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Real operating conditions of a thermoelectric cooling device are in the pres-
ence of thermal resistances between thermoelectric material and a heat
medium or cooling object. They limit performance of a device and should be
considered when modeling. Here we propose a dimensionless mathematical
steady state model, which takes them into account. Analytical equations for
dimensionless cooling capacity, voltage, and coefficient of performance (COP)
depending on dimensionless current are given. For improved accuracy a device
can be modeled with use of numerical or combined analytical-numerical
methods. The results of modeling are in acceptable accordance with experi-
mental results. The case of zero temperature difference between hot and cold
heat mediums at which the maximum cooling capacity mode appears is con-
sidered in detail. Optimal device parameters for maximal cooling capacity,
such as fraction of thermal conductance on the cold side y, fraction of current
relative to maximal j¢ are estimated in range of 0.38–0.44 and 0.48–0.95,
respectively, for dimensionless conductance K¢ = 5–100. Also, a method for
determination of thermal resistances of a thermoelectric cooling system is
proposed.

Key words: Thermoelectrics, thermoelectric theory, thermoelectricity,
thermoelectric modeling, optimal design, thermoelectric module,
thermoelectric cooler

INTRODUCTION

Since the development and propagation of ther-
moelectric generator module (TGM) applications,
much attention is paid to modeling its characteris-
tics depending on the construction of the module
and parameters of thermoelectric (TE) material. As
a result, a number of works have been published,
including TGM modeling depending on electrical
contact resistances,1–5 thermal contact resis-
tances,2–6 numerical methods modeling,3–6 tran-
sient thermal and electric processes,7 equivalent
circuits of TGMs,8 and influence of Thomson
effect.4,8 For modeling of thermoelectric cooling

modules (TCM), there are works dedicated to the
influence of the Thomson effect on module charac-
teristics,9–12 numerical methods modeling,12 equiv-
alent circuits of TCMs,13 influence of temperature
dependence of material properties,14 and optimal
design of TCMs.15–17 A review of progress in the
area of thermoelectric modeling is given in Ref. 17.

It is known that thermal contact resistances
strongly affect TGM3 and TCM15–17 characteristics.
Taking into account thermal contact resistances can
also explain why an electrical current is usually
lower than calculated by the classical TE equations
at temperature difference DT = 0. The proposed
equations are based on the classical TE equations,
which are extended to a case with the presence of
thermal resistance between a TE material and a
heat medium. This extension provides more
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accurate modeling of TCM characteristics depend-
ing on the ZT parameter of a TE material, dimen-
sionless current intensity, dimensionless thermal
conductance, and its fraction on the cold and hot
side.

Manufacturers and developers of TCMs experi-
ence a phenomenon of a current decline compared to
calculated value, when a TCM is operating at its
normal conditions. Figure 1 shows typical mismatch
between experimental and calculated U(I) depen-
dence at DT = 0. Experimental values of a current
are always lower than calculated at same voltage.
The decline of a current can be caused by electrical
resistance of copper interconnectors and wires in
the TCM and measurement system, but these
contributions should be constant for different TCMs
and usually are of tenths of an Ohm. In the case of a
TCM with long pellets and high electrical resis-
tance, such contributions would be negligible; how-
ever, significant decline of a current takes place in
this case as well.

Usually, contact thermal resistances in a TCM are
assumed to be very small and are neglected during
measurement. Thus, measured DT is supposed to be
actual DT in a material, but it will be shown below
that even rather small thermal resistances can have
a significant effect on actual DT in a material and,
consequently, U(I) and Qc(I) dependence. Also, it is
shown that the Seebeck coefficient and resistance
dependence on temperature have a strong effect.

Dimensionless Model

Practical calculations of TE cooling systems may
be carried out by solving the classical system of heat
balance equations per unit area18,19:

qc ¼ acjTc �
j2qL

2
� ðTh � TcÞ

k

L

qh ¼ ahjTh þ j2qL
2

� ðTh � TcÞ
k

L

w ¼ j2qLþ j ahTh � acTcð Þ

ð1Þ

where qc, qh—specific heat current from cold (speci-
fic cooling capacity) and hot (specific heating

capacity) side of a TE material respectively,
W m�2; w—specific supplied electrical power,
W m�2; ac, ah—the Seebeck coefficient on the cold
and the hot side of a TE material respectively,
V K�1; j—electric current density, A m�2; q—elec-
trical resistivity of a TE material, Ohm m; k—ther-
mal conductivity of a TE material, W m�1 K�1;
L—length of TE pellets, m; Th, Tc—temperature on
the hot and the cold sides of a TE material,
respectively, K.

