
TOPICAL COLLECTION: ELECTRONIC MATERIALS FOR RENEWABLE ENERGY APPLICATIONS

A Neural Network Design for the Estimation of Nonlinear
Behavior of a Magnetically-Excited Piezoelectric Harvester
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An application of an artificial neural network (ANN) has been implemented in
this article to model the nonlinear relationship of the harvested electrical
power of a recently developed piezoelectric pendulum with respect to its
resistive load RL and magnetic excitation frequency f. Prediction of harvested
power for a wide range is a difficult task, because it increases dramatically
when f gets closer to the natural frequency f0 of the system. The neural model
of the concerned system is designed upon the basis of a standard multi-layer
network with a back propagation learning algorithm. Input data, termed in-
put patterns, to present to the network and the respective output data, termed
output patterns, describing desired network output that are carefully collected
from the experiment under several conditions in order to train the developed
network accurately. Results have indicated that the designed ANN is an
effective means for predicting the harvested power of the piezoelectric har-
vester as functions of RL and f with a root mean square error of 6.65 9 10�3 for
training and 1.40 for different test conditions. Using the proposed approach,
the harvested power can be estimated reasonably without tackling the diffi-
culty of experimental studies and complexity of analytical formulas repre-
senting the concerned system.

Key words: Artificial neural network, power, estimation, piezoelectric
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INTRODUCTION

Owing to the increased energy demand depending
upon the growing technology all over the world, the
idea of energy harvesting has attracted great atten-
tion over the past few decades. The term ‘‘energy
harvesting’’ comes from the generation of energy
from sources such as air flow, ambient temperature
or vibration. Converting the available energy from
such sources available in various forms in nature
can be benefitted by a self-sufficient supply using
proper electronics for electrical devices such as

sensors, actuators or radio transmitters. Among
the available energy, kinetic energy obtained from
background ambient vibrations or impact external
forces can be transformed into electrical energy via
a piezoelectric material. This harvesting mecha-
nism is the most common one as compared with
other harvesting mechanisms and piezoelectric
power generation is one of the alternative energy
sources. This is why there have been a great
number of studies in the related literature devoted
to this esteemed field of piezoelectric effect-based
energy harvesting due to piezoelectric materials’
high power density.

The works that use vibrations of the piezoelectric
plates as a wind energy harvester have been
realized for energy generation at a low scale.1–3(Received October 24, 2017; accepted January 5, 2018;
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Thanks to these small-sized systems, it is possible to
achieve power over 3 mW. Systems obtaining
energy from wind can also be designed to be
contactless using permanent magnets.2,3 Thus, the
life of the system is made longer because of the
reduced deformation on the plates. Electrical energy
can also be generated in human movements by
using piezoelectric energy harvesting systems.
Wang et al. have been able to obtain 30 lW of
power from a person running at a speed of 7 km/h
with attaching a piezoelectric energy harvesting
system to a human leg.4 It was also possible to
operate a pedometer without a battery using a
piezoelectric energy harvester placed in the shoes.5

One of the most important problems in piezoelectric
energy harvesting systems is that these systems can
only work effectively in a narrow frequency range.
This situation makes it impossible to effectively
utilize vibrations which have highly variable fre-
quency in the environment. Many successful studies
have been carried out to extend the effective
operating frequency range of these systems.6–8

Stein et al.6 have worked effectively in a frequency
range of about 15 Hz. In our previous work,8 we
used the plates with different stiffness coefficients
to make effective work at a wider wind speed range.
Experimental studies with piezoelectric energy har-
vesting systems may not be possible to perform in
every condition for a variety of reasons. In these
cases, experimental results can be approximated by
deploying artificial neural networks (ANNs). To this
end, in this article, an ANN design is performed and
its prediction capability is checked on a real piezo-
electric energy harvester excited by an electromag-
net which was theoretically and experimentally
studied previously.9,10

ANNs or simply neural networks (NNs), which
are computing systems dedicated to mimic the
essential behavior of a biological neural system,
have been the focus of much attention due to their
capabilities in solving nonlinear problems by learn-
ing ability. Through many nonlinear computational
elements operating in parallel and connected to
each other in between layers with intensive inter-
connections, ANNs are able to accomplish the task
of approximating the nonlinear behavior between
input and output data of a nonlinear model without
prior knowledge about those data. They are very
efficient and useful when the equations represent-
ing the respective model are nonlinear, complex,
distributed in nature, as well as being particularly
vague or totally unknown with uncertain parame-
ters.11 As an alternative to ANN-based modelling,
there are also studies that make use of fuzzy logic
(FL) for prediction of output parameters of a process
according to its input parameters by stimulating the
qualitative thinking process of human beings.12–16

However, many characteristic parameters such as
scaling factors, fuzzy-expert rules, and shape of
membership functions are required to be tuned
during the design of a FL system, which is an ill-

defined problem, and based upon the experiences
and knowledge of a skilled operator. These difficul-
ties regarding the FL design guide us to choose the
neural network approach in this article.

