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The Dirac electrons in silicene experience stronger spin-orbit interaction (SOI)
than in graphene due to silicene’s band buckled two-dimensional (2D) struc-
ture. In this work we theoretically probe the main effects of the SOI in silicene,
provided this interaction can be controlled by an external electrical field.
Attention is paid to how silicene’s SOI effects can turn into graphene’s once
external parameters can be regulated. By comparing the electronic trans-
mission through silicene and graphene structures we are able to fit the
external electrical field to obtain similar results for both materials. We study
the conductance through silicene barriers and also show how to straightfor-
wardly probe spin polarization and spin-resolved transmission using as few
parameters as possible. We first calculate the electronic transmission through
single and double barriers as a function of the electron’s angle of incidence h,
the electron energy E, and the strength of the external electrical field Ez: We
then found that the polarization P versus h in double-barrier structures ex-
hibits quasi-periodic resonances. We finally study asymmetric structures that
allow the presence of more transmission channels in the conductance.
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INTRODUCTION

Within the physics of two-dimensional (2D) mate-
rials, silicene has attracted a great deal of attention,
in the first place, because it presents Dirac cones as
an electronic structure that is similar to graphene’s.
Silicene is a monolayer honeycomb structure of
silicon and has been synthesized in laboratory
recently.1–3 In fact, the previous cornerstone
achievement of the carbon-based graphene opened
up a channel to investigate different materials with
similar 2D properties. Among many candidates,
silicon-based material gets the most attention pro-
vided the spread of silicon usage in actual (and
foremost) electronic devices.

On the contrary to graphene, in which the spin-
orbit interaction (SOI) is depreciable, silicene has a
strong SOI that leads to an energy gap of 1.55 meV.
Such a gap exists due to the buckled 2D structure of

silicene. This structure results from the large ionic
radius of silicon. It can be controlled by an external
electric field Ez , which turn out to be an important
parameter in studying spin and valley polarization
in graphene. These interesting features led to
seminal studies on specific points regarding silicene,
such as the spin-Hall effect,4 the anomalous Hall
effect,5,6 the capacitance of an electrically tunable
silicene device,7 and others.8

It is worth mentioning that there is another 2D
material, phosphorene, which has also been synthe-
sized recently.9–12 This material has an inherent,
direct and appreciable band gap that depends on the
number of its layers. It serves as a field effect
transistor and is more stable than silicene, but it
loses stability when it is grown upon substrates that
destroy the Dirac cones. By this token, we point out
that substrate effects can be mimicked by the SOI
parameter in 2D materials,13 so that in the present
paper we intend to deal with a timely issue indeed.

Since the SOI can also lead to spin-resolved
transport, pertinent also to quantum computing(Received December 16, 2017; accepted July 10, 2018;
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and other important magnetic effects, it is worth
further studying SOI in silicene and contrast these
results to graphene’s13–15 and even to phosphorene.
We then carefully study here the electronic trans-
mission, polarization and conductance through sin-
gle and double potential barriers in silicene. These
quantities are shown to be very sensitive to param-
eters such as the electron’s angle of incidence h, the
electron energy E, and the strength of the external
field Ez. We believe these results provide important
insights regarding electronic transport in silicene. It
was suggested that Ez alone might not be able to lift
spin resolution in silicene due to valley-to-valley
symmetry, and, therefore, an external magnetic
field should be present in order to locally break this
time-reversal symmetry8,16 and reveal polarization.
However, to avoid including further external phys-
ical parameters such as the magnetic field (both its
orientation and intensity), which surely brings
extra physical nuances to the calculation, especially
into the valley-to-valley symmetry properties, we
choose to look at one valley only and simply probe
the eventual spin polarization that would certainly
be enhanced in the presence of further external
fields. In this way, we present a simpler (but
scholarly sound) way to probe the spin resolution,
which is, by virtue of the SOI, an inherent feature of
these materials. For completeness sake, we also
calculate the spin-resolved conductance for the
double barrier case. This conductance presents
many resonance features, which can be compared
to measurements in laboratory. We also present
these conductances for different barrier and well
parameters and show how sensitive these results
can be. Once we discussed the transmission coeffi-
cient, important emphasis is given to the conduc-
tivity between asymmetric barrier structures.