Huang et al.11 and Chen et al.12 showed that the
Thomson effect can increase the cooling capacity
when the Thomson coefficient is positive. Neverthe-
less, for now, the Thomson effect appears negligible
compared to total cooling capacity in typical com-
mercial materials.10 In addition, the full analytic
equation for cooling capacity taking into account the
Thomson effect given in Ref. 11 is too complex for
further transformations. For these reasons it is not
considered in this work, although the temperature
dependence of the Seebeck coefficient is considered
anyway, when TCMs are calculated by a numerical
method described below. In the classical model a
decline of a current is connected with this difference
ahTh � acTc, which can be neglected if a material
has a linear regression of the Seebeck coefficient
with temperature (ah/ac = Tc/Th).

Maximum cooling capacity mode in the classical
model is described by an equation derived from
Eq. 1 at Th = Tc = T, ah = ac = a, and j0max = aT/q/
L18,19:

q0max ¼ j20maxqL
2

¼ a2T2

2qL
ð2Þ

Equations 1 and 2 can be used only for calcula-
tions of properties of a material, not devices,
because, in practice, there is always a non-zero
thermal resistance between a TE material and a
heat transfer medium. Air, water, or a solid block
could be a heat medium depending on construction
of a device or a measurement system. In order to
take into account all thermal resistances, equiva-
lent thermal conductance (ETC) Kc, Kh , or equiv-
alent thermal resistance Rc, Rh, the sums of all
resistances between a material and cold and hot
heat medium, respectively, can be used as shown on
Fig. 2. This approach was used in Refs. 15–17 as
well. Even a complex measurement system or TE
device can be simply considered and calculated with
such scheme with addition of thermal resistance of
corresponding construction elements.

The presence of thermal resistance/conductance
between a material and a heat medium comple-
ments Eq. 1 with terms:

qc ¼
KcðTcm � TcÞ

nS
; qh ¼ KhðTh � ThmÞ

nS
; ð3Þ

where Kc—ETC on the cold side, W K�1; Kh—ETC
on the hot side, W K�1; Tcm—temperature of cooled

experimental at ΔT=0

calculated at ΔT=0 (I·R)

U
, 

V

I, A
Fig. 1. Typical calculated and experimental U(I) dependence of a
TCM.
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heat medium, K; Thm—temperature of heated heat
medium, K; n—number of TE pellets connected
electrically in series and thermally in parallel in a
TE device; S—cross-sectional area of a TE pellet,
m2.

When considering a complex TE cooling device
operating at real conditions (cooling one heat
medium and heating another) the maximum cooling
capacity mode corresponds to zero temperature
difference of heat mediums DTm = Thm � Tcm = 0,
in contrast to the theoretical mode corresponding to
material temperature difference DT = Th � Tc = 0.
Thus, hereinafter we consider Thm = Tcm = T. Com-
plemented with Eq. 3 and temperature dependence
of parameters of a TE material, Eq. 1 can be written
as follows:

qc ¼
T � Tcð ÞKc

nS
¼ a Tcð ÞjTc �

j2q Tc;Thð ÞL
2

� ðTh � TcÞk
L

qh ¼ ðTh � TÞKh

nS
¼ a Thð ÞjTh þ j2q Tc;Thð ÞL

2
� ðTh � TcÞk

L

w ¼ ðTh � TÞKh � T � Tcð ÞKc

nS

¼ j2q Tc;Thð ÞLþ j a Thð ÞTh � a Tcð ÞTcð Þ
ð4Þ

The thermal conductivity k(T) dependence leads
to a non-linear temperature gradient in a material,
which complicates the determination of other char-
acteristics, thus, k(T) is not taken into account here.