As we focus on the estimation property of NN, it
would be appropriate to give some introductory
literature survey about that topic. In Ref. 11, ANN-
based estimation of the output power and efficiency
of a new designed axial flux permanent magnet
synchronous generator is introduced. In the net-
work structure, generator resistive load and rota-
tional speed are the input variables and outputs are
the generator output power and its efficiency,
respectively. Results show that the developed net-
work is able to predict the experimental results with
good accuracy. Online estimation for the rotor and
stator resistances of an induction motor is per-
formed in Ref. 17 using NNs. For rotor resistance
estimation, the error between the rotor flux linkages
based on the designed NN and induction motor
voltage model is back propagated to train the
network. For stator resistance estimation, the error
between the measured stator current and the
estimated one based on the NN is back propagated
to train the network. At the end of the study, it is
shown that rotor and stator resistance variations
can be effectively estimated by benefitting from the
adaptation capabilities of the designed NNs. Using
these estimated crucial parameters in the state
equations, the authors achieve a good correlation
between the measured speed and the estimated
speed of the induction motor speed, enabling effi-
cient and high-performance operation of the drive.
In Ref. 18, a trained NN is devoted to predicting
burr height produced in a sheet metal blanking
process according to tool wear state and punch-die
clearance. Results obtained under a variety of
blanking conditions show that the ANN computa-
tions are in good agreement with the experimental
values with a deviation of 10%. With an aim to
determine optimal clearance prediction of the
sheared part, an estimation approach based on an
ANN is presented in Ref. 19, where the ANN proves
its reliability and effectiveness in predicting the
optimum clearance against the material elongation.
Thus, the proposed NN can be taken as a useful
means in the optimization of sheet metal blanking
processes. An essential NN application to the esti-
mation of distorted waveforms in power electronics
is made in Ref. 20. In the study, line-side total rms
current, fundamental rms current, displacement
factor and a power factor associated with the
distorted line current waves in a single-phase
thyristor ac controller and three-phase diode recti-
fier are estimated from the known waveform of line
current which is characterized by its width (W) and
height (H). Results obtained by training a 2-8-4
network confirm the excellent estimator perfor-
mance of the used NN after a great number of
training processes. In Ref. 21, an estimation study
of wind power generation is conducted as a
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diagnostic tool, which is a necessity for the power
generation stations due to the fact that wind power
lower than the expectation might indicate a need for
maintenance for a variety of reasons in the station.
In another study given by Ref. 22, a new approach is
presented for the position estimation task of a speed
sensorless switched reluctance motor drive system.
The study intends to eliminate complex flux esti-
mation algorithms by introducing NN. After the flux
and current information are acquired from the line
currents and line voltages in the ac link, and
presented to the network, the corresponding angu-
lar position is estimated by the designed NN. It is
stated that using the sufficiently trained NN, rotor
position can be accurately estimated by obliterating
the need for a conventional position sensor and that
the resulting computational burden and hardware
complexity are relatively low as compared with the
classical flux estimation techniques. On the other
hand, since the absorbed power from a photovoltaic
(PV) panel depends on various environmental fac-
tors such as geographical location, ground reflectiv-
ity and the atmosphere clearness index, the study in
Ref. 23 is encouraging in order to find the optimal
tilt angle at which PV panels should be placed in
order to maximize the solar power from the sun.
Results dictate that the proposed network can learn
the nonlinear relationship among the irradiation,
ground reflectivity and tilt angle, and its estimation
of the optimum tilt angles is found to have a small
error within 3� of the analytical actual values.

Although the theoretical derivation of the piezo-
electric harvester is given in Ref. 10, it has sophis-
ticated equations depending upon electrical and
mechanical parameters such as magnetic force
coefficient, elastic stiffness coefficient, inductance
and resistance of electromagnetic coil, etc. In prac-
tice, knowledge of these constants is rarely available
or may not be known accurately. Besides, they
might be influenced by environmental changes
when the piezoelectric energy harvester is in oper-
ation. In such a case, the calculated power will be
different from the actual power generated. By
taking into account this phenomena, the present
study is devoted to estimate the nonlinear relation-
ship using an ANN among the load resistance,
excitation frequency and the electrical power har-
vested from a recently developed piezoelectric
energy harvesting system, which constitutes our
main contribution. In the established system, load
resistance and magnetic excitation frequency are
considered to be inputs, while the output is the
corresponding power harvested. With the data
collected from various experiments, the designed
feedforward network is trained using standard back
propagation (BP) training algorithm until the esti-
mated power matches the exact one with an accept-
able degree of accuracy. Investigations launched in
this paper demonstrate that ANN-based estimator
of power output in a piezoelectric energy harvesting
system is promising and able to predict the

experimental results with good accuracy. Therefore,
with this contribution, at a given load resistance
and excitation frequency, harvested power can be
estimated without tackling the complex mathemat-
ical model and difficulty of experimental studies.

