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Finite element analysis of 0–3 composites made of piezoceramic particles and
pores embedded in polyvinylidene difluoride (PVDF) has been carried out. The
representative volume element (RVE) approach was used to calculate the
effective elastic and piezoelectric properties of the periodic isotropic 0–3 piezo-
electric composites. It was observed that the elastic and piezoelectric properties
increased with the volume fraction of K0:475Na0:475Li0:05 Nb0:92Ta0:05Sb0:03ð ÞO3

(KNLNTS) particles but decreased for the porous composites. These effective
properties were further used to analyze the potential use of such bimorph
cantilever beams in sensing and energy harvesting applications. Sensing vol-
tage continuously increased for KNLNTS filled composites while for porous
materials it increased up to 15% volume fraction porosity and then decreased.
The same trend was also observed for the power produced by the harvester.
However, the sensing voltage and power produced by harvesters made of porous
composites were lower than for harvesters made of pure PVDF.

Key words: Piezoelectricity, composites, RVE, porosity, KNLNTS, PVDF

INTRODUCTION

Piezoelectric materials have the unique ability to
convert mechanical energy into electrical energy
and vice versa,1 enabling wide use of piezoelectric
ceramics in sensing and actuation applications.
Despite their superiority over other electromechan-
ical transducers, piezoelectric ceramics are often
limited by their weight and high specific acoustic
impedance. Bulk piezoelectric materials suffer from
several disadvantages, so piezocomposites are bet-
ter solutions for use in sensing and harvesting
applications. Recently, such composites have been
developed using combinations of piezoceramics and
polymers, being widely used in energy harvesting,
vibration control, and smart structures due to their
high conformability.2,3 Newnham et al.4 found that
piezocomposites have higher flexibility due to the
polymer matrix and are easier to fabricate than

bulk piezoceramics. Generally, unimorph or
bimorph structures are used for sensing and actu-
ation applications, where the piezoceramic is
embedded into polymer layers and bonded to a
substrate.5–8 At present, the most commonly used
piezoceramics are from the lead zirconate titanate
(PZT) family. However, use of these ceramics is
strongly discouraged because of their toxic nature.

This has motivated researchers to explore new
directions to identify lead-free piezoceramics with
improved or at least comparable physical and
dielectric properties. The most promising alterna-
tives to PZT are K0.5Na0.5NbO3 (KNN)-based and
Bi0.5Na0.5TiO3 (BNT)-based composites.9–12 Kothari
et al.13 carried out a comparative study of 1–3
piezoelectric composites and investigated the effec-
tive properties and performance of different lead-
free materials including PZT-5A. In present study,
KNLNTS was taken as a lead-free material, as its
piezoelectric strain coefficient in transverse mode is
higher than that of PZT-5A.14,15

Use of lead-free piezoelectric composites in sen-
sors and energy harvesters is very limited in(Received April 27, 2017; accepted August 16, 2017;

published online September 5, 2017)

Journal of ELECTRONIC MATERIALS, Vol. 47, No. 1, 2018

DOI: 10.1007/s11664-017-5751-y
� 2017 The Minerals, Metals & Materials Society

233

http://crossmark.crossref.org/dialog/?doi=10.1007/s11664-017-5751-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s11664-017-5751-y&amp;domain=pdf


literature, as they have not been studied from the
design and application points of view. However,
Sharma et al.16 studied the performance of lead-free
piezoelectric materials for use in active structural
vibration control.

Although a number of studies have been carried
out on the effective properties of such composites,
most of them were limited to lead-based materials.
Gupta et al.17 investigated the complete electrome-
chanical response for particulate, short-fiber, long-
fiber, laminate, and networked composites. Wang
et al.18 conducted experiments on a PZT–cement
composite and revealed the dependence on the
particle size. Gupta et al.19 developed a finite ele-
ment model to study the effect of porosity on the
effective electromechanical properties of 1–3 com-
posites. Recently, Ayuso et al.20 presented a homog-
enization study on porous piezoelectric materials
based on analytical and numerical analyses.
Although the effect of fillers and porosity on the
effective elastic and piezoelectric properties was
considered, the practical application of such mate-
rials was neglected in that study. The present study
focuses on evaluation of effective properties of
KNLNTS-PVDF-based composites and porous
PVDF, then investigates the sensing and energy
harvesting capability of these materials using a
finite element method. As a first step, microme-
chanical theory was used to evaluate the effective
elastic and piezoelectric properties. These proper-
ties were further used for dynamic analysis of
bimorph cantilever beams to evaluate their sensing
and energy harvesting performance.

