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PbSe is a promising thermoelectric that can be further improved by nanos-
tructuring, band engineering, and carrier concentration tuning; therefore, a
firm understanding of the defects in PbSe is necessary. The formation energies
of point defects in PbSe are computed via first-principles calculations under
the dilute-limit approximation. We find that under Pb-rich conditions, PbSe is
an n-type semiconductor dominated by doubly-charged Se vacancies. Con-
versely, under Se-rich conditions, PbSe is a p-type semiconductor dominated
by doubly-charged Pb vacancies. Both of these results agree with previously
performed experiments. Temperature- and chemical potential-dependent
Fermi levels and carrier concentrations are found by enforcing the condition of
charge neutrality across all charged atomic and electronic states in the sys-
tem. The first-principles-predicted charge-carrier concentration is in qualita-
tive agreement with experiment, but slightly varies in the magnitude of
carriers. To better describe the experimental data, a CALPHAD assessment of
PbSe is performed. Parameters determined via first-principles calculations are
used as inputs to a five-sublattice CALPHAD model that was developed
explicitly for binary semiconductors. This five sublattice model is in contrast to
previous work which treated PbSe as a stoichiometric compound. The current
treatment allows for experimental carrier concentrations to be accurately
described within the CALPHAD formalism. In addition to the five-sublattice
model, a two-sublattice model is also developed for use in multicomponent
databases. Both models show excellent agreement with the experimental data
and close agreement with first-principles calculations. These CALPHAD
models can be used to determine processing parameters that will result in an
optimized carrier concentration and peak zT value.
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INTRODUCTION

The application of thermoelectric materials in
waste-heat recovery has been limited due to their
low efficiency.1 The figure of merit, zT, of a

thermoelectric is a measure of its efficiency and is
given by the formula ZT ¼ S2rT=j; where S, r, T,
and j are the Seebeck coefficient, electrical conduc-
tivity, temperature, and thermal conductivity,
respectively. Lead-based chalcogenides are some of
the highest performing thermoelectric materials for
mid to high temperature applications of 500–
900 K.2 In particular, PbTe, PbS, and PbSe have
been the focus of recent research.3–8 The zT of these(Received May 25, 2018; accepted November 16, 2018;
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compounds can be increased through several pro-
cesses that emphasize different contributions to
zT.3,9 Introducing nano-scale precipitates, which
scatter heat-carrying phonons without adversely
affecting the electrical conductivity, can reduce the
thermal conductivity.4 In addition, the electrical
transport properties can be enhanced through band
engineering.9,10

PbSe is a promising thermoelectric material as it
is able to take advantage of all of the previous
methods in its own system as well as enhancing the
thermoelectric properties of other systems discussed
below. The carrier concentration of PbSe can be
tuned via Na doping,11 which can be further
improved by band engineering through alloying
with Sr.12 PbSe contains two valence bands, L and
R, which dominate carrier transport at low and high
temperatures, respectively.12 Electronic transport
properties are optimized at temperatures where
these bands contribute relatively equally to carrier
transport (so called band convergence). In pristine
PbSe, the temperature at which band convergence
occurs is above 900 K, which limits the use of
pristine PbSe for thermoelectric applications. How-
ever, introducing Sr to PbSe decreases the band-
convergence temperature into a more applicable
range, resulting in a net increase of zT. It should be
noted that recent research has cast doubt on this
simplified model between the L and R bands,
suggesting instead that the two bands become
interconnected for highly doped materials.13 How-
ever, it is clear that band engineering plays a
critical role in optimizing the electronic transport
properties.10,12,14 PbSe has also been shown to
improve the thermoelectric performance in PbTe.
The PbTe-PbSe system exhibits a solid solution for
many temperatures and compositions.15 Therefore,
the addition of PbSe to PbTe provides point defects
that scatter short-wavelength phonons. Similar to
PbSe, PbTe also contains the two valence bands, L
and R, however its convergence temperature is
much lower, around 450 K.10 The electronic trans-
port properties can be enhanced if this convergence
temperature occurs at a higher temperature, which
can be achieved by alloying with PbSe, which as
noted previously, has a convergence temperature
closer to 900 K. Therefore, alloying PbTe with PbSe
not only increases the overall power factor of the
material, but also lowers the thermal conductivity
by introducing point defects that scatter heat-car-
rying phonons.10

In order to fully optimize the zT of these materi-
als, a precise understanding of the system’s phase
diagram is required. Knowledge of the phase dia-
gram can be used to determine the composition and
processing parameters necessary to achieve the
optimal microstructure for enhanced zT of the
thermoelectric system. In addition, the carrier
concentration can be used to determine the Seebeck
coefficient and electrical conductivity, which can be
determined by the solubility of intrinsic defects and

ternary elements in PbSe. First-principles calcula-
tions can provide important insights into the dom-
inant defects in the PbSe system.16 The
CALculation of PHAse Diagram (CALPHAD)
method is also a proven approach to model exper-
imental data and create phase diagrams.17 Often,
the models used in CALPHAD depend on parame-
ters that are difficult or impossible to determine via
experiments. The coupling of first-principles calcu-
lations and experimental data in CALPHAD assess-
ments has been shown to yield physically sound
models.18