ARTIFICIAL NEURAL NETWORKS

Principles

Conventional estimation algorithms use mathe-
matical models of a system to make estimations. By
iterating the program in steps, the required results
are achieved. However, there are various practical
reasons for which the mathematical model and
system parameters might either be totally unknown
or they are indeed hard to discover. In such
conditions, conventional estimation approaches fail,
and, accordingly, they cannot be used in modelling
of the above-mentioned problems.19 At this point,
ANNs become an attractive choice and can offer
desired objectives in terms of accuracy. At the end of
a successful training process, a trained network is
expected to reflect the actual system in certain
accuracy, and it should be able not only to remem-
ber the training data, but also to make a good
matching of the output data for unseen input data,
which is over the universe covered by the example
patterns.

An ANN is a structure tending to simulate the
nervous system of the human brain in which a large
number of processing elements called neurons are
organized in layers and interconnected to each
other. Neurons create the power of ANNs which is
useful in the modelling of nonlinear cases.24 Accord-
ing to the nature of the concerned problem, a
network can receive multiple inputs x1, x2,…, xr,
and generate a single output for each processing
element after weighting the respective inputs with
the weights of interconnections and then passing
the sum of them through a transfer function.
Selection of transfer functions are somewhat prob-
lem-dependent and can be threshold type, signum
type, sigmoid, or it can be defined even as any
nonlinear continuously varying type by the user.
Note that the transfer function has a remarkable
impact upon the estimation performance and its
nonlinearity gives the network ability to attain
nonlinear mapping property. The generated output
signal of an individual processing element is then
sent to other processing elements as input signals in
the next layer by flowing through the interconnec-
tions. This forward pass is continued until reaching
the output layer. After an error value is obtained for
each output neuron by comparing the desired
output value and the actual one, connection weights
are adjusted iteratively by a training algorithm
until the pattern matching occurs, i.e., the error
falls below an acceptable value for all the example
patterns. BP is an effective weight adjustment
mechanism widely applied for training feedforward
neural network models.25
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ANN Design for Estimation of Harvested
Power

To find the relation among resistive load, excitation
frequency and corresponding harvested power in a
piezoelectric energy harvesting system, a feedforward
multilayer network with an input layer, two hidden
layers and an output layer is considered as in Fig. 1.
Since input layer neurons do not have transfer
functions, such a network structure is often called a
three-layer network. In this design, measured resis-
tive load RL and magnetic excitation frequency f are
the inputs while the corresponding output is the
measured harvested powerPout. The input and output
layers have a number of neurons equal to the respec-
tive number of variables. There are 15 neurons in the
1st hidden layer with hyperbolic tangent activation
function, ten neurons in the 2nd hidden layer with
linear activation function, which is also used for the
output neuron. This particular network, 2-15-10-1
plus bias nodes with the relative activation functions,
is selected based on a combination of trial-and-error
and our prior experience in Ref. 11.

The aforementioned design is trained by employ-
ing the BP algorithm. Prior to the training process,
we transform all input and output training data into
the interval of [0, 1] using Eq. 1. This data normal-
ization is highly important for increased estimator
performance and accelerating the neural computa-
tions significantly. Although there are different

techniques proposed to accomplish such data nor-
malization devoted to make the training process
easier and effective, no certain approach has been
around yet.

xn ¼ xr � xmin

xmax � xmin
; ð1Þ

where xr and xn are the actual and normalized value
of a variable while xmax and xmin symbolize the
maximum and minimum values of the respective
variable.

To prepare the network for training, we begin
with the training data gathered together which
comes from the various experiments conducted on
the concerned system. The power measurements are
realized for variable resistive loads RL such as
10 MX, 5.6 MX, 3.2 MX, and 1.0 MX and mean-
while magnetic excitation frequency is varied from
4.25 Hz to 6.53 Hz for each resistive load in certain
steps so that 28 frequency samples are obtained.
Thus, there are a total of 4 9 28 = 112 training
data. The training is initially started by assigning
the connection weights random numbers within the
range [� 1, 1]. As stated before, the weights are
adjusted according to the BP learning rule with an
off-line computer simulation conducted in ANSI C.
Following the completion of a satisfactory training,
the prediction or generalization capability of NN is
checked for the cases difference and unseen

Fig. 1. Three-layer network for harvested power estimation.
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resistive loads are applied to the trained network to
predict the required outputs.