It is reasonable to approximate material charac-
teristics dependence with polynomials or linear
dependence and solve a system of Eq. 4 relative to
Th and Tc. The result will be very complex in this
case, and it would not make sense for an analytical
solution, but it can be solved numerically and used
as a reference to control the analytical solution, as
demonstrated below in this work. For an analytical
solution we replace dependence a Tcð Þ, a Thð Þ,
q Tc;Thð Þ with constants a, q, respectively.

Dimensionless analysis is very convenient since it
is not connected with the dimensions of a particular

system or a device. For its realization we propose
following dimensionless parameters:

T0
c ¼ Tc

T ;T0
h ¼ Th

T — dimensionless temperature on
the cold and the hot side of a material, respec-
tively
j0 ¼ j

j0max
¼ jqL

aT — dimensionless current density

K = Kc + Kh — sum of ETCs on the cold and hot
sides, W K�1

y ¼ Kc

K ; 1 � y ¼ Kh

K —fractions of corresponding
ETC relative to sum of ETCs

K 0 ¼ KL
knS — dimensionless thermal conductance

F ¼ a2T
qk —ZT parameter of a material at

temperature T

q0c ¼
qc

q0max
; q0h ¼ qh

q0max
; w0 ¼ w

q0max
— dimensionless

cooling capacity, heating capacity, and supplied
power, respectively.

Note that K¢ is a ratio between a thermal
conductance of all intermediate layers between a
material and heat mediums and thermal conduc-
tance of TE pellets in a device, including the
geometrical shape factor of TE pellets. Higher K¢
means better heat transfer. Fraction y is the
proportion between conductance on the cold and
the hot sides. Variation of y preserving the same K¢
is associated with variation of dimensions of hot and
cold heat sinks preserving the same total mass at
other things being equal; greater y means larger
heat sink on the cold side, smaller on the hot side.
Thermal conductivity of a material k is embedded in
two dimensionless parameters: F and K¢. Dimen-
sionless cooling capacity, heating capacity and
supplied power indicate fraction of corresponding
power density relative to maximal specific cooling
capacity q0max at j0max, calculated by classical
equations. If K¢ fi 1 and j¢ fi 1, q0c; q

0
h, w¢ reach

1, 3, 2, respectively. Label F for ZT parameter is
used here just for better visibility.

After substituting dimensionless parameters into
Eq. 4 we get a system of equations:

q0c ¼
2 1 � T0

c

� �
yK 0

F
¼ 2j0T0

c � j02 � 2ðT0
h � T0

cÞ
F

q0h ¼ 2ðT0
h � 1Þ 1 � yð ÞK 0

F
¼ 2j0T0

h þ j02 � 2ðT0
h � T0

cÞ
F

w0 ¼ 2K 0

F
T0

h � 1 � yðT0
h � T0

cÞ
� �

¼ 2j0 T0
h � T0

c

� �
þ 2j02

;

ð5Þ

which can be solved for T0
c y;K 0; j0;Fð Þ;T0

hðy;K 0; j0;FÞ:
As one can see, all variables in the model are now

dimensionless. The model allows to calculate tem-
peratures and other parameters depending only on
four variables which greatly facilitates the calcula-
tions. Compared to a model proposed by Lee17 the
main difference is that specific power densities

Fig. 2. Schematic thermal interface, temperature profile and equiv-
alent thermal resistance/conductance scheme of a TCM.

Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer
Conditions

2739



q0c; q
0
h;w

0 are calculated not relative to convection
conductance of medium on the hot side, which means
that in this case it should be initially provided, but
relative to classical specific maximum cooling capac-
ity, determined only by parameters of a material.
Also, this principle we found more easy to perceive.

After determination of T0
c y;K 0; j0;Fð Þ;T0

hðy;K 0;
j0;FÞ equations for q0c; q

0
h will take a form:

q0c ¼
2 � j0 � 2j0

K 0�yK 0�j0F

1
j0 þ F

yK 0 þ 1
yj0 K 0�yK 0�j0Fð Þ

;

q0h ¼
y� 1ð Þ 2 þ j0 � K 0 2þj0ð Þþ2j0

K 0�yK 0�j0F

� �

y
j0 þ F

K 0 þ 1
j0 K 0�yK 0�j0Fð Þ

ð6Þ

If a system/device is thermally symmetric
(y = 0.5), then:

q0c ¼
1
j0 � 1

2 �
F 2�j0ð Þþ2

K 0

1
2j02

� 2F2

K 02 þ 2
K 0j02

; q0h ¼
1
j0 þ 1

2 þ
F 2þj0ð Þþ2

K 0

1
2j02

� 2F2

K 02 þ 2
K 0j02

ð7Þ

COP, calculated as COP ¼ q0c=w
0 and dimension-

less voltage, calculated as u0 ¼ w0=j0 are determined
as:

COP ¼
Fj0

K 0 þ 1
j0

1 þ 4Fþ4
K 0

� 1

2
; u0 ¼

1 þ 4Fþ4
K 0

1
2j0 �

2j0F2

K 02 þ 2
K 0j0

ð8Þ

If K¢ fi 1 Eqs. 7 and 8 take a form of:

q0c ¼ 2j0 � j02; q0h ¼ 2j0 þ j02; COP ¼ 1

j0
� 1

2
; u0 ¼ 2j0

ð9Þ

Equation 9 were used to compare the model with
the classical theory.

To determine maximal dimensionless cooling
capacity q0max for thermally symmetric device we

need to take the derivative
dq0c
dj0 and to equate it to

zero, but it is too complex for Eq. 7, so we need to

simplify it. When K¢ � F term 2F2/K¢2 fi 0, and
simplified equation for dimensionless maximal cur-
rent intensity j0�max takes a form:

j0�max ¼
4F þK 0 þ 4 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4F þK 0 þ 4ð Þ2�12FK 0

q

6F
ð10Þ

Substituting Eq. 10 into Eq. 7, one can define a
dimensionless maximum cooling capacity.

It is easy to receive actual cooling capacity Qc, and
voltage U from dimensionless q0c;u

0:

Qc ¼ q0c
na2T2S

2qL
; U ¼ u0 naT

2
: ð11Þ

METHODS

Validation of the Model

To validate the model, we tested four different
types of TCMs at a quantity of three each. The
results showed acceptable agreement with the
model. Here we present typical results for one type
of most common geometry (type A) and one with
large number of TE pellets, large electrical and
thermal resistance (type B), and, consequently,
affected by minimal influence of contact electrical

Table I. TCM initial parameters for simulations

Actual parameters

Type A Type B

Number of TE pellets, n 254 482
Cross-sectional area of a TE pellet, S; mm2 1.96 1.0
Height of TE pellets, L; mm 1.6 2.5
Total electrical resistance of TE pellets at 300 K, R; Ohm 2.33 14.2
Total thermal resistance of TE pellets, Rp; K W�1 1.945 2.777
Seebeck coefficient at 300 K, a; lV K�1 226.0 239.7

Dimensionless parameters
ZT parameter of a TCM, F 0.825 0.783
Dimensionless conductance, K¢ 64.08 35.54

Fig. 3. Scheme of compensation method measurement of U(I), Qc(I)
of a TCM.
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resistance and other inaccuracies. Initial TCM
parameters are presented in Table I.

ZT parameter and electrical resistance R of
modules were determined with use of a commer-
cially available Z-meter (DX 4065, RMT Ltd).
Measurement of Qc(I) and U(I) was performed by
widely used compensational method, where ther-
moelectric module is located and tested between a
cooling substrate and a heater block, like shown on
Fig. 3. Detailed description of an example of such
measurement system could be found in Ref. 20.
Temperature sensors are embedded into cooled and
heated copper blocks. Hot medium temperature Thm

is fixed at 300 K with use of proportional-integral-
derivative (PID)-controlled cooling system. Cold
medium temperature Tcm is changed with variation
of heat load, which is determined by electrical
power of the heater. The TCMs and the heater were
powered by lab direct current (DC) power supplies
(HY5005E and HY3030E, Mastech), values of volt-
age and current were measured by high accuracy
bench type multimeters (UT804, Uni-T) when
Tcm = Thm.

