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Sn-Ag-Cu solder is a promising candidate to replace conventional Sn-Pb solder.
Interfacial reactions for the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu solder joints were
investigated after aging at 150°C. The under bump metallization (UBM) for
the Sn-3.0Ag-(0.5 or 1.5)Cu solders on the chip side was an Al/Ni(V)/Cu thin
film, while the bond pad for the Sn-3.0Ag-0.5Cu solder on the plastic substrate
side was Cu/electroless Ni/immersion Au. In the Sn-3.0Ag-0.5Cu joint, the Cu
layer at the chip side dissolved completely into the solder, and the Ni(V) layer
dissolved and reacted with the solder to form a (Cu1�y,Niy)6Sn5 intermetallic
compound (IMC). For the Sn-3.0Ag-1.5Cu joint, only a portion of the Cu layer
dissolved, and the remaining Cu layer reacted with solder to form Cu6Sn5

IMC. The Ni in Ni(V) layer was incorporated into the Cu6Sn5 IMC through
slow solid-state diffusion, with most of the Ni(V) layer preserved. At the plas-
tic substrate side, three interfacial products, (Cu1�y,Niy)6Sn5, (Ni1�x,Cux)3Sn4,
and a P-rich layer, were observed between the solder and the EN layer in both
Sn-Ag-Cu joints. The interfacial reaction near the chip side could be related
to the Cu concentration in the solder joint. In addition, evolution of the
diffusion path near the chip side in Sn-Ag-Cu joints during aging is also
discussed herein.

Key words: Flip chip, interfacial reaction, Sn-Ag-Cu solder

INTRODUCTION

With concerns about the toxic effects of Pb on
human beings and the environment, researchers
have investigated several Pb-free solders to replace
conventional Sn-Pb solders.1–4 Sn-Ag-Cu solder is
one candidate because of its low melting tempera-
ture and sufficient mechanical properties.5,6 Flip-chip
technology has been used since the 1960s7 and exhib-
its several advantages, such as high input/output con-
nects, low cost, high-frequency performance, and easy
assembly. It has become one of the most attractive
processing methods used in microelectronics.8,9

In the flip-chip technology, multilayered thin-film
metallization is used in the under bump metalliza-
tion (UBM) as the bonding pad on Si chips. Thin-
film UBMs are crucial due to their low residual
stress, which diminishes the risk of Si cratering

around the metallization.10 The Al/Ni(V)/Cu UBM
is currently applicable in flip-chip technology when
Sn-Ag-Cu solder is used.10–13 In this UBM, Cu acts
as a wetting layer for the solder while Ni(V) is an
efficient barrier layer against solder diffusion.

Recently, the interfacial reactions between
Sn-Ag-Cu solder and Al/Ni(V)/Cu UBM after multi-
ple reflows and aging tests were reported.10–13 How-
ever, the literature data concerning the effect of Cu
concentration on the interfacial reactions between
Sn-Ag-Cu solder and Al/Ni(V)/Cu UBM is limited.14

In addition, metallurgical studies on assembled
Sn-Ag-Cu packages are still lacking.11,12 The aim
of this study is to investigate in detail the interfacial
reactions and compound formation in assembled
Sn-3.0Ag-(0.5 or 1.5)Cu packages during aging at
150°C. Because the material systems of the UBM
on the chip and plastic substrate are different, inter-
facial reactions near the chip and substrate sides
were evaluated, respectively. In addition, the influence(Received August 30, 2005; accepted May 22, 2006)
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of Cu concentration on the compound formation
near the chip side was also investigated.

EXPERIMENTAL PROCEDURES

Figure 1 shows the schematic diagram of the flip-
chip Sn-3.0Ag-(0.5 or 1.5)Cu solder joint used in this
study. A test chip with ball-shaped Sn-3.0Ag-(0.5
or 1.5)Cu solder bumps was flipped over and
assembled to a bismaleimide triazine (BT) substrate
with Sn-3.0Ag-0.5Cu pre-solder bumps. The inter-
connection line on the Si chip was sputtered with
1 mm of Cu; 1.2 mm Al was then sputtered onto
the Cu conductor. A trilayer of Al/Ni(V)/Cu thin film
was then sputtered onto the metallized substrate
to form an UBM structure. The thicknesses of Al,
Ni(V), and Cu were 1.2 mm, 1.0 mm, and 0.5 mm, re-
spectively. After the UBM was deposited onto the Si
wafer, the Sn-3.0Ag-(0.5 or 1.5)Cu solder paste was
stencil-printed on the Al/Ni(V)/Cu UBM and then
reflowed at 240°C. The diameter of the flip-chip sol-
der bump was 100 mm. On the BT substrate,
Sn-3.0Ag-0.5Cu solder paste was stencil-printed on
the electroless Ni-P (EN)/immersion Au finished
bonding pads, followed by a reflow step at 240°C.
The electroless Ni-P and immersion Au layers were
;5 and 0.1 mm thick, respectively, and the diameter
of bonding pad on the BT substrate was 90 mm.
After assembly, the gaps between the Si chip and
the BT substrate were filled with underfills.