EXPERIMENTAL RESULTS

In the experimental work, piezoelectric (PZT)
layer, electromagnet, position measurement sensor,
data acquisition (DAQ) card, signal generator,
resistor box, laptop and software are used. The
piezoelectric layer has the sizes of
70 mm 9 32 mm 9 1.5 mm, the weight of 10 g, the
capacitance of 232 nF and stiffness of 188 N/m. A
small permanent magnet is attached to the end of
the piezoelectric layer to interact with the electro-
magnet to create vibration. The electromagnet
consists of 1050 turns of inductor placed on a core
obtained by packing thin steel sheets coated by
silicon. The electromagnet is placed on a table mov-
ing back and forth. Thus, the distance between the
electromagnet and the piezoelectric layer can be
adjusted to the desired level. The signal generator
applies a square wave with desired frequencies to
the electromagnet so that the piezoelectric layer can
be vibrated at the desired frequency. It is observed
how much power can be obtained from the piezo-
electric layer at a different load value by using a
resistor box. The maximum power transmission is
realized from which load value is determined. The
laser position measuring sensor measures the vibra-
tion of the piezoelectric layer with a laser system.
The data acquisition card instantly transfers the
position and voltage data of the piezoelectric layer to
the computer. Observation and recording of the data
on the computer is performed with LabView
software.

Figure 2 shows the experimental setup of the
proposed system. In the setup, there exists a PZT
layer attached a heavy housing, an electromagnet,
DAQ, power sources, function generators, resis-
tances and a laptop. When the electromagnet is
excited by a square waveform in Fig. 2b, the
electromagnet attracts the ferromagnet knob. The
displacement, velocity and voltage can be recorded
and calculated in the experiments with 1000 data
points per second.

Figure 3 shows a screenshot of the tip displace-
ment and obtained voltage for a frequency of 5 Hz
over a load resistance of 1 MX. It is clear that there
is a phase shifting between displacement and
voltage signals due to PZT layer capacitance.

Obtained power from the system versus the load
resistance at 4.76 Hz is provided in Fig. 4. This
frequency value is the resonance frequency of the
proposed system at which maximum power can be
obtained from the system depending upon the load
resistance. Here, the graph is plotted logarithmi-
cally to better observe the effect of load resistance
on the obtained power. As seen from Fig. 4, obtained
power from the system decreases at low and high
load resistance values. The maximum power from
the system is obtained when the load resistance is
around 1 MX. The internal impedance of the PZT
layer approximately equals this value. Therefore,
the load resistance must be kept close to this value
in order to get maximum efficiency from the system.
Since this is not always possible in practice, it is
necessary to use an impedance matching circuit for
maximum efficiency.

Fig. 2. (a) The overall experimental setup (b) the magnified piezoelectric energy harvester.

Fig. 3. The screenshot of piezoelectric layer tip displacement and
obtained voltage (f = 5 Hz, RL = 1 MX).
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Excitation frequency is one of the most important
parameters determining the bending level of the
PZT layer, and the amount of bending level directly
determines the obtained power from the system. If
the piezoelectric layer is excited at a value close to
its resonance frequency, which was calculated as
4.76 Hz in the study, the maximum bending will
occur. The relation of obtained power with regard to
the excitation frequency is sketched in Fig. 5. Note
that the output power decreases rapidly at below
and above this frequency value. Therefore, when the
PZT harvester system is to be applied to a real
system, the frequency of the vibration in the
environment should be known and the system
design must be done according to this frequency
value.

Figure 6 shows the obtained power from the PZT
harvester depending on the excitation frequency
and the load resistance. In the experiments, the
excitation frequency was kept close to the resonance
frequency of 4.76 Hz owing to the fact that the
power reduces to almost zero, when the excitation
frequency changes from this value as seen in Figs. 4
and 5. In addition, the load resistance was increased

from 10 X to 10 MX at certain ranges during the
experiments. It is inferred that the condition of
maximal power transfer occurs at a load value of
around 1 MX and excitation frequency of 4.76 Hz.
Output power values are relatively high between
500 kX and 1200 kX. However, the power value has
been drastically decreased for other load resistance
values.