COMPUTATIONAL PROCEDURES

The effective elastic and piezoelectric properties
were computed for lead-free composites of 0–3 type
containing K0:475Na0:475Li0:05 Nb0:92Ta0:05Sb0:03ð ÞO3

(KNLNTS) and porous PVDF, and their application

in smart structures was compared. PVDF-based
composites were modeled using circular inclusions
of KNLNTS with random orientation. Similarly,
circular pores were considered in a PVDF matrix in
a random fashion. Figure 1a and b shows a typical
model of two 0–3 composites and the representative
volume element. The materials considered and their
properties are listed in Table I.

Finite Element Modeling of 0–3 Piezoelectric
Composites

A number of numerical and analytical studies
that predict the mechanical and electrical proper-
ties of lead-based piezoelectric composites have been
reported.22–26 The analytical methods proposed by
Chan and Unsworth27 and Smith and Auld28 were
insufficient to capture the overall material proper-
ties. Berger et al.15 successfully evaluated the effec-
tive material properties of piezoelectric composites
using analytical and numerical methods. The
asymptotic homogenization method (AHM) was
employed to determine the analytical solution,29,30

while the numerical model was validated by a finite
element method. It becomes very difficult to predict
the response of composites using analytical meth-
ods, as the shape of the inclusions becomes complex.
Therefore, numerical methods such as FEM are
used. Many authors such as Poizat and Sester,22

Gaudenzi,24 and Teply and Dvorak31 have also used
FEM to predict effective electromechanical
properties.

One of the essential approaches to determine the
effective properties of a composite is to model the
unit cell, also known as the representative volume
element. Nemat-Nasser and Hori stated that the
RVE for a material point of a continuum is a
material volume that is statistically representative
of the infinitesimal neighborhood at that material
point32; It is the smallest volume over which the

Fig. 1. Schematic diagram of: (a) 0–3 composite; (b) representative volume element and its global coordinate system.
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calculation of any material property will yield the
same value as over the whole composite. The main
idea behind modeling an RVE is to find a homoge-
neous medium that can represent the original
composite as a whole. Berger et al.33 successfully
modeled the RVE and applied suitable boundary
conditions to determine various effective properties
of piezoelectric composites.

In coupled piezoelectric problems, mechanical
strain induces an electric potential gradient in the
material, while an electric field results in mechan-
ical deformation, which are commonly known as the
direct and converse piezoelectric effect, respectively.
In piezoelectric materials, this coupling between the
mechanical and electric fields can be characterized
by the piezoelectric coefficients. The constitutive
relationship for piezoelectric materials correlating
the stress, strain, electric field, and displacement
can be expressed in matrix form as follows15:

�T11
�T22
�T33
�T23
�T31
�T12
�D1
�D2
�D3

2
6666666666664

3
7777777777775

¼

Ceff
11 Ceff

12 Ceff
13 0 0 0 0 0 �eeff

13

Ceff
12 Ceff

11 Ceff
13 0 0 0 0 0 �eeff

13

Ceff
13 Ceff

13 Ceff
33 0 0 0 0 0 �eeff

33

0 0 0 Ceff
44 0 0 0 �eeff

15 0
0 0 0 0 Ceff

44 0 �eeff
15 0 0

0 0 0 0 0 Ceff
66 0 0 0

0 0 0 0 eeff
15 0 eeff

11 0 0
0 0 0 eeff

15 0 0 0 eeff
11 0

eeff
13 eeff

13 eeff
33 0 0 0 0 0 eeff

33

2
6666666666664

3
7777777777775

�S11
�S22
�S33
�S23
�S31
�S12
�E1
�E2
�E3

2
6666666666664

3
7777777777775

;

ð1Þ

where �Tij, �Di, �Sij, and �Ei denote the average values
of engineering stress, electrical displacement, engi-
neering strain, and electric potential, respectively.