The as-assembled samples were aged at 150°C
for 168 h, 500 h, 1,000 h, 1,500 h, and 2,000 h, respec-
tively. The as-assembled and aged samples were first
cold-mounted in epoxy and then sectioned by a slow-
speed diamond saw. The cross-sectional samples were
ground, polished, and etched with 1 part hydrochloric
acid/9 parts methanol at room temperature for inter-
facial analysis. The interfacial morphologies at the
chip side and BT substrate side were analyzed by
field-emission scanning electron microscopy (FE-
SEM, JSM-6500F, JEOL, Japan Electron Optics Lab-

oratory, Tokyo, Japan). Phase compositions in the sol-
der joints and elemental distributions across the joint
interfaces were quantitatively measured with a con-
ventional electron probe microanalyzer (EPMA, JXA-
8800M, JEOL) with the aid of a ZAF (Z 5 atomic
number factor, A 5 absorption factor, F 5 character-
istic fluorescence correction) program,15 as well as a
newly developed field-emission EPMA (FE-EPMA
8500F, JEOL). Additional x-ray color mapping images
of the solder joints were made with FE-EPMA.

RESULTS AND DISCUSSION

Interfacial Morphology and Phase
Identification of As-Assembled
Sn-Ag-Cu Joints

The cross-sectional morphology near the chip side
in the as-assembled Sn-3.0Ag-0.5Cu joint is
exhibited in Fig. 2a. Only one scalloped-type inter-
facial product was found between the solder and
Ni(V) layer after assembly. In consideration of the
activation volume caused by the interaction
between the electron beam in EPMA and the mate-
rial under investigation, the size of the interfacial
product is near the detection limit of the EPMA, i.e.,
;1 mm.15 To achieve a reliable quantitative result,
the appropriate accelerating voltage, beam current,
and focused-beam size were deliberately selected in
the EPMA analysis.16 Note that the reported com-
positions listed in this study are the averages of at
least 10 measured points. The average composition
(in at.%) of scalloped-type interfacial product was
45.9Sn-36.6Cu-17.5Ni. The ratio of the atomic per-
centage of (Cu 1 Ni) to Sn was (36.6 1 17.5)/45.9,
which is close to 6:5. Hence, this interfacial product
could be denoted as (Cu1�y,Niy)6Sn5. The Ni content
in the (Cu1�y,Niy)6Sn5 IMC varied between 15.8 and
17.5 at.% (i.e., y 5 0.29–0.32).

In the case of the as-assembled Sn-3.0Ag-1.5Cu
joint, only scalloped-type interfacial product formed
near the chip side (Fig. 2b). After EPMA quantitative
analysis, the interfacial product was also identified
as the (Cu1�y,Niy)6Sn5 IMC. However, the concentra-
tion of dissolved Ni in (Cu1�y,Niy)6Sn5 for the as-
assembled Sn-3.0Ag-1.5Cu joint changed from 3.0
to 6.1 at.% (i.e., y 5 0.05–0.11), which was less than
that in the as-assembled Sn-3.0Ag-0.5Cu joint.

In the as-assembled Sn-3.0Ag-0.5Cu joint, the Cu
layer was exhausted and white patches were
observed in the Ni(V) layer (Fig. 2a). White patches
were also observed between Sn-3.5Ag-1.0Cu and
Al/Ni(V)/Cu UBM after 5 reflows in Tu’s study.10

The white patches were denoted as Sn patches. Sn
patches are thinner than the EPMA detection limit,
i.e., ;1 mm.15 To obtain reliable quantitative data,
the composition of Sn patches was further measured
with a newly developed FE-EPMA procedure and was
(numbers in at.%) 31.8Al-11.7Ni-37.0Sn-11.1Cu-8.4V.
For the as-assembled Sn-3.0Ag-1.5Cu joint, the Cu
layer was depleted and converted to (Cu1�y,Niy)6Sn5.
However, the Ni(V) layer remained intact (Fig. 2b).

Fig. 1. Schematic illustration of the flip-chip Sn-3.0Ag-(0.5 or 1.5)Cu
solder joint employed in this study. The test chip with ball-shaped Sn-
3.0Ag-(0.5 or 1.5)Cu solder bumps was flipped over and assembled
to a bismaleimide triazine (BT) substrate with Sn-3.0Ag-0.5Cu pre-
solder bumps. A sputtered trilayer of a 1.2 mm Al/1.0 mm Ni(V)/0.5 mm
Cu thin film was used as the UBM structure on the chip. In addition,
the surface finish on the Cu pad at the BT substrate was the electro-
less Ni-P(5 mm)/immersion Au(0.1 mm) structure.
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With respect to the substrate side in the
Sn-3.0Ag-(0.5 or 1.5)Cu joints, the interfacial prod-
uct between solder and EN was identified as
(Cu1�y,Niy)6Sn5 with the aid of EPMA (Fig. 3). Ni
content in the (Cu1�y,Niy)6Sn5 for Sn-3.0Ag-0.5Cu
joint was between 18.5 at.% and 23.7 at.% (y 5 0.34–
0.44). On the other hand, in the (Cu1�y,Niy)6Sn5 for
the Sn-3.0Ag-1.5Cu joint, dissolved Ni ranged be-
tween 17.0 at.% and 23.7 at.% (y 5 0.31–0.44).
High-magnification back-scattered electron imag-

ing (BEI) for the Sn-3.0Ag-1.5Cu joint (Fig. 4)
clearly showed that two interfacial products formed
in the interface of (Cu1�y,Niy)6Sn5 and EN, in which
the size was smaller than the EPMA detection limit.
The compositions of these products were further
measured with FE-EPMA. The average composition
of the interfacial products (in at.%) was 56.1Sn-
10.5Cu-33.4Ni. The ratio of (Ni 1 Cu) to Sn was

close to 3:4; and the interfacial product adjacent to
(Cu1�y,Niy)6Sn5 could then be considered to be a
(Ni1�x,Cux)3Sn4 IMC. The Cu content in (Ni1�x,
Cux)3Sn4 was maintained at ;10.5 at.% (x 5 0.24).
The composition (in at.%) of interfacial product close
to the EN layer was 5.9Sn-72.5Ni-20.6P-1.0Cu. It is
evident that P enrichment occurs near the interface
of the EN/solder. Because of the Ni diffusion from
the EN toward the solder, P is left behind and seg-
regated near the interface of the EN/solder. For the
as-assembled Sn-3.0Ag-0.5Cu joint, (Ni1�x,Cux)3
Sn4 and P-rich layers also formed between the
(Cu1�y,Niy)6Sn5 and EN layers.

Interfacial Reaction at the Chip Side
during Aging

After assembly, the Sn-3.0Ag-(0.5 or 1.5)Cu joints
were aged at 150°C for 168 h, 500 h, 1,000 h,

Fig. 2. Cross-sectional image of interfacial morphology at the chip side in the as-assembled flip-chip joints: (a) Sn-3.0Ag-0.5Cu; (b) Sn-3.0Ag-
1.5Cu.

Fig. 3. Cross-sectional image of interfacial morphology at the substrate side in the as-assembled flip chip joints: (a) Sn-3.0Ag-0.5Cu;
(b) Sn-3.0Ag-1.5Cu.
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1,500 h, and 2,000 h, respectively. Typical interfa-
cial morphologies at the chip side of Sn-3.0Ag-0.5Cu
joints aged for various time are presented in Fig. 5.
The scalloped-type interfacial product between
solder and UBM was identified as (Cu1�y,Niy)6Sn5

with the aid of EPMA. The composition of
(Cu1�y,Niy)6Sn5 IMC at the chip side was not
unique, as shown in Table I. In addition, the Ni(V)
layer was gradually consumed during aging (Fig. 5),
but the amount of Sn patches increased with aging
time. The area fraction (in %) of Sn patches to [Ni(V)
layer 1 Sn patches] after 168 h, 500 h, 1,000 h,
1,500 h, and 2,000 h of aging was 17.4, 18.6, 21.8,
24.1, 32.0, and 61.6, respectively.

Interfacial product formed adjacent to the
(Cu1�y,Niy)6Sn5 IMC (Fig. 5b–d). After EPMA quan-
titative analysis, the composition of white product
(numbers in at.%) was (25.0 6 0.8)Sn-(74.2 6
0.7)Ag-(0.8 6 0.1)Cu, and the ratio of (Ag 1 Cu) to
Sn approached 3:1. The white product was thus

Fig. 4. BEI showing the interfacial morphology at the substrate side
in the as-assembled Sn-3.0Ag-1.5Cu joint.

Fig. 5. Cross-sectional image of interfacial morphology at the chip side in the Sn-3.0Ag-0.5Cu joints after aging at 150°C for various times: (a) 168 h,
(b) 500 h, (c) 1,000 h, and (d) 2,000 h.
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considered to be Ag3Sn with a small amount of
dissolved Cu. The crystal structure of Cu is fcc, iden-
tical to that of Ag. The atomic radii of Cu and Ag are
0.128 nm and 0.144 nm, respectively. The atomic
radius of Cu is thus 11.1% smaller than that of
Ag. The difference in atomic radii between Cu and
Ag is less than the limit proposed by Hume-Rothery

rule, which indicates that extensive solid solubility
of one metal in another occurs only if the radii of the
metals differ by ,15%.17 As a result, some Ag in
Ag3Sn IMC could be substituted by Cu.

For the Sn-3.0Ag-1.5Cu joints, a (Cu1�y,Niy)6Sn5
IMC also formed between solder and UBM dur-
ing 2,000 h of aging (Fig. 6). The value of y in
(Cu1�y,Niy)6Sn5 at the chip side in the Sn-3.0Ag-
1.5Cu joints was altered and smaller than that in
the Sn-3.0Ag-0.5Cu joints (Table I). On the other
hand, the Ni