs, getting the precise data.
We modeled the flat armchair BNRs by the super-
cell shown in Fig. 4a, which contains 48 BN atoms
(24 B atoms, and 24 N atoms). Moreover, we
modeled the suspended BNRs and sine-wave dis-
tortion BNRs with different indentation depth (h) as
shown in Figs. 4 and 6. During the geometry
optimization, the boundary of BN was kept frozen
in the y direction, and was periodic in the x
direction. In order to evaluate the influence of
boundary condition (BC) constraints on the dipole
moment of BN, we have also considered the flake
BN (non-periodic BN), to compare with BNRs.

For first-principle phonon calculation, we have
applied the force constant method, and we con-
structed the dynamical matrix and diagonalized,
acquiring all phonon modes. Dynamical matrices
are computed in a larger supercell (168 atoms) and
12 wave vectors in the irreducible wedge of BZ.36

RESULTS AND DISCUSSION

We have investigated two structures (suspended
and sine-wave distortion) shown in Figs. 4 and 6,
respectively, with different indentation depth (h).
Our study begins with investigation of the stability
of BNRs by using the phonon spectrum, indicating
dynamical behaviors. We plotted the phonon dis-
persion curves for suspended BNRs with different
indentation depths: d = 1.0 Å, 2.0 Å, and 3.0 Å in
Fig. 3. This figure reveals that all phonon modes are
real and positive, confirming the stability of BNR
configurations.

The electronic properties of suspended BNRs of
DFT data are reported in Table I in terms of
electrical dipole moment vector, P = (px, py, pz),
band gap energy, Eg, and optimized indentation
height (h¢) for different loaded structures as shown
in Fig. 4a, b, c and d (top panel).

The trends observed in Table I are: (1) dipole
moment vector has in-plane and out-plane compo-
nents, (2) increasing the distance associated with
the indentation height of BNRs increases the in-
plane and out-of-plane component of the dipole
moment; e.g., pz = 0 Debye at h = 0 Å goes to �1.32
Debye at h = 3 Å, (3) bandgap energy (Eg) closes
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Fig. 2. (a) Electronic band structure E (k) of BNR of width N = 7, (b)
density of states (DOS) of BNR of width N = 7.
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with increasing indentation height; i.e., at h = 0 Å,
the Eg = 4.2 eV and at h = 3 Å, the Eg = 3.3 eV.

Figure 4 also demonstrates the calculated elec-
tronic band structure and the variation of the total
DOS as a function of the DFT energy, providing
additional details on the electronic effects of polar-
ized BN. The calculated band structures and DOS
for a perfect BNR is in close agreement with the TB
and Green’s function approach, which is presented
in Fig. 2. In view of Fig. 4, we observe that inden-
tation perturbs significantly the electronic states of
BN in the vicinity of the Fermi level. Specifically,
there is a gradual displacement of the valence band
(VB) and conduction band (CB) toward the Fermi
level region with increasing the indentation depth.
This energy shift suggests an improved electron
cloud overlap as BN polarization increases, which is

also supported by the gap energy reported in
Table I. Hence, the calculated variations in the VB
and CB lead to a band gap closing from 4.21 eV to
3.34 eV as h increases from 0 Å to 3 Å. The
structural deformation of BN is consistent with
improved system polarization, which maximizes
orbital mixing and, as a consequence, band gap
closing. This polarization originates from different
electronegativity of B and N atoms and embodies an
inbuilt electric field.

In order to compare the structural and electronic
properties of suspended BNRs with sine-wave dis-
torted shapes as plotted in Fig. 6 (top panels), we
performed phonon calculation and DFT computa-
tion for sine-wave BNRs. Figure 5 shows the
phonon spectrum for sine-wave BNRs with inden-
tation depth d = 1.0 Å, 1.5 Å, and 2.0 Å. Phonon
dispersion curves as a key parameter for crystal
stability indicate that all phonon modes are positive,
then sine-wave BNRs are stable.

Table II presents DFT data for optimized struc-
tural parameters for sine-wave corrugated BNRs.
Akin to Table I, the following trend holds here as
well: (1) the dipole moment vector has in-plane and
out-of-plane components, (2) increasing indentation
height of BNRs increases the dipole moment; (3) Eg

closes with increasing indentation height.
The gap reduction in the BNRs can be understood

by analyzing the electronic structures. A central
question is what is the source of band gap closing in
corrugated BNRs? To answer this question, we

(a) (b) (c)
Fig. 3. Phonon spectrum for suspended BNRs: (a–c) with indentation depth d = 1.0 Å, 2.0 Å, and 3.0 Å.