Determination of a dimensionless thermal con-
ductance appeared to be the most challenging task.
The following is the algorithm of the measurement
is proposed. After conducting a measurement of Z
and R, a TCM is mounted in the setup, as shown on
Fig. 3, but not powered from the supply. When a
heat load H is applied, and temperatures of the hot
and the cold mediums are stabilized, the measure-
ments of open circuit voltage Uoc and difference of
temperatures of mediums DTm are conducted. The
measurements are repeated at different values of a
heat load. Total thermal resistance of a system Rs,
including thermal resistance of TE pellets, thermal
interface materials, ceramics, and copper blocks,
can be determined by a tangent of an angle of linear
DTm(H) dependence: Rs = dDTm/dH. In accordance
with the model described above (Fig. 2), this ther-
mal resistance for thermally symmetric system
(Rc = Rh) can be represented as Rs = Rp + 2Ra,
where Rp is total thermal resistance of TE pellets,
Ra is thermal resistance between a TE material and
a heat medium. If there were no parasitic thermal
resistances (Ra = 0), the Seebeck coefficient could be
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Fig. 4. Simulated and experimental U(I) (a, b) and Qc(I) (c, d) dependence for type A and type B modules, respectively.
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easily calculated as a = dUoc/dDTm. Otherwise, it is
found to be defined as:

a ¼ ZR

nRs

dDTm

dUoc
ð12Þ

where dDTm/dUoc is a tangent of an angle of linear
DTm(Uoc) dependence.

After determining a, Rp is calculated as Rp = ZR/
n2/a2 and, finally, dimensionless thermal conduc-
tance K¢ is calculated as K¢ = 4Rp/(Rs � Rp).

Dimensionless q0c j0ð Þ;u0ðj0Þ dependences were sim-
ulated and converted into actual Qc(I) and U(I)
dependence with use of analytical and combined
method (described below) and then compared with
experimental data.

Modeling

Analytical calculations of q0c j0ð Þ;u0ðj0Þ by Eqs. 7
and 8 should be accurate at low current intensity
and small difference between Kh, Kc, as the

K'

100

 Numerical method
 with α(T), R(T)

Numerical method 
with α(T) only

Analytical
method

Combined
method

Classical theory
method (K'→∞)

25
5

0 0.5 1
0

1

2

3

4

5

j'

u'

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

j'

q'
c

1.5

Fig. 5. u¢(j¢) and q 0
cðj 0Þ dependencies of TCM simulated by different methods.
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K'=25
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Fig. 6. u¢(j¢) and q 0
cðj 0Þ dependence in accordance with thermal conductance ratio y.

Melnikov, Kostishin, and Alenkov2742



temperature dependencies are not considered.
These calculations are called further as the analyt-
ical method. The most reliable simulation

corresponds to solving Eq. 4 numerically with tem-
perature dependence of a(Tc), a(Th), q(Tc, Th)
approximated with polynomials. This method was

Fig. 7. q 0
c y ; j 0ð Þ; COP y ; j 0ð Þ dependence for different K¢ at ZT = 1.
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performed on PTC Mathcad 15.0 software and is
called here the numerical method. It was also
performed with a(Tc), a(Th) dependence only to
separate the effects of the Seebeck coefficient
and resistivity dependence. Calculation of T0

h;T
0
c

from Eq. 5 with constant parameters, then deter-
mining a(Tc), a(Th), q(Tc, Th) and calculating Th,
Tc by Eq. 4 once again substituting a(Tc), a(Th),
q(Tc, Th), obtained previously, is called the com-
bined method. Classical theory method is used
in the calculation by Eq. 1 for actual parameters
or Eq. 9 for dimensionless parameters, coinciding
with the analytical method when K¢ fi 1. Tem-
perature of heat mediums in all simulations is
300 K.

RESULTS AND DISCUSSION

Validation of the Model

Figure 4 depicts simulated and experimental
results for TCMs with parameters represented in
Table I. A value of dimensionless thermal conduc-
tance between mediums and TE material K¢ was
determined as 64.08 for the type A module and
35.54 for the type B module using the method
described above. Experimental U(I) and Qc(I)
dependence for the type B module are in good
accordance with the numerical (not shown on the
figure) and the combined method of the simulation,
based on the model. This dependence behavior is
close to the theory and was found for other TCMs
with a large number of TE pellets. In TCMs with
small amount of pellets and thermal resistance
Rp U(I) dependence were shifted to higher U
values, as shown for the type A module. This effect
can be connected with higher inaccuracy in deter-
mination of a, K¢ of a module due to its small
electrical and/or thermal resistance, and influence
of a nonlinear temperature gradient, found in
different studies of TCMs10–12 and not taken into
account here.