The manuscript is organized as follows. The
section ‘‘Theoretical Formalism’’ is devoted to define
the used formulation. In ‘‘Single Versus Double
Barriers’’ and ‘‘Conductance for Symmetric and
Asymmetric Structures’’ sections explore, respec-
tively, the pertinent cases of single and double
barrier structures. We conclude our work in the
‘‘Conclusions’’.

THEORETICAL FORMALISM

The single-particle Hamiltonian for carriers in a
single K valley in silicene is given by4

HK ¼
Hþþ Hþ�

H�þ H��

� �

¼

s� �hvFk� iakR2k� 0

�hvFkþ � s� � ikR1 � iakR2kþ

� iakR2kþ ikR1 � sþ �hvFk�

0 iakR2kþ �hvFkþ sþ

0
BBB@

1
CCCA;

ð1Þ
where

s� ¼ kSOI � ‘Ez: ð2Þ

Here 2‘ is the distance between the two sublattices
A and B, vF the Fermi velocity, a ¼ 0:386 nm the
lattice constant, and the wave number
k� ¼ kx � iky. Also, for the diagonal elements of
Eq. 1, kSOI � k ’ 3:9 meV is the strength of the SOI
in the lattice, and Ez is the external electric field.
But it has been noted that the secondary (Rashba)
spin coupling parameters kR1 ¼ 10 leV and
kR2 ¼ 0:7meV are indeed too small in comparison
to the primary one kSOI. If we consider that, Eq. 1
should easily turn into two decoupled 2 � 2 matri-
ces. That is what we are going to do in first place.
So, we hereafter deliberately assume H�þ ¼ Hþ�
’ 0 in Eq. 1

The Rashba spin-couplings (RSCOs) are respon-
sible for breaking the sub-lattice symmetry of the
system’s honeycomb structure while the intrinsic
spin orbit coupling (ISOC), kSOI, gives rise to the
spin-split band gap. In fact, the single-valley (flavor)
Dirac physics, determined by two independent
Dirac-like cones at K and K 0 points, dominates as
long as there is no valley mixing, which is the most
probably regime if kSOI is much greater than kR1 and
kR2. By tuning Ez, one should be able to study a
critical value at which the system, at the topological
insulating phase, goes into a semi-metal state,
which is reasonably protected as valley-spin-
locked-metal (VSLM) from the opposite spin-

Fig. 1. (Color online) (a) ðE ; hÞ contour plot of the transmission
through a single barrier for spin-up electrons in silicene. The width
and height of the barrier are W ¼ 110 nm and U ¼ 100 meV,
respectively, the field Ez ¼ 170 meV/nm, and vF ¼ 5:5� 105 m s.
Panels (b), (c), and (d) show the region ðE ; hÞ delimited by
�2 � h � 6 and 90 � E � 110 meV and correspond, respectively, to
Ez ¼ 50, 170, and 300 meV nm. Red (blue) represents 100% (0%)
chance of transmission.
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polarization of the K or K 0 valley. The crossover to
VSLM is referred to as the topological phase
transition (TPT). Upon further increasing Ez, the
system may naturally turn into a insulator. The
Klein tunneling is a good way to settle this issue
experimentally because the Dirac electrons have the
total transmission probability (TTP), since there is
one for the normal incidence on a two-dimensional
barrier (a silicene based N-P-N nano-transistor). On
the contrary, the Dirac electrons through such a
barrier are expected to show TTP less than one. At
the TPT, therefore, one should expect a sudden
upswing in the total transmission probability. This
is what we are going to check out in this paper.

Therefore, in the following we are going to vary
the value of Ez and study such effects as TTP and
TPT taking the advantage from the very fact that
kSOI is much greater than kR1 and kR2, so one can
consider just one valley flavor without any signifi-
cant loss of completeness in the discussion of the
results. The resulting K-flavor matrix is then block-
diagonal with its upper (lower) block pertaining to
spin-up (spin-down) electrons alone.