Table I. Dipole moment (P), band gap energy (Eg)
and optimized indentation height (h¢) for different
suspended BNRs

P (px, py, pz) (Debye) Eg (eV) h0
opt (Å)

Indentation depth
0 Å (0, �1.22, 0) 4.21 0
1 Å (0, �1.32, �0.37) 3.83 0.87
2 Å (0, 1.58, �0.75) 3.57 1.85
3 Å (0, �2.15, �1.32) 3.34 2.80
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examined the profile of electronic band structure of
corrugated BNRs in Fig. 6. Flat bands in the CB
indicate localized density of electrons, giving a polar
character in these structures and band gap reduc-
tion as reported by previous study.26 In order to
evaluate the influence of structural BC constrains
on the polarization of the corrugated BNRs, we have
also considered the corrugated BN flakes, which

allow us to obtain a polarization trend comparable
with BNRs (periodic structures). The polarization of
BN flakes increases rapidly with increasing inden-
tation depth as shown in Fig. 7. This figure shows
that the polarization strongly depends on the
indentation depth of the nanostructure. The impact
of the BN flakes is more significant since the
structural deformation is increased.

(a) (c)

(e)

(b) (d)

Fig. 4. The deformation sequence for suspended BNRs: (a) flat (unloaded) structure, (b–d) with indentation depth d = 1.0 Å, 2.0 and Å, 3.0 Å;
the middle panel shows their electronic band structure for BNRs. (e) Total density of states (DOS) for the loaded structure with indentation depth
of 1.0 Å, 2.0 Å, and 3.0 Å compared with a flat structure.
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CONCLUSION

Our comprehensive first-principles calculations
have shown that the band gap of corrugated BNRs
can be reduced upon structural deformation. The
distorted and corrugated BNRs change from an
insulator to a semiconductor with increasing

indentation depths of BNRs. This electronic phase
transition, which entails increasing the electrical
dipole moment, stems from polarizations at the
bond distortion of BNRs. Our results suggest that
structural deformation and corrugation for a group
of semiconducting composite nanostructures could
be used to tune and control the polarization and

(a) (b) (c)
Fig. 5. Phonon spectrum for sine-wave distortion of BNRs: (a–c) with indentation depth d = 1.0 Å, 1.5 Å, and 2.0 Å.

Table II. Dipole moment (P), band gap energy (Eg) and optimized indentation height (h¢) for different sine-
wave distorted BNRs

P (px, py, pz) (Debye) Eg (eV) h0
opt (Å)

Indentation depth
0 Å (0, �1.22, 0) 4.21 0
1 Å (0, 1.81, 0.45) 3.88 0.66
1.5 Å (0, �2.27, 0.39) 3.79 0.92
2 Å (0, 4.41, 0.92) 3.02 1.35
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thus electronic properties of nanocomposites, and
optical and nanoelectronic devices. Beyond boron
nitride, the fundamental concepts, methods and
strategies of this work may have important impli-
cations for understanding and tuning a host of

several other 2D mono- and multi-layer atomic
sheets (e.g. molybdenum disulfide, niobium dise-
lenide, layered double hydroxides, etc.) used for
nanoelectronics.

(a) (b) (c) (d)

(e)
Fig. 6. The deformation sequence for sine-wave distortion of BNRs: (a) flat (unloaded) structure, (b–d) with indentation depth d = 1.0 Å, 1.5 Å,
and 2.0 Å and middle panel shows their electronic band structure for BNRs. (e) Total density of states (DOS) for a loaded structure with
indentation depth of 1.0 Å, 1.5 Å, and 2.0 Å compared with a flat structure.
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APPENDIX

The density of states (DOS) relates to the imag-
inary part of summing over diagonal elements of
Green’s function matrix by
DðeÞ ¼ �ImTrGðEÞ=p.37,38 By substituting elemen-
tal members, DOS can be presented as:

DðeÞ ¼ � 1

2pMN

XM

m¼1

XN

kx2FBZ
ImGðmÞ Kx;Eþ i0þð Þ

Figure 2b shows the total DOS for our N = 7 BNRs.
In our present system, each unit cell of the BNRs
includes two N atoms, so the Hamiltonian would
provide a 2 N 9 2 N matrix in the following
structure

Gðkx; sÞ ¼

G
ð1Þ
þ ðkx; sÞ 0 0 . . . 0

0 Gð1Þ
� ðkx; sÞ 0 . . . 0

0 0 G
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. ..
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@
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C
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where G
ðmÞ
� ðkx; sÞ ¼ � Tc

ðmÞ
�;kx

ðsÞcðmÞy
�;kx

ð0Þ
D E

refers to

each element of the matrix, in which T is time
ordering operator and s ¼ it. After Fourier

transformation and E ¼ eþ i0þ, the energy-depen-
dent Green’s function for the considered Hamilto-
nian becomes:

Gðkx;EÞ ¼

E� eð1Þþ ðkxÞ 0 0 . . . 0
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