For micromechanical analysis, composites can be
studied using the representative volume element.34

Since the RVE determines the effective properties of
composites, the accuracy of such results largely
depends on the choice of the RVE.35 In the present
study, the inclusions are considered to be perfectly
bonded to the matrix and modeled as isotropic
spheres. The matrix and inclusions are both uni-
formly poled along the x3 direction. Electromechan-
ical coupling is considered by including an electric
potential degree of freedom along with displacement
in the analyses.

Periodic Boundary Conditions for the RVE

Since composite materials can be represented as
a periodic array of RVEs to simulate the response
of the whole composite, periodic boundary condi-
tions must be imposed on the RVE. These bound-
ary conditions ensure that each RVE has the same
deformation mode, with no penetration or

separation between neighboring RVEs. These
boundary conditions on the RVE surfaces can be
described in Cartesian coordinates as
follows22,34,36–38:

ui ¼ �Sijxi þ vi; ð2Þ
where �Sij are the average engineering strains, and
wi is the local fluctuation or periodic part of the
displacement components on the boundary surfaces,
generally being unknown and depending on the
applied global load. The indices i and j denote the
global three-dimensional coordinate directions in
the range from 1 to 3. A more precise expression for
the displacements on a pair of opposite boundary
surfaces (with normal along xj axis) is

uKþ

i ¼ �Sijx
Kþ

j � vK
þ

i ; ð3Þ

uK�
i ¼ �Sijx

K�

j � vK
�

i ; ð4Þ
where the index Kþ denotes along the positive xj
direction and K� denotes the negative xj direction
on the faces A�=Aþ, B�=Bþ, and C�=Cþ. Due to the
periodic boundary conditions, the local fluctuations

vK
þ

i and vK
�

i around the average macroscopic value
are identical on two opposing surfaces. Thus, the
difference between the two equations above gives
the applied macroscopic strain condition as39

uKþ

i � uK�

i ¼ �SijðxK
þ

j � xK
�

j Þ: ð5Þ
Similarly, the periodic boundary conditions for the
electric potential can be given as

/Kþ � /K� ¼ �EiðxK
þ

i � xK
�

i Þ: ð6Þ
The properties of the bulk materials were calculated
by averaging the relevant stress and strain values
over the RVE using the following equations:

�Sij ¼
1

V

Z

V

SijdV; ð7Þ

�Tij ¼
1

V

Z

V

TijdV; ð8Þ

where V is the volume of the RVE. Similarly, the
average electric fields and electrical displacements
are defined as

�Ei ¼
1

V

Z

V

EidV; ð9Þ

�Di ¼
1

V

Z

V

DidV: ð10Þ

Table I. Physical properties of materials

Material E (GPa) m e13 (C/m2) e15 (C/m2) e33 (C/m2) e11
T /e0 e33

T /e0 Ref.

PVDF 2 0.3 0.0104 0.0388 0.065 12 12 21
KNLNTS 87 0.39 16.3 8.4 11.4 613.6 745.8 14

Finite Element Study on Performance of Piezoelectric Bimorph Cantilevers Using Porous/
Ceramic 0–3 Polymer Composites

235



The homogenized effective properties can be calcu-
lated by application of periodic boundary conditions
on the opposite faces of the RVE, as described by
Eqs. 5 and 6. To predict the effective properties,
boundary conditions are applied such that, for a
particular load case, there is only a single param-
eter in the strain/electric field which is nonzero
while the others are zero. Since the effective prop-
erties are dependent only on the particle volume
fraction, the size of the RVE can be chosen as unity.
All the dimensions of the RVE are kept at unity,
with one corner at the origin. Subsequently, the
different coefficients were computed using the
boundary conditions described in Table II.