The spin-down Hamiltonian is given by

H�� ¼
� k� ‘Ez �hvFk�

�hvFkþ kþ ‘Ez

� �
¼

� sþ �hvFk�

�hvFkþ sþ

� �
;

ð3Þ
where the Hamiltonian for spin-up electrons Hþþ is
easily given by the same Eq. 3, but with sþ replaced
by � s�. The eigenvectors of (3) are straightfor-
wardly written in the usual form of two-component

spinors, i.e., W ¼ ðu#
A;u

#
BÞ

T for spin-down and

W ¼ ðu"
A;u

"
BÞ

T for spin-up electrons with A and B
labelling the two sublattices and T denoting the
transpose. With l ¼ �, the corresponding eigenval-
ues are

Ekl ¼ l �h2v2
Fk

2 þ s2
�

h i1=2
: ð4Þ

We leave the detailed forms of eigenvectors of (3) for
the next sections where we study the single and
double barriers structures.

Fig. 2. (Color online) ðE ; hÞ contour plot of the transmission through
a single barrier for graphene, where vF ¼ 106 meV. The width and
height of the barrier are W ¼ 110 nm and U ¼ 100 meV, respec-
tively. Red (blue) represents 100% (0%) chance of transmission.

Fig. 3. (a) ðE ; hÞ contour plot of the transmission through a single
barrier for spin-down electrons in silicene. The width and height of
the barrier areW ¼ 110 nm and U ¼ 100 meV, respectively, the field
Ez ¼ 170 meV/nm, and vF ¼ 5:5� 105 m/s. Panels (b), (c), and (d)
show the region ðE ; hÞ delimited by �2 � h � 6 and 90 � E � 110
meV and correspond, respectively, to Ez ¼ 50, 170, and 300 meV/
nm. Red (blue) represents 100% (0%) chance of transmission

Fig. 4. (Color online) (a) Contour plot of the polarization for a single
barrier in silicene of width and height given by W ¼ 110 nm and
U ¼ 100 meV, respectively, the field Ez ¼ 170 meV/nm, and
vF ¼ 5:5� 105 m/s. (b) The same as in part (a), but with U ¼ 50
meV. Red (blue) represents 100 % (0%) chance of transmission.
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SINGLE VERSUS DOUBLE BARRIERS

In this section we first consider a single barrier of
a constant height U and of width W along the x axis
and infinitely long along the y axis. Such a constant
potential U(x) is then included into the single-
particle Hamiltonian (3). Along the y-direction, the
eigenvectors are simple plane waves eikyy, once the
electrons are free from any force there. The same
happens for the x-direction to the left (region I) and
to the right (region II) of the barrier. So, for region I,
the eigenvectors are written in the form of plane
wave

uI
A ¼ eigx þ r e�igx; ð5Þ

where r is the reflection amplitude. For region III, it
is in the form

uIII
A ¼ t eigx; ð6Þ

with t the transmission amplitude. In the barrier
(region II), the eigenvector is written as

uII
A ¼ a eidx þ b e�idx: ð7Þ

Here the parameters d2 ¼ ½ðU � EÞ2 � s2
��=�h

2v2
F � k2

y ,

and g2 ¼ ðE2 � s2
�Þ=�h

2v2
F � k2

y , where vF is the Fermi

velocity. We mention, concerning the component uB,
that through the diagonalization of Eq. 3, one can
easily find

uB ¼ i�hvFð@uA=@x� kyuAÞ=ðs� þU � EÞ; ð8Þ

from which the component uB can be written for the
three barrier regions.