Numerous studies have investigated the PbSe
system through first-principles calculations and
experimental thermodynamic modeling. Lin,
Sharma, and Chang (LSC)19 and Liu et al.20 both
provide an extensive review of the thermodynamic
information of the Pb-Se system. In the LSC study, a
thermodynamic model first developed for SnTe21 is
used to describe the off-stoichiometric nature of
PbSe. While a satisfactory agreement between exper-
iments and model is achieved in the LCS study, a
number of improvements can be made. The model
employed in the LCS study has not seen widespread
use, and; therefore, incorporation within a multicom-
ponent database would be impractical and also
requires more fitting variables (five) than the models
presented here. In addition, the assessment was done
by fitting to solubility lines on the phase diagram,
which are determined from carrier concentration
experiments. This procedure overweighs data at
higher temperatures, where the carrier concentra-
tion and deviation from stoichiometry is higher due to
the linear relationship between carriers and off-
stoichiometry. Lastly, the conversion of carrier con-
centration to solubility limits appears to be inconsis-
tent with previous studies.22,23 The thermodynamic
model performed by Liu et al. uses the well-estab-
lished compound energy formalism (CEF), however,
they treat PbSe as a line compound, and; therefore,
all information on the carriers of the systems is lost.
PbSe has also previously been studied using first-
principles calculations. Li et al. determined defect
formation energies for a range of defects in the PbX
(X = S, Se, Te) system, however, their study was
limited to neutral defects, which can exhibit much
higher formation energies than charged defects.24 A
study by Wrass, Venezuela and Baierle investigated
defects in bulk and nanowire PbSe and PbTe.25

Although their study includes charged defects as
well as spin–orbit (SO) interactions, their study did
not investigate the solvus boundaries of the system.
Their defect formation energies span a range of Fermi
levels and provide no insight on the magnitude of
defects within the system. Bajaj et al. recently used
the dilute-limit approximation to calculate the solvus
boundaries in Na-doped PbSe, however, they do not
report the defects of the binary system.26

The goal of this work is to model the carrier
concentration of the PbSe compound. Charge carri-
ers in semiconducting systems are created by
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defects as well as thermal excitation; therefor,
information on the dominant defects of the system
is necessary to ensure a physically accurate model.
To achieve this, first-principles calculations using
density functional theory (DFT) have been per-
formed on neutral and charged defects. Formation
energies are then determined by enforcing charge
neutrality under the dilute limit, which determines
the Fermi level of the system under a specific
growth condition. Using this technique, the forma-
tion energy, concentration of defects and carriers of
the system can be determined. The information
derived from first-principles calculations such as
the dominant defects, formation energy, and ioniza-
tion energy, will be used in developing thermody-
namic models based on the CEF, which can be easily
implemented in multicomponent databases and
commercially available software to be used in
material design.

The first-principles calculations indicate that
doubly ionized vacancies on the Pb and Se site are
the dominant defects in Se-rich and Pb-rich growth
conditions. The predicted carrier concentration
agrees qualitatively with the experimental data
but differs in overall magnitude. To achieve a better
description of the experimental data, two CEF
models have been investigated. A five-sublattice
(5SL) model developed explicitly for binary semi-
conductors and a multicomponent two-sublattice
(2SL) model have been developed that show excel-
lent agreement with each other as well as the
experimental data. These models add to the growing
subject of how best to address defects within
CALPHAD models.27–31 Both of these models use
fitting parameters that are linked to values derived
from the first-principles calculations to give them
greater physical significance. This work is another
example18,30–34 of how first-principles calculations
and the CALPHAD method are able to complement
one another and also addresses how to develop
multicomponent compatible models that involve
vacancies.

Numerous studies have investigated the PbSe
system through first-principles calculations and
experimental thermodynamic modeling, but none
have combined the two to provide an accurate
description of the intrinsic carriers.19,20,25 This
study focuses on determining the dominant defects
and their associated formation energies using den-
sity functional theory (DFT) and the dilute-limit
approximation. These parameters will be used as
inputs into a five-sublattice CALPHAD model that
has been previously developed explicitly for binary
semiconductors to describe the carrier concentra-
tion and solubility limits of PbSe. A recent CAL-
PHAD assessment of the Pb-Se system treated PbSe
as a stoichiometric phase,20 thereby losing all
information of the intrinsic carriers. It is also
important to note that the published solubility
limits in Liu et al.’s study appear to be
inconsistent.19

COMPUTATIONAL METHODOLOGY

Defect Formation Energies

In order to determine the dominant defects of the
system, the formation energy of defects in the
system must be known. First-principles calculations
have been successfully used in similar systems and
that approach has been used here.16,35 The dilute-
limit approximation is used to determine the for-
mation energy and concentration of the defects in
the PbSe system. The formation energy of a defect is
calculated as36

DEj
f Dl;Dleð Þ ¼ Ej � E0

� �
�
XN

i¼1

DNj
i l0

i þ Dli
� �

� DNj
e EVBM þ DVPA þ Dleð Þ þ DEIC;

ð1Þ

where E0 and Ej are the total energies of the
defect-free and defect containing supercell for

defect j, respectively. DNj
i is the number of atoms

of type i removed (DNj
i< 0) or added (DNj

i > 0)

from the system. l0
i is the chemical potential of

atom i in its standard reference state (fcc for Pb
and hexagonal for Se) and Dli is the change in
chemical potential of element i relative to its
standard reference state dependent on the equilib-
rium conditions, i.e., Pb-rich or Se-rich. Similar to

DNj
i , DNj

e is the number of electrons added or

removed from the system, where DNj
e is greater

than zero for electrons added to the system and
less than zero for electrons removed from the
system. EVBM is the energy of the valence band,
DVPA a potential alignment term, and Dle the
Fermi level of the system relative to the EVBM.
Lastly, DEIC is an image charge correction term.
The parameters E0, Ej, l0

i , Dli, and EVBM can all be
derived from the DFT calculations, DVPA and DEIC

are post-processing correction terms, and Dle can
numerically be solved for as described below.