1. Calculation of effective elastic constants (Ceff
11

and Ceff
12 )

The effective elastic constants Ceff
11 and Ceff

12 can
be computed by applying boundary conditions
such that only mechanical strain in the first
direction is nonzero while the mechanical strain
and electric potential gradient in all other
directions are zero. Now, considering the first
and second row of the constitutive Eq. 1, we get

Ceff
11 ¼ �T11= �S11 ð11Þ

and

Ceff
12 ¼ �T22= �S11: ð12Þ

2. Calculation of effective elastic constants (Ceff
13

and Ceff
33 )

To calculate the effective elastic constants Ceff
13

and Ceff
33 , displacement boundary conditions are

applied such that strains are induced in the x3

direction only. Also, the electric potential gra-
dient on all surfaces should be zero. Now,

considering the first and third rows of the
constitutive Eq. 2, we get

Ceff
13 ¼ �T11= �S33 ð13Þ

and

Ceff
33 ¼ �T33= �S33: ð14Þ

3. Calculation of effective elastic constants (Ceff
44

and Ceff
66 )

These coefficients are based on the averaged
shear strain and can be calculated by creating a
pure shear condition. For these cases, con-
straint equations (coupling constraints) on two
pairs of opposite surfaces must be defined. For
Ceff

44 , which is based on the pure in-plane (x1 � x3

plane) shear state, the constraint equation for a
pair of nodes on the opposite surfaces A�/A+ can
be written as

uAþ

3 ¼ uA�

3 þ �S31ðxA
þ

1 � xA
�

1 Þ: ð15Þ

The fluctuation �S31ðxA
þ

1 � xA
�

1 Þ can be set to an
arbitrary value (unity being used in this study).
The analogous constraint equations have to be
defined for the opposite surfaces. Similarly, Ceff

66
can also be computed using appropriate bound-
ary conditions.

4. Estimation of effective piezoelectric coefficients
(eeff

13 , eeff
33 , and eeff

15 ) and dielectric coefficient (eeff
33 )

The effective piezoelectric coefficients eeff
13 and

eeff
33 and dielectric coefficient eeff

33 can be calcu-
lated by applying an electric potential gradient
in only the x3 direction while the strains in all
directions are zero. Considering rows 6 and 7 of
Table II, we get

Table II. Boundary conditions and equations for calculation of effective coefficients

Eff. Coeff.
A2 A+ B2 B+ C2 C+

Formulaui// ui// ui// ui// ui// ui//

C11
eff 0/– u1/0 0/– 0/– 0/0 0/0 �T11= �S11

C12
eff 0/– u1/0 0/– 0/– 0/0 0/0 �T22= �S11

C13
eff 0/– 0/– 0/– 0/– 0/0 u3/– �T11= �S33

C33
eff 0/– 0/– 0/– 0/– 0/0 u3/– �T33= �S33

C44
eff u3/0 u3/0 0/– 0/– u1/– u1/– �T13= �S31

C66
eff u2/– u2/– u1/– u1/– 0/0 0/0 �T13= �S31

e13
eff 0/– 0/– 0/– 0/– 0/0 0// � �T11= �S3

e33
eff 0/– 0/– 0/– 0/– 0/0 0// �T33= �E3

e15
eff u3/0 u3/0 0/– 0/– u1/– u1/– �D1= �S31

e11
eff 0/0 0// 0/– 0/– 0/– 0/– �D1= �E1

e33
eff 0/– 0/– 0/– 0/– 0/0 0// �D1= �E1
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eeff
13 ¼ � �T11= �E3; ð16Þ

eeff
33 ¼ � �T33= �E3; ð17Þ

and

eeff
33 ¼ �D3= �E3: ð18Þ

The effective coefficient eeff
15 can be calculated by

applying the same shear boundary conditions as
applied for finding Ceff

44 . Thereafter, eeff
15 can be

calculated as

eeff
15 ¼ �D1= �S31: ð19Þ

Finite Element Modeling of Piezolaminated
Structure for Sensing Application

The finite element method is one of the most
effective numerical techniques to determine the
response of piezolaminated structures. Different
researchers have used the finite element method
to analyze the static and dynamic response of
piezostructures.40–44 In the present study, shell
elements were used to predict the dynamic response
of the structure. Therefore, first-order shear defor-
mation theory and piezoelectric theory were imple-
mented to formulate the shell element. The
cantilever beam shown in Fig. 2 was modeled using
shell elements. The motivation behind using the
shell element is that it is one of the generalized
elements and can also be used for structures having
curvature. The finite element equations of motion
for the piezolaminated shell structure are45