As the result of the experimental data, we con-
clude that the most important parameters deter-
mining the obtained power from the system are both
load resistance and excitation frequency. In order to
get the maximum power, these parameters that are
directly related to the physical and electrical char-
acteristics of the piezoelectric layer should be
selected appropriately. A proper ANN can be
deployed as an assistant tool to estimate the output
power of the buckled piezoelectric layer.

ESTIMATION RESULTS OF HARVESTED
POWER BASED ON ANN MODEL

This section is devoted to the resulting training
and testing performance of the network. The rela-
tion of harvested power to both resistive load and
excitation frequency is highly nonlinear, and quite
difficult to be modelled with an ANN. As such, there
is a certain load value around the internal impe-
dance of the harvesting system that leads to harvest
maximum power possible from the PZT material in
accordance with the maximum power transfer the-
orem.9,26 Above and below this load value, har-
vested power begins to reduce significantly. In
addition, magnetic excitation frequency has also a
crucial impact over the output power generation. In
the case of driving the harvester with an excitation
frequency equal to the natural one, then maximal
power can be gained from the system in the same
way. When the system oscillates at higher frequen-
cies, output power amplitude decreases in a similar
trend to that in a varying load condition. When it
starts to oscillate at lower frequencies, that time

Fig. 4. The obtained power depending on the load resistance at the
resonance frequency.

Fig. 5. The obtained power depending on the excitation frequency at
the load resistance 1 MX.

Fig. 6. The surface plot of power on the load resistance and the
excitation frequency plane.
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amplitude falls off quite abruptly. These are the
nonlinearities of the system that make the ANN
training a challenging problem. During our many

attempts of the training process, we have faced
inefficient ANN performance from time to time at
the training start, even after thousands of training
epochs due to randomly generated initial weights
and to improper tuning of learning and momentum
parameters. This issue prompts us to choose learn-
ing and momentum rates in very small values, and a
very large number of training epochs to obtain a
training error curve that gradually converges to a
minimal value in a stable trend. Figure 7 displays a
representative convergence curve of the root mean
square (RMS) error between the desired output and
the output from the network for all the training
data at the end of each epoch. Compatible with what
we desire during training, the RMS error gives a
sharp fall at first, then it continues to decrease
gradually and becomes stabile with time.

At the end of a very large number (8 9 105) of
training epochs finished in about 10 min on an Intel
3.30 GHz computer with 8 GB RAM, the error is
found to be 6.65 9 10�3, which is an indicator that
our network is trained successfully and ready for
testing. Note that this does not always guarantee
satisfactory testing results owing to an overtraining
problem as is previously stated in Ref. 11.

Fig. 7. RMS error evolution versus epoch during training.

Fig. 8. Network estimation capability of the example patterns for the load resistance (a) 10 MX (b) 5.6 MX (c) 3.2 MX (d) 1 MX.
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Figure 8 shows the network estimation capability
of the example patterns used during training. Obvi-
ously, there is indeed a perfect match between the
real power and the estimated power in each case.

These figures given above are somewhat related
to the training performance of the network. As is
stated before, it is expected from a well-trained
network to have the ability to remember the train-
ing data, and also to gain generalization capability
for an unseen input data. To check this performance
measure as the validation course, we present the
trained network four different load values of
5.0 MX, 3.0 MX, 1.8 MX, and 1.25 MX, which are
not used during the training.

Obtained results based on the measured power
output and the ANN estimation are superimposed
in Fig. 9. It can be inferred that the network
performance is promising. The total RMS error
value between the real power and the ANN output
is calculated as 1.40 for all test conditions. This
makes the resulting estimation curves have a quite
tendency to vary in a way similar to those based on
the experiments.

CONCLUSIONS

With the help of a trained feedforward ANN, an
important parameter, electric power, harvested
from a recently developed piezoelectric energy har-
vesting system is estimated in this study in terms of
load resistance and magnetic excitation frequency.
In this system, load resistance and magnetic exci-
tation frequency are considered to be complicated
inputs, while the output is the corresponding power
to be estimated. In all cases of estimation, training
data collection is generated properly from various
experiments performed upon the concerned system,
and then the designed network is trained using the
standard BP algorithm. Both training and testing
results demonstrate the effectiveness of the pre-
sented model in estimating the power output versus
the load resistance and excitation frequency, which
have a highly nonlinear relation. If the estimation
performance is to be improved further, training data
collection should be intensified within the specified
range, which requires the sampling rate of mea-
surement equipment to be increased.

Fig. 9. Validation course of the network in the case of unseen inputs (a) 5 MX (b) 3.0 MX (c) 1.8 MX (d) 1.25 MX.
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