The chemical potentials of Pb and Se are given by
their DFT determined total energies in their
stable structure at 298 K and 1 atmospheric pres-
sure, known as their stable-element reference (SER)
state. The chemical potential, li, is unchanged when
in equilibrium with the SER of an atom. Therefore,
under Pb-rich conditions, the chemical potential of
Pb is equal to l0

i and is equal to zero. Since there are
no other stable phases in equilibrium with PbSe
other than the SER of Pb and Se, the chemical
potential of Se is then fixed by the chemical
potential of PbSe, lPbSe, which is calculated from
the chemical potential of its constituents, lPb and
lSe

37:

lPb þ lSe ¼ lPbSe: ð2Þ

Under Pb-rich conditions the chemical potential of
lSe is reduced from its SER. The same process can
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be used to determine the change in chemical
potential of a Pb atom in a Se-rich environment in
equilibrium with hexagonal Se. Since these are the
only two solid phases in equilibrium with PbSe, no
further adjustment of chemical potentials are
necessary.

The creation of charged defects in a supercell
calculation with periodic boundary conditions
requires correction terms for which many methods
exist to determine them. To ensure charge neutral-
ity conditions are not violated, a background neu-
tralizing charge is introduced, which affects the
potential of the calculation.38 The shift in potential
means that the energy levels of a defect containing
supercell and a defect-free supercell are not directly
comparable and thus an adjustment, taking the
form of a constant offset, is required. In addition,
periodic boundary conditions mean that charged
defects interact with each other, and therefore, do
not actually represent isolated defects in the bulk.
Lany and Zunger38 (LZ) utilize a simple method
where the potentials of the bulk and charged defect
super cells are aligned at a distance far from the
defect and a Markov-Payne expansion is used to
correct for image charge interactions. This correc-
tion scheme has been used successfully in a number
of similar studies with success,16,26,35,39 however,
this involves double counting the effect of the image
charge interaction as it is not explicitly taken into
account when aligning the potentials. Freysoldt
et al.40 (FNV) developed a method that first models
the charge of the defect using a Gaussian or point
charge model. The potentials from a neutral and
charged defect are then used to correct the shift in
potentials. This method corrects the double count-
ing issue that is introduced in the LZ method.
Kumagai and Oba41 built on the FNV method,
making it more general and useful in systems that
exhibit large atomic relaxations. This study employs
the LZ scheme despite the double counting of the
image charge contribution as it will be shown that
the image charge is quite small, due to the large

dielectric constant, and a recent paper that shows
minimal effects for cubic systems.42 By assuming
that the electrostatic potential far away from the
defect should be identical to that of the host cell, the
offset can be determined. The offset is determined
by calculating the average difference in electrostatic
potential around each atom in the supercells

between the defect cell, Vd
el;i, and the perfect cell,

V0
el;i, at a distance greater than or equal to one half

the distance between periodic image defects,

DVPA ¼ 1

N

X
Vd

el;i � V0
el;i

� �
: ð3Þ

A graphical representation of this is shown in
Fig. 1. In this study, the value DVPA for various
defects ranges from near zero to approximately
0.1 eV in magnitude. The largest offset was found to
be � 0.13 eV for a negatively charged (� 2) vacancy
on the Pb site.

In addition to the potential alignment term, we
must also correct for the defect–defect interactions
that occur due the periodic boundary conditions.
The corrections are determined through a Makov-
Payne expansion, which is given to third order in L
for a 3-D array of length, L43

DEIC ¼ q2a
2Lg

þ 2pqQ
3L3g

þO L�5
� �

; ð4Þ

where a is the Madelung constant (1.75) of the
periodic array of defects, Q the second radial
moment of the charge density, and g the dielectric
constant. The dielectric constant is calculated to be
232 for PbSe, which agrees with the room temper-
ature value of 204. This large dielectric constant
drastically reduces the image correction term such
that it has a negligible effect on the formation
energies, as has been seen in other studies.16,26,35

This also indicates that the image charge plays a
small role in the potential alignment term calcu-
lated previously.