The electronic transmission T is obtained after
matching uA and uB at the interfaces between
regions I and II and regions II and III. Within such

a procedure, the transmission T ¼ tt� takes that
standard form obtained whenever the Dirac-like
Hamiltonian is used instead of Schrödinger’s equa-
tion in calculating the transmission T. After a
straightforward calculation, the matching condi-
tions lead us to the transmission coefficient for spin-
up (þ) and spin-down (�) electrons written as

T� ¼ 1=½1 þ F sin2ðWdÞ�; ð9Þ

with F ¼ b�bþ=½2gdðs� � EÞðs� þU � EÞ�2 and

b� ¼ ½gðs� þU � EÞ � dðs� � EÞ�2 þ v2
Fk

2
y . As in the

graphene case,13,14 we see T� with clear dependence
on ky, which is absent (ky ¼ 0) in usual semicon-
ductor barriers. But in contrast, now T depends on
s� as well, and, for s� ¼ 0; Eq. 9 gives the graphene
result, naturally, from which one analytically
obtains T ¼ 1 for normal incidence (ky ¼ 0). So, the
electrons are totally transmitted when they are
injected in a normal direction with respect to the
barrier.

In Fig. 1a we show a ðE; hÞ contour plot of the
transmission T" for spin-up electrons for a single
barrier in silicene. The width and height of the
barrier are W ¼ 110 nm and U ¼ 100 meV, respec-
tively. Intentionally, we set Ez ¼ 170 meV/nm
because this value of Ez, together with ‘ ¼ 0:23 Å
and kSOI ¼ 3:9 meV, gives s� ¼ 0 and makes the
diagonal terms in Eq. 1 vanish. In this case we
should obtain the graphene results for vF ¼ 106 m/s.
This is indeed the case as shown in Fig. 2, which
represents the same ðE; hÞ contour plot for gra-
phene. Figure 2 differs very slightly from Fig. 1a
because we used vF ¼ 5:5 � 105 m/s, which is appro-
priate for silicene. Notice that, as more tunneling
channels open up for silicene, the red neck of the
resembled skeleton gets a little narrower for E ’ U
when compared to graphene’s. This reflects the

Fig. 5. (Color online) ðE ; hÞ contour plot of the transmission through
a double barrier for spin-up electrons in silicene. The width and
height of the barriers are W ¼ 50 nm and U ¼ 50 meV, respectively,
the inter-barrier separation d ¼ 100 nm, and the field Ez ¼ 170 meV/
nm. Red (blue) represents 100% (0%) chance of transmission.

Fig. 6. (Color online) ðE ; hÞ contour plot of the transmission through
a double barrier for spin-down electrons in silicene. The width and
height of the barriers are W ¼ 50 nm and U ¼ 50 meV, respectively,
the inter-barrier separation d ¼ 100 nm, and the field Ez ¼ 170 meV/
nm. Red (blue) represents 100% (0%) chance of transmission.
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lowering of vF and, consequently, the eventual
disappearance of the total transmission condition,
turning the system back into the usual Schrödinger
behavior, in the sense that a natural interference
process between the transmitted and reflected
Schrödinger wave-function occurs around this
energy.

But questions arise here regarding the influence
of changing Ez on the silicene results. How this
external electric field impact on the transmission
results and correspondent conductance? In order to
completely address that, and in view of comparing
Figs. 1a to 2, we focus on (the red-neck region) the
region of the ðE; hÞ plane approximately delimited
by � 2 � h � 6 and 90 � E � 110 meV, in panels (b),
(c), and (d) that correspond, respectively, to Ez ¼ 50
, 170, and 300 meV/nm. As can be seen, for values of
Ez away from, say, the eventual graphene value
Ez ¼ 170 meV/nm the perfect total transmission
weakens considerably. We show that one is able to
suppress the total transmission in silicene by
manipulating Ez. We notice that when the quantity
s� is a value between two values, � 1:0 meV and 1.0
meV, one is still able to see total transmission for
h 	 0: But away from these values, i.e panels (b) and
(d), the total transmission is indeed affected. These
results show the natural strong relationship
between the gap, due to the buckled structure, and
external electric field Ez. We show that the latter
can also control the transmission. Some specific
values for s� , which suppress the total transmission
for h 	 0 are 2.75 meV and 3.00 meV, and those
which keep it are 0.68 meV, 0.0 meV and � 0:70
meV.

We now consider spin-down electrons and show in
Fig. 3a the corresponding ðE; hÞ contour plot of the
transmission. The results are similar to those in
Fig. 1a for most angles of incidence h except for

normal or near-normal incidence, i.e, for h 	 0. In
this case we have a gap in the transmission
approximately for 90 � E � 110 meV (Eq. 3 for
ky ¼ 0 gives T ¼ 0 for E ¼ V � sþ and E ¼ sþ), i.e.,
the red neck is now absent. Notice that, together
with Fig. 1, one is seeing a spin-resolved transmis-
sion. Again, to assess the influence of the field Ez,
we show in panels (b), (c), and (d) a small region
containing the total-transmission gap for the same
values of Ez as in Fig. 1. As can be seen, the main
effect of increasing Ez away from the value Ez ¼ 170
meV/nm is to increase the gap, while for Ez less than
this value, the gap tends to close. We also notice in
passing that, upon reversing the field Ez, the factor
sþ in Eq. 1 becomes s� and the up spins will be
blocked, as in Fig. 2, whereas the down spins
(s� ! sþ) will be transmitted as in Fig. 1. This is
again a simple demonstration that the Ez can be
able to probe a very spin-resolved transmission
through single barrier.

In order to make the results presented so far
increasingly helpful, and to effectively compare the
results in Figs. 1a to 3a, we show in Fig. 4a, a ðE; hÞ
contour plot of the polarization P defined by

P ¼ ðT" � T#Þ=ðT" þ T#Þ:

This quantity is defined as the simplest manner to
account for the probed spin polarization. The polar-
ization P vanishes in most of the ðE; hÞ plane in
Fig. 4a. But notice, however, the regions where it
doesn’t and especially its 100% value for near-
normal incidence and 90 � E � 110 meV, which
corresponds to that of the transmission gap in
Fig. 3a. This is drastically different from the case
of graphene in which P vanishes everywhere due to
the smallness of kSOI and the vanishing of the
distance ‘ between the two sublattices.

Fig. 7. (Color online) Polarization for a symmetric double barrier in
silicene. Here, width and height of the barriers are W ¼ 50 nm and
U ¼ 50 meV, respectively, the inter-barrier separation d ¼ 100 nm,
and the field Ez ¼ 170 meV/nm. Red (blue) represents maximum
(minimum) polarization.

Fig. 8. (Color online) Polarization for a asymmetric double barriers in
silicene. The width of the barriers are W ¼ 50 nm, but the first
(second) one barrier is of height U1 ¼ 100 meV (U2 ¼ 50 meV). The
inter-barrier separation is d ¼ 250 nm, and the field Ez ¼ 170 meV/
nm. Red (blue) represents maximum (minimum) polarization.
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This difference remains as sharp when we reduce
the height U. The plot in Fig. 4b is drawn for the
same values of W and Ez as in (a) but for U ¼ 50
meV. As shown, the most important change is that
the red window in (a), centred at h ¼ 0, U ¼ 100
meV, is now centred at h ¼ 0, U ¼ 50 meV and
nearly twice as wide. Again, in there T", controlled
by the (graphene) value of Ez , is almost 1 and
T# 	 0.

For double barriers, the analytic calculation for the
transmission, as given in Eq. 9, is more cumbersome
(but academically straightforward) and, therefore,
for the sake of objectiveness, it will not be written
here. We are going to show the numerical results
only for this case. We present, then, the ðE; hÞ
contour for spin-up electrons in Fig. 5 with the
double-barrier parameters specified in its caption.
Again, for Ez ¼ 170 meV/nm we have the same kind
of results seen above (those resembling graphene’s)
for a ðky; kxÞ contour plot, since the diagonal terms in
Eq. 1 vanish. But we see many more resonances than
in single barriers. By contrasting these results,
though, with those in Fig. 6 for spin-down electrons,
we see again qualitative differences especially for
near-normal incidence with several gaps in the
transmission. That is, we have probed a spin-
resolved transmission that is more complex than
that for single barriers. Again, this structure of the
transmission is reflected in the ðE; hÞ contour plot of
the polarization P that we show in Fig. 7. Notice the
quasi-periodic character of P versus the angle h for
energies, say, larger than 80 meV. This contour plot
contrasts rather sharply with that of Fig. 4 for single
barriers as we now see several windows of perfect
polarization especially for near-normal incidence.

The results presented so far also raise the ques-
tion of their sensitivity to the parameters. We
emphasize that all contour plots for double barriers
are sensitive to their height U and the distance d
between them. This is expected since more

resonances can be created or destroyed by changing
U and/or d. For the sake of completeness, we show
in Fig. 8 the further polarization ðE; hÞ contour plot
for asymmetric double barriers. Here we increase
the height of the first barrier to 100 meV, and also
increase the distance to d ¼ 250 nm. The remaining
parameters are the same as in Fig. 7. Therefore, we
reveal the following: (1) an increasing in the trans-
mission channels reflected in the polarization
results as the system becomes asymmetric; and (2)
a clear memory effect of the bright red region which
appears in Fig. 7 around E ¼ 100 meV. These
effects are absent in symmetric structures.

CONDUCTANCE FOR SYMMETRIC
AND ASYMMETRIC STRUCTURES

We now focus on what may be experimentally seen
regarding the previous results. The concern here is the
electronic current, which is proportional to a weighted
integral of the transmission.17 One then imagines to
what extension the spin-resolved features survive
after such an averaging. We show in Fig. 9 the
conductance G using the standard formula18

G ¼ ðe2=�hÞ
Z

TðE; hÞE cos hdh:

The red, dashed curve is for spin-up (G", s� ¼ 0)
electrons and the blue, solid one for spin-down
(G#; sþ 6¼ 0) electrons. As shown in panel (a), near
the 2nd minimum of the two curves, we have a gap in
G#, as well as a dip forE ¼ 10 meV, in agreement with
Fig. 3. In general, andrelative tographene, the overall
silicene results for G are similar, but one sees impor-
tant qualitative differences as well. This is more
pronounced for double barriers for whichG#, pertinent
to Fig. 6, has four very deep minima or gaps as Fig. 9b
demonstrates. All gaps in Fig. 9 could get wider by
increasing the value of Ez, cf. Fig. 3a and d.

For the sake of completeness, we finally show in
Fig. 10 the conductances G" and G# for the asym-
metric structure whose results are shown in Fig 8.
The most interesting feature here is that, the more

Fig. 9. (Color online) (a) Conductance through a single barrier vs
energy E in silicene. The dashed and solid curves are for spin-up
(G", s� ¼ 0) and spin-down (G#, sþ 6¼ 0) electrons, respectively. (b)
Conductance through the double barrier described in Fig. 5.

Fig. 10. (Color online) Conductance through an asymmetric silicene
structure vs energy E. The dashed and solid curves are for spin-up
(G", s� ¼ 0) and spin-down (G#, sþ 6¼ 0) electrons, respectively. The
sample parameters are the same as in Fig. 8.
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asymmetric the structure gets, the more is the
number of transmission channels. In particular, the
distance d between the barriers plays a important
role in getting more channels,but the positions of
the two maxima, around the energies 20 meV and
80 meV, respectively, do not change appreciably.
Therefore, according to our results, the asymmetry
between the barriers should increase the number of
channels appearing in the conductance.

CONCLUSIONS

In summary, we carefully evaluated the electronic
transmission through single and double barriers in
silicene as a function of the angle of incidence h, the
electron energy E, and the strength of the field Ez

and obtained a very reliable probing of spin-resolved
transmission, especially for near-normal incidence,
and a conductance qualitatively different in some
ranges of E than that in graphene. The strength of
the resolution depends strongly on the barrier
parameters. This is entirely due to the strong SOI
in silicene and does not occur in graphene in which
the SOI is very weak. We also analyzed the effects of
the eventual sample asymmetry between barriers
and show that the conductance shape may change
appreciably even for small asymmetries.
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