Modeling

Influence of thermal conductance and tempera-
ture depended material properties on TCM

characteristics is shown in Fig. 5. Dependencies
are calculated for thermally symmetric system
(y = 0.5). When dimensionless conductance is large
(K¢ = 100), dependencies calculated by different
methods almost merge, nevertheless q0c j0ð Þ is about
10% less compared to the classical theory. With
decrease of K¢, u¢ rises, q0c reduces rapidly, and the
point of maximum cooling capacity shifts to lower
current values. q0c calculated by the analytical
method demonstrates good match with the numer-
ical method in a region of the current less than j0max.
The combined method demonstrates excellent coin-
cidence with the numerical methods over the entire
region. Based on numerical modeling, a(T) and q(T)
have roughly the same effect on u¢(j¢), shifting it to
higher u¢ values compare to the classical model, but
q(T) has greater effect on q0c j0ð Þ, especially with
greater current values.

On Fig. 6 an effect of ratio of thermal conductance
on the cold and the hot sides y is demonstrated.
Characteristics of TCM are calculated by the
numerical method in accordance with different ratio
y preserving same K¢. They are compared with the
analytical method, when equal thermal conduc-
tances Kh = Kc (y = 0.5) are assumed. It seems that
the analytical method simulates characteristics of a
device unreliably at high current intensities when
Kc is much higher than Kh (y> 0.65). It is notice-
able that q0c has smaller values at y = 0.5 + x rather
than y = 0.5 � x, thus reducing thermal resistance
on the hot side of a device is more preferred than
that on the cold side.

Optimal y and j¢ for maximal q0c in Eq. 6 could be
defined for different K¢ or ZT-parameter (F). Actual
optimal parameters are expected to be lower as
Eq. 6 does not include temperature dependence.
Contour plots of q0c y; j0ð Þ and COP(y, j¢) for
K¢ = 5…100 and ZT = 1 are shown on Fig. 7. Opti-
mal y, j¢ and corresponding maximal q0c and COP
values for K¢ = 1…1000 are summarized in Table II.
Maximal cooling capacity is observed at j¢ fi 1 and
COP fi 0.5 at higher K¢ values with respect to the
classical theory. At lower K¢ values optimal j¢ and y
are shifted to lower values. It is noticeable that even
when thermal conductance on the sides of a device is

Table II. Optimal parameters for maximal cooling capacity simulated for different K¢ and ZT = 1

Dimensionless
thermal
conductance, K¢

Fraction of
thermal conductance
on the cold side, y

Dimensionless
current intensity, j¢

Dimensionless
maximal cooling
capacity, q0

max

Coefficient of
performance, COP

1 0.34 0.15 0.026 0.324
2 0.36 0.26 0.078 0.348
5 0.38 0.48 0.245 0.370
25 0.42 0.84 0.694 0.434
100 0.44 0.95 0.908 0.485
1000 0.45 1.00 0.990 0.493
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100 times higher than thermal conductance of TE
pellets (K¢ = 100), which seems a fairly good condi-
tion for heat transfer, there is still a decrease of
9.2% in maximal cooling capacity compared to
calculated by the classical theory. For K¢ = 1000
the decrease is of 1%. Thus, we can conclude that
taking into account thermal resistance between a
material and an environment or cooling object is of
great importance.

CONCLUSIONS

In this work a dimensionless model for simulation
of parameters of thermoelectric cooling device tak-
ing into account thermal resistance between a
material and a heat medium is proposed. For
calculation of the basic device parameters simple
analytical equations are derived. The model can be
used for determination of optimal design parame-
ters for maximal cooling capacity of a device. The
applicability of the analytical method is estimated
in area of relatively low thermal resistance values
(K¢ ‡ 5) and close to thermally symmetric systems
(y = 0.2…0.65). The numerical and the combined
methods are suggested for improved simulation
throughout the whole range of y, K¢ values. It is
shown that even rather small thermal resistance of
components of a thermoelectric system can affect
greatly on U(I) and Qc(I) dependence. Thermal
resistance on the hot side reduces cooling capacity
more significantly than that on the cold side. A
method for determining equivalent thermal
resistances/conductances of thermally symmetric
thermoelectric cooling system is proposed.
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