Fig. 1. The potential alignment term for defects, (a) Va�2
Pb and (b) Vaþ2

Se . The potential alignment is determined by averaging the difference in
electrostatic potential from the defect and defect-free supercell for atoms equal to one half of the periodic image distance.
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Computational Approach

The total energies of the perfect and defect
containing supercell were determined by DFT44,45

calculations performed with the Vienna Ab initio
Simulation Package46 (VASP)47 with projector-aug-
mented wave48 (PAW) potentials utilizing the gen-
eralized gradient approximation (GGA) exchange–
correlation functional of Perdew, Burke, and Ernz-
erhof49 (PBE). These calculations treat the 6s26p2

and 4s24p4 electrons as valence in the Pb and Se
atoms, respectively. The NaCl crystal structure for
PbSe was taken from the Inorganic Crystal Struc-
ture Database50 (ICSD). For the defect calculations,
3 9 3 9 3 supercells were created from the conven-
tional unit cell of PbSe and contain 216 total atoms.
Structures were allowed to relax with a maximum
cutoff energy of 350 eV and Monkhorst–Pack
4 9 4 9 4 k-point meshes.51 These parameters were
determined to converge the defect formation ener-
gies to within 15 meV with respect to cutoff energies
and Monkhorst–Pack k-point meshes. Lattice
parameters and atomic positions were allowed to
relax until energy convergence reached 0.1 meV
and a final static calculation was performed to
determine the total energy. The dielectric constant
was calculated using density functional perturba-
tion theory implemented in VASP and includes ionic
contributions.52–54

Defect Concentration To determine the concentra-
tion of defects, the formation energies of the defects
and, thus, the Fermi level of the system must be
known. To fix the Fermi level, the charge neutrality
condition must be enforced

X

j

DNj
enj þ n� � pþ ¼ 0; ð5Þ

where nj is the number of defects j per formula unit,
and n� and pþ are the concentration of electrons
and holes, respectively. To determine the number
density of electrons and holes under the rigid band
approximation, the density of states, g Eð Þ, deter-
mined via first-principles calculations, can be mul-
tiplied by the Fermi function and integrated over
the appropriate energy levels:

n� T;Dleð Þ ¼ r
1

Eg

g Eð Þ 1

1 þ e E�Dleð Þ=kBT
dE; ð6Þ

pþ T;Dleð Þ ¼ r
0

�1
g Eð Þ 1

1 þ e Dle�Eð Þ=kBT
dE: ð7Þ

All energies here are relative to the valence band
maximum and Eg is the band gap of the host
material. The concentration of point defects nj is
given by a simple Arrhenius equation under the
dilute-limit approximation36

nj T;Dl;Dleð Þ ¼ Nj
sitee

�DEj
f
=kBT ; ð8Þ

where Nj
site is the number of possible sites for defect

j in the formula unit and DEj
f is calculated using

Eq. 1. Equations 6, 7, and 8 are combined with the
charge neutrality condition, Eq. 5, which yields the
Fermi level, Dle, for a given temperature. This
allows for the enthalpy of formation as well as
concentration of electrons, holes, and defects to then
be determined.

CALPHAD Modeling

Due to the small homogeneity range of PbSe, it
has generally been considered a stoichiometric
compound. The most recent assessment performed
by Liu et al. does exactly this.20 Their assessment
has a reasonable description of the liquidus, invari-
ant points, and enthalpy of mixing in the liquid. For
this reason, the parameters for the liquid and
stoichiometric PbSe have been taken from this
study and used here. The calculated phase diagram
using their parameters is shown in Fig. 2.

Five-Sublattice Model

The focus of this study is to describe the intrinsic
carriers of PbSe. To achieve this, PbSe is modeled
using a five-sublattice (5SL) model developed by
Chen et al. to describe binary semiconductors.55

This model is based on one described by Oates et al.
using the species chemical potential/bond energy
(SCPBE).56 It has been used to describe the GaAs,
CdTe, GaN, ZnO, PbTe, and PbS semiconducting
systems.55,57–59

The 5SL model for PbSe is described as: (Pb,Va,-
Va�2)(Se,Va,Va+2)(Va)(Va,e�1)(Va,h+1), where the
first, second, third, fourth, and fifth sublattices are

Fig. 2. The parameters from Liu et al.20 were used to calculate the
Pb-Se phase diagram here where the PbSe phase is modeled as a
stoichiometric compound.
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the Pb-site, Se-site, interstitial-site, electron, and
hole sublattices. As will be shown later, doubly-
charged vacancies are the dominant defects in the
system. Interstitial defects have high formation
energies and are not considered here, however, the
sublattice is left for completeness and possible
extrapolation into ternary systems where doping
occurs on the interstitial sites. Mathematically, the
5SL model is calculated using the standard proce-
dure for the compound energy formalism (CEF) as

GPbX ¼
X

i

X

j

X

k

X

l

X

m

yPb
i ySe

j yI
ky

e
l y

h
mGijklm

þRT
X

i

yPb
i lnyPb

i þ
X

j

ySe
j lnySe

j þ
X

k

yI
klny

I
k þ

X

l

ye
l lny

e
l þ

X

m

yh
mlnyh

m

 !

;

ð9Þ

where ys
i represents the site fraction of i on sublat-

tice s, R is the gas constant, and T is temperature.
Gijklm is the end-member representing a system that

is completely filled with components i; j; k; l; and m
on the first, second, third, fourth, and fifth sublat-
tice, respectively; modeling of these end-members
will be discussed below. Introducing charged species
in this model requires an extra constraint when
minimizing the Gibbs free energy, as the phase has
to be electrically neutral. The total number of end-
members in this system is 36, however, first-prin-
ciples calculations and assumptions allow these
end-members to be calculated in a straightforward
manner.