½Muu�ef€uge þ ½Cuu�ef _uge þ ½Kuu�efuge þ ½Ku/�f/ge ¼ ff extge;
ð20Þ

½K/u�efuge þ ½K//�ef/ge ¼ fqextge: ð21Þ
The generalized element stiffness matrix is given as

Ke ¼
Kuu Ku/

K/u K//

� �
; ð22Þ

where Kuu is the mechanical stiffness matrix, Ku/ is
the direct piezoelectric coupling matrix, K// is the
dielectric stiffness matrix, K/u is the inverse piezo-
electric coupling matrix, ue is the element nodal
displacement vector, /e is the electric potential
vector, f ext

e is the external force vector, and qext
e is

the external electric charge.
Combining Eqs. 20 and 21, the global governing

equation can be obtained as45

½Muu�f€ug þ ½Cuu�f _ug þ ½Kuu�fug þ ½Ku/�f/g ¼ fFg;
ð23Þ

½K/u�fug þ ½K//�f/g ¼ fQg: ð24Þ
In sensing applications, a piezoelectric material
bonded to a substrate acts as the sensor. We now
assume that no charge is accumulated on the sensor
surface, hence from Eq. 24 the sensor voltage can be
deduced as

f/g ¼ �½K//��1½K/u�fug: ð25Þ
From circuit theory, the current flowing across a
resistance due to charge Q is

i ¼ �dQ

dt
: ð26Þ

The current across a resistance is given in terms of
voltage as

i ¼ V

R
: ð27Þ

From Eq. 21, we have

d

dt
ð½K/u�efuge þ ½K//�ef/geÞ ¼

d

dt
fQge; ð28Þ

½K/u�ef _rge þ ½K//�ef _vge ¼ �fvge
R

; ð29Þ

½K/u�ef _rge þ ½K//�ef _vge þ
fvge
R

¼ 0: ð30Þ

Equations 27 and 30 can then be used to predict the
output current and hence calculate the power
generated.

To predict the sensing behavior of a piezolami-
nated structure, a bimorph cantilever beam was
modeled, comprising two piezolayers with opposite
polarization direction bonded to an aluminum sub-
strate. Composites with different filler volume frac-
tion and porosity were considered for the
piezoelectric layers in the beam. A clamped bimorph
beam was considered for the sensing application, as
shown in Fig. 2. The externally applied electric
potential was kept at zero to study the sensing
behavior of the piezolayers. A tip load was applied
as boundary condition. The mechanical deformation
leads to electric displacement and thus charge
induction on the terminals.

Fig. 2. Schematic of bimorph cantilever beam.
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RESULTS AND DISCUSSION

The effective elastic, piezoelectric, and dielectric
coefficients were computed for the 0–3 KNLNTS-
PVDF composite and porous PVDF with different
volume fractions of filler and porosity using the
finite element method. It can be observed from
Fig. 3a–c that the effective elastic constants
increased as the volume fraction of KNLNTS par-
ticles was increased, but decreased as the porosity
was increased. This trend can also be justified with
the help of the rule of mixtures. Similarly, the
effective piezoelectric coefficients presented in
Fig. 4a–d show an increasing trend with filler
volume fraction but decreased continuously as the
porosity was increased.

These effective properties were further employed
to characterize the sensing and energy harvesting
behaviors of the cantilever beam. This analysis was
carried out in the frequency domain on a cantilever
beam with length of 100 mm, width of 25 mm, and
thickness of 6 mm. To study the sensing character-
istics, a tip load of 1 N was applied to the free end of

the cantilever. The sensor open-circuit voltage was
calculated using Eq. 25. The sensing voltage at the
natural frequency of the system for composites filled
with KNLNTS and porous PVDF is compared for
different volume fractions in Fig. 5. It can be
observed that the open-circuit voltage continuously
increases with the volume fraction of the KNLNTS
filler while for the porous ones it increases up to
15% volume fraction and then decreased. However,
all the values for the porous materials remained
lower than for pure PVDF. The variation in the
sensing capability of the various composites in
Fig. 5 can be understood by analyzing Eq. 25, which
shows that the sensing voltage is directly propor-
tional to eeff

13 but inversely proportional to eeff
33 . For

the filled composites, it can be observed from Fig. 4a
and d that eeff

13 increased more rapidly than eeff
33 .

Meanwhile, for the porous materials, the ratio of eeff
13

to eeff
33 first increased up to 15%, then (due to the

increased volume fraction of pores) eeff
13 decreased

more rapidly than eeff
33 , resulting in a drop in voltage.

Fig. 3. Variation of (a) Ceff
11 , (b) Ceff

12 , and (c) Ceff
44 with different volume fractions of filler and pores.
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Furthermore, the voltage –frequency response was
also studied for different volume fractions, for both
the KNLNTS-filled composites and porous PVDF, as
shown in Fig. 6. The variation in the natural
frequency in both cases can be attributed to the
density of the structure and the stiffness. The
density increased continuously for the filled com-
posites but decreased for the porous ones. Mean-
while, the stiffness depends on the effective elastic
modulus of the material, which also increased
continuously for the KNLNTS composites but
decreased for the porous PVDF.

Cantilever beams are the most commonly used
structures for piezoelectric energy harvesting from
mechanical vibrations. The present study focused
on the energy harvested using materials with
different compositions. The effective material prop-
erties were used to predict the power produced by
the piezocantilever under the action of a tip load of
1 N. The maximum power produced at the

Fig. 4. Variation of (a) eeff
13 , (b) eeff

15 , (c) eeff
33 , and (d) eeff

33 with different volume fraction of filler and pores.

Fig. 5. Variation of maximum open-circuit voltage at resonant fre-
quency for KNLNTS-filled composite and porous PVDF as function of
volume fraction.
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fundamental natural frequency was computed. The
optimum resistance required for the maximum
output power was used, calculated as

R ¼ 1

xCp
; ð31Þ

where x is the natural frequency and Cp is the
capacitance of the system.

Figure 7 shows that the power output follows the
same pattern as the open-circuit voltage. For the
KNLNTS composites, the power increased as the
volume fraction was increased, while it first
increased up to 15% volume fraction then decreased
in the case of porous PVDF.

To validate the performance of the energy har-
vester, we calculated the figure of merit (FOM) for
the filled and porous materials. The FOM proposed
by Priya et al.46 can be expressed as

FOM ¼ e2
e

E2
e ee

; ð32Þ

where ee, Ee, and ee are the effective piezoelectric
stress coefficient, effective elastic modulus, and
effective dielectric constant, respectively, of the
material. This FOM for the filled and porous PVDF
with different volume fractions is shown in Fig. 8. It
is observed that the trends in the voltage and output
power are the same as that for the FOM. Therefore,
it can be asserted that, although the voltage and

power output depend on factors such as the bound-
ary conditions and geometrical proportions of the
cantilever used, their trends are the same, inde-
pendent of the external force applied or beam shape
used.

CONCLUSIONS

Finite element analysis of 0–3 polymer nanocom-
posites was carried out to determine the effective
elastic and piezoelectric properties as functions of
the volume fraction of KNLNTS filler or pores. The
RVE was applied and suitable periodic boundary
conditions imposed to simulate the composites for
prediction of their effective properties. These prop-
erties were then used to predict the sensing and
energy harvesting response of cantilever beams. It
was found that the sensing voltage and power
harvested using the filled composites increased,
while for the porous composites these parameters
increased up to a certain volume fraction then

Fig. 6. Variation of open-circuit voltage for: (a) KNLNTS-filled com-
posite and (b) porous PVDF as function of frequency.

Fig. 7. Variation of maximum power produced by KNLNTS-filled
composites and porous PVDF as function of volume fraction.

Fig. 8. Variation of FOM for KNLNTS-filled composites and porous
PVDF as function of volume fraction.
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decreased. It can therefore be concluded that piezo-
ceramic-filled 0–3 composites could represent an
alternative to bulk piezoceramics for use in sensing
and harvesting applications where light weight is a
primary concern.
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