The two end-members of greatest importance are
those containing electrons and holes. Chen et al.
determined that these end-members can be modeled
as55

0GPbSeVae�1Va þ
0GPbSeVaVahþ1

¼ 20GPbSeVaVaVa þ Eg � RT lnNe þ lnNhð Þ; ð10Þ

where Eg is the experimental band gap of PbSe,
0GPbSeVaVaVa is the Gibbs free energy of stoichiomet-
ric PbSe taken from Liu et al.’s study20 and Ne and
Nh are the effective density of states for non-
degenerate semiconductors given by:

Ne;h ¼ 2
2pm�

e;hkT

h2

� 	3=2
a3

4

� 	
; ð11Þ

where m�
e;h, k, h, and a are the effective masses of

the electron and holes, Boltzmann constant,
Planck’s constant, and lattice parameters, respec-

tively. The parameter a3

4

� �
converts the effective

density of states into a density per formula unit,
thereby making it compatible with the CEF. The
parameters for PbSe can be taken from the litera-
ture and are summarized in Table II. An appropri-
ate reference state for the Gibbs free energy of
electrons and holes is chosen as the middle of the
band gap, where the Fermi level is assumed to be for
non-degenerate semi-conductors and as previous

authors have chosen.59 Following the definition of
Eq. 10, the end-members can be defined as:

0GPbSeVae�1Va ¼ 0GPbSeVaVaVa þ
Eg

2
� RT lnNe; ð12Þ

0GPbSeVaVahþ1 ¼ 0GPbSeVaVaVa þ
Eg

2
� RT lnNh: ð13Þ

End-members containing charged defects on one of
the first two sublattices represent the ionization of
their respective neutral defect. The charged defects
of interest in the PbSe system are doubly-charged
vacancies, therefore, each defect creates two elec-
trons or holes. These end-members are modeled as

0GVa�2SeVaVaVa ¼ 0GVaSeVaVaVa � 20GPbSeVaVahþ1

þ 20GPbSeVaVaVa þ DEVa�2
Pb
; ð14Þ

0GPbVaþ2VaVaVa ¼ 0GPbVaVaVaVa � 20GPbSeVae�1Va

þ 20GPbSeVaVaVa þ DEVaþ2
Se
: ð15Þ

Here the values DEVa�2
Pb

and DEVaþ2
Se

are the ioniza-

tion energies or defect transition energies of the
neutral vacancies on the Pb and Se sublattice,
respectively. These are determined by calculating
the Fermi level at which the neutral and charged
defect are equal to one another. These energies are
assumed to be independent of temperature, and;
therefore, the values determined by first-principles
calculations can be used and are given in Table II.

To determine end-members that contain two
defects on the first two sublattices a reciprocal
relation is utilized. In order to minimize the chances
for the formation of a miscibility gap, the reciprocal
energy is assumed to be zero17 and the end-mem-
bers are calculated as

0GijVaVaVa ¼ 0GiSeVaVaVa þ 0GPbjVaVaVa � 0GPbSeVaVaVa:

ð16Þ

In addition, any end-member that contains three or
more defects is assumed to have a Gibbs free energy
equal to zero. This assumption is reasonable due to
the small concentration of defects in the system
such that the site fraction of any individual defect is
near zero. According to Eq. 9, any end-member with
three or more defects will be multiplied by a number
near zero three or more times. Therefore, any
physically reasonable number can be chosen with-
out a large contribution to the Gibbs free energy of
the phase and here, zero is chosen for convenience.

This leaves two remaining end-members to be
assessed, which represent the single neutral defects
of the system:

0GPbVaVaVaVa ¼ 0Gfcc
Pb þ V1 þ V2T; ð17Þ

0GVaSeVaVaVa ¼ 0Gorth
Se þ V3 þ V4T: ð18Þ
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The parameters V1 to V4 are the variables that are
allowed to change to fit the experimental data.
Specifically, V1 and V3 represent the enthalpy of
formation of a Se and Pb vacancy on the Se and Pb
site, respectively. These values can be determined
by first-principles calculations and are used as
starting points for our optimizations. The optimiza-
tion is done through the PARROT60 module of
ThermoCalc.61 The parameters 0Gfcc

Pb and 0Gorth
Se are

the Gibbs free energy of Pb and Se in their
stable element reference (SER) and are taken from
Dinsdale62 and are also used for the fcc and
orthogonal phase, respectively. The liquid phase
description is taken from the recent assessment
performed by Liu et al.20Two-Sublattice Model

In addition to the 5SL model, a two-sublattice
(2SL) model is developed to describe the PbSe
phase. Although the 5SL model can accurately
describe the carrier concentration of PbSe and
contains many of the physical parameters used in
semiconductor physics, it is not compatible in a
multicomponent database. The neutral defect con-
taining end-members 0GPbVaVaVaVa and 0GVaSeVaVaVa
can be found in other systems such as PbTe and
PbS. Therefore, there would be an incompatibility
when combining assessments from other binaries.
To address this, a 2SL model is developed that is
fully compatible with other systems.

It will be shown that vacancies are the predom-
inant defects in this system, and; therefore, the 2SL
model can be described as (Pb,Va)(Se,Va). The
stoichiometric composition divides the phase dia-
gram, such that on the Pb-rich solidus side, the
number of vacancies on the Se sublattice is orders of
magnitude larger than on the Pb sublattice. There-
fore, when modeling the Pb-rich solidus, the phase
can be assumed to be equivalent to Pb(Se,Va) and
reduces the degrees of freedom to one, the site
fraction of Se or Va on the Se sublattice. The
equilibrium site fraction of vacancies can then be
determined by minimizing the grand potential

Gm ¼ Gm � lPbyPb � lSeySe; ð19Þ

where Gm, lPb, and lSe are the grand potential per
mole and chemical potential of Pb and Se atoms,
respectively. The molar Gibbs free energy can be
calculated by the CEF as

Gm ¼ ySe
�
GPbSe þ yVa

�
GPbVa

þ RT ySeln ySeð Þ þ yValn yVað Þð Þ þ ySeyVaLSe;Va:

ð20Þ

Taking the derivative of Eq. 19 with respect to ySe

and since lSe is constant in the two-phase region,
setting the result equal to zero leads to the equilib-
rium ySe

0 ¼ dGm

dySe
� lSe: ð21Þ

Substituting the derivative of Eq. 20 with respect to
ySe into Eq. 20 leads to

��
GPbVa þ

�
GPbSe þ LSe;Va 1 � 2ySeð Þ � lSe

¼ RTln
ySe

1 � ySe

� 	
: ð22Þ

The equilibrium site fraction of vacancies can then
be calculated by substituting 1 � yVa for ySe and
assuming a dilute concentration, where yVa � 1

yeq
VaSe

¼ exp �
�
GPbVa �

�
GPbSe þ LSe;Va þ lSe

RT

� 	
: ð23Þ

The numerator of Eq. 23 is equivalent to the energy
of formation for a vacancy per mole formula unit in
Pb-rich conditions. This value can be and has been
determined via first-principles calculations. The
real advantage of the 2SL model is that the energy
of formation is split between a structure specific
parameter,

�
GPbVa and a system specific parameter

LSe;Va. Therefore, once a value of
�
GPbVa has been

chosen, the interaction parameter can be changed to
fit the experimental data or first-principles calcula-
tions in a given system. The stoichiometric end-
member is determined from the previous assess-
ment, and the chemical potential is fixed by the two-
phase region representative of the solidus lines. A
similar derivation for the Se-rich solidus leads to an
equivalent formula,

yeq
VaPb

¼ exp �
�
GVaSe �

�
GPbSe þ LPb;Va þ lPb

RT

� 	
:

ð24Þ

A reasonable value for the Gibbs free energy must
be given to the end-members containing vacancies,
and there is much discussion in the CALPHAD
community concerning these.29,30,63,64 Initially, a
value of zero was chosen for vacancies; however, at
high temperatures these end-members would
become stable and, therefore, are not physically
reasonable. For this study a value of 2.3RT is used
as suggested by Rogal et al.’s recent article,29 which
is in agreement with Franke’s analysis of a number
greater than ln 2 � 1=2ð ÞRT to ensure a unique
solution.64 A positive penalty function also ensures
that the PbSe phase does not become stable at either
the Pb or Se end of the phase diagram.

The end-members of the 2SL model are then

0GPbVa ¼ 0Gfcc
Pb þ 2:3RT; ð25Þ

0GVaSe ¼ 0GSER
Se þ 2:3RT; ð26Þ

0GVaVa ¼ 4:6RT: ð27Þ

And the interaction parameters can be linked to the
formation energies by
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LPb;Va ¼ Gf
VaPb

� �
GVaSe þ

�
GPbSe � lPb; ð28Þ

LSe;Va ¼ Gf
VaSe

� �
GPbVa þ

�
GPbSe � lSe: ð29Þ

RESULTS AND DISCUSSION

DFT Calculations

In order to determine the dominant defects in
PbSe, both antisite and vacancy defects ranging in
charge from � 2 to + 2 are considered. Equations 1,
5, 6, 7, and 8 are used to solve for the Fermi level,
from which defect formation energies and concen-
tration of defects as a function of temperature are
determined. The range of Fermi levels, calculated
by the charge neutrality condition as a function of
temperature and equilibrium conditions, is shown
in Fig. 3. The Fermi level under Se-rich conditions
approaches the valence band maximum, causing p-
type carriers in the system. Conversely, under Pb-

rich conditions, the Fermi level lies much closer to
the conduction band resulting in n-type carriers.
This result matches the qualitative results of the
Fermi levels found in experimental investigations.

The formation energies of various defects as
functions of the Fermi level are shown in Fig. 4.
The temperature-dependent Fermi levels calculated
from the charge neutrality condition are also shown.

Under Pb-rich conditions, the defect Vaþ2
Se is the

lowest formation energy for all Fermi energies.

Similarly, the Va�2
Pb defect is lowest in Se-rich

conditions. These are consistent with the results
found in both the PbS and PbTe systems in similar
studies.16,25,35 In addition, the doubly ionized vacan-
cies are consistent with experimental evidence for
vacancies playing the dominant role as defects
within this system. Ohashi ruled out interstitial
defects as playing a role and identified vacancies as
the dominant defects in their selenium partial
pressure effects on carrier concentration investiga-
tion.65 This result is also in agreement with Chou’s
study, whose maximum solubility measurements
could only be explained if vacancy defects were
assumed.66

The ionization energy, or transition energy, of the
doubly ionized vacancies required for the CAL-
PHAD model can also be calculated from these
figures. The ionization energy of a defect is the
Fermi level at which the neutral defect and charged

defect are the same.67 The ionization energy of Va�2
Pb

and Vaþ2
Se are � 0.13 eV and 0.49 eV relative to the

valence band maximum, respectively. Due to the
disagreement of the DFT calculated band gap of
0.487 eV and the temperature dependent experi-
mental band gap of 0.275 eV at 300 K,68 these
transition energies are scaled as a fraction of the
DFT derived band gap and converted to an equiv-
alent fraction of the experimental band gap to be
used in the 5SL model.35 This is necessary as the
CALPHAD model parameters are fit to experimen-
tal data and use the experimentally determined

Fig. 3. Calculated Fermi level as a function of temperature. Fermi
levels are calculated by enforcing charge neutrality at a given
temperature.

Fig. 4. Formation energies of various defects as predicted by DFT as a function of the Fermi energy relative to the valence band edge (VBM) for
(a) Pb-rich conditions and (b) Se-rich conditions. By enforcing charge neutrality, a range of possible Fermi levels can be determined as shown in
the shaded region. Doubly-ionized vacancies have the lowest formation energy in either condition.
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band gap to describe the electron and hole energies.
Use of the DFT determined energies without scal-
ing, would be inconsistent with the rest of the model
and used in previous models.35,69 These values are
given in Table II.

The DFT predicted carrier concentrations are
shown in Fig. 5 along with experimental data from
several studies.66,70–72 The calculations are in qual-
itative agreement with the experimental data.
However, the DFT calculations under predict the
experimental carrier concentration in the Pb-rich
condition and over predict it in the Se-rich regime.
The slope, with respect to inverse temperature,
agrees well with experiment, however, the magni-
tude of carriers is in slight disagreement for Pb-rich
and even more so in Se-rich conditions. This dis-
crepancy is likely due to the difference in equilib-
rium conditions in the experiment, where PbSe is in
equilibrium with liquid or solid Pb and Se. Con-
versely, the calculations only take into account
being in equilibrium with solid Pb or Se. In addition,
the disagreement between the calculated and room
temperature band gap could also play a role.
Calculations that include spin–orbit coupling
(SOC) could provide greater accuracy as they more
accurately predict the band gap of these materials,
but are much more computationally expensive.73

Lastly, vibrational formation entropy is not consid-
ered here, which has been shown to improve the
accuracy of first-principles calculations.31,74

Nonetheless, the agreement between the slope of
the calculations and experimental data should
provide confidence that our enthalpies of formation,
as given in Table I for various defects, are accurate.

Based on these results, the CALPHAD model will
consist of doubly ionized vacancies on the Pb and Se
lattice, along with their associated neutral defects

that will serve as optimizing parameters. The
formation energies of neutral vacancies has also
been calculated, which are not affected by the error
in band gap measurements as their formation
energies are independent of the Fermi level accord-
ing to Eq. 1. The 5SL model uses non-degenerate
semiconductor physics to describe the Gibbs free
energy of electrons and holes of the ionized system.
These parameters are well documented in the
literature and are summarized in Table II. The
neutral defects serve as reference values for the
end-members containing ionized defects and the
DFT energies are used as a starting point for the
optimization, listed in Table III. The 2SL model
does not contain the semiconductor physics, how-
ever, as shown in ‘‘Two-Sublattice Model’’ section,
parameters of the model can be linked to the

Fig. 5. DFT predicted carrier concentrations with experimental data for (a) Pb-rich conditions and (b) Se-rich conditions. The calculations agree
qualitatively, however, disagree on the magnitude. This could be due to the difference in equilibrium conditions, as much of the experimental data
is in equilibrium with the liquid, or the error in the predicted band gap.

Table I. Formation values as calculated by DFT in
Pb-rich and Se-rich growth conditions

PbSe formation energies at 300 K as determined by
DFT (eV/defect)

Defect Pb-rich conditions Se-rich conditions

Vaþ2
Se 0.59 1.60

Vaþ1
Se 0.82 1.90

Va0
Se 1.08 2.25

Va�2
Pb 1.33 0.32

Va�1
Pb 2.59 0.55

Va0
Pb 2.06 0.90

Vaþ1
Pb 2.59 1.35
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formation energy of the charged defects, which are
compared in Table IV.

CALPHAD Modeling

The inaccuracies of the DFT calculations can be
addressed through CALPHAD modeling. However,
the assessment of this system would be extremely
difficult if not for the insight provided by the first-
principles calculations discussed above. The forma-
tion energies of the neutral vacancies are used as
starting parameters for V1 and V3 and are allowed
to vary, along with a temperature dependent term
to describe the experimental data. The final opti-
mized parameters are given in Table III along with
the associated first-principles calculation.

The optimized CALPHAD parameters agree qual-
itatively with the DFT calculations in that the
formation energy of a Se vacancy is smaller than
that of a Pb vacancy. In addition, the errors of the
final parameters do not vary by more than 15% from
the DFT predicted values. The carrier concentra-
tions under Pb-rich and Se-rich conditions are
shown in Fig. 6. The CALPHAD method matches
experiment and DFT by describing hole and elec-
tron generation in the Se-rich and Pb-rich regime,
respectively. The CALPHAD model also does an
excellent job of describing the carrier concentration
through the entire temperature range and shows
great improvement from the DFT calculations
alone, see Fig. 5.

By assuming that a single type of defect domi-
nates the carriers, the carrier concentration can be
converted to solubility limits using the equation22:

Xm ¼ 0:5 þ p� nð ÞMPbSe

4ZqNA
; ð30Þ

where MPbSe is the molar mass of PbSe, Z the
ionization of the defect, q the density, and NA

Avogadro’s number. The phase diagram of PbSe is
plotted in Fig. 7 along with the converted experi-
mental data points. The CALPHAD model does an
excellent job of describing this data, particularly at
lower temperatures. The model begins to deviate
slightly at higher temperatures, which is due to the
exponential growth of carriers and the linear rela-
tionship it has with solubility. No CEF model with
solubility has been assessed; as such we are unable
to compare it to past work. As mentioned previ-
ously, the assessment seen in Lin19 differs by a
factor of two due to an inconsistency when convert-
ing the carrier concentration to solidus data. An
assessment has also been done where the solubility
limits were used as experimental data in lieu of
carrier concentration. This led to a better descrip-
tion of the high temperature phase diagram; how-
ever, the carrier concentrations at low temperatures
are poorly described. In addition, the optimized end-
member converged farther from the starting DFT
values when fitting to the solubility limits. For these
reasons, coupled with the fact that the carrier
concentration is the important data for semiconduc-
tors, this procedure is not recommended here.

The 2SL model is shown as magenta in Figs. 6
and 7, and the 2SL model shows an agreement with
experiment very similar to that of the 5SL model.
The only large deviations occur at higher tempera-
tures in the phase diagram where the discrepancy
in carrier concentration is magnified. This is
because the solubility limit is linearly proportional
to the carrier concentration. Therefore, small devi-
ations at high temperature where the carrier con-
centration is large will be much larger in the phase
diagram. The final optimized parameters are given
in Table IV along with the formation energies
determined by the CALPHAD method and DFT.
The CALPHAD values agree qualitatively with the
first-principles calculations in that the formation of
a Pb vacancy is smaller in magnitude than a Se
vacancy. They are also in close quantitative agree-
ment, differing by no more than 16% in magnitude.
This 2SL model is also fully compatible with other
binaries, as the end-members have not been fit to
the experimental data. Although the 2SL model is
much simpler and does not contain many of the

Table II. Parameters used in the 5SL CALPHAD
model and references. Ionization energies were
calculated from first-principles calculations and
scaled to the experimental band gap at 300 K

PbSe parameters for CALPHAD model

Eg (eV) 0.329a

a (nm) 0.612a

m�
e=m0 0.27b

m�
h=m0 0.27b

DEVa�2
Pb

(J/mol) � 7000
DEVaþ2

Se
(J/mol) 55.0

aRef. 68. bRef. 75.

Table III. Optimized parameters for 5SL CALPHAD model. The first-principles calculations for the
formation of a neutral vacancy are also provided and used as starting points for the optimization

End-member Optimized parameter (J/mol) First-principles calculation (J/mol)

0GPbVaVaVaVa
0Gfcc

Pb þ 118; 661 þ 68:7T 105,000
0GVaSeVaVaVa

0GHex
Se þ 98; 482 þ 84:3T 87,000
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physical parameters that are found in the 5SL
model, its close agreement between the 5SL model,
experimental data, and first-principles calculations
indicate that it is physically sound.

CONCLUSIONS

First-principles calculations of PbSe have been
performed to determine the dominant defects under
the dilute-limit approximation. DFT results show
that doubly-ionized vacancies on the Pb and Se site
under Se-rich and Pb-rich conditions respectively,
have the lowest formation energy for a large range
of Fermi levels. The charge neutrality condition was
used to determine possible ranges of the Fermi
level, formation energies, and concentration of
carriers for PbSe. The DFT predicted carrier con-
centrations are in qualitative agreement with the
experimental data, however, the predicted carrier
concentrations disagree slightly on the overall mag-
nitude of carriers as determined by experiment.

To better describe the carriers of the system, a
5SL CALPHAD model developed explicitly for semi-
conductors was used to assess the system. The
CALPHAD model used the dominant defects as
determined by DFT as well as their transition
energies and neutral defect formation energies as
parameters within the model. The CALPHAD
assessment shows a much better agreement to the
experimental data and describes both the carrier
concentration as well as the solubility of PbSe
reasonably well. A simplified 2SL model has also
been developed that can be used in multicomponent
databases. It shows similar agreement to the exper-
imental data and is also in close agreement with the

Table IV. Interaction parameters for the PbSe 2SL model

Interaction
parameter

Optimized va-
lue (J/mol)

CALPHAD determined formation en-
ergy at 300 K (J/mol)

DFT predicted formation energy
at 300 K (J/mol)

LPb;Va:Se 37,954 42,000 31,000
LPb:Se;Va 45,585 51,000 57,000

Fig. 6. Carrier concentration as described by the 5SL CALPHAD model shown in solid black for (a) Pb-rich conditions and (b) Se-rich conditions.
The experimental data is well described by the 5SL model and shows large improvement from the DFT predicted values. The 2SL model is
shown in dashed magenta and describes the data equally well.

Fig. 7. Enlarged phase region of PbSe where the carrier
concentration has been converted to solubility points assuming
doubly ionized vacancies. The 2SL model is shown in dashed
magenta and closely follows the 5SL model shown in solid black.
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first-principles calculations for the formation energy
of charged defects as well as that of the 5SL model
indicating that its parameters are physically con-
sistent. This study is yet another example of the
benefit that CALPHAD has when working with
first-principles calculations. In addition, this CAL-
PHAD assessment provides greater physical accu-
racy than previous CALPHAD descriptions and can
be used when assessing multicomponent Pb-chalco-
genide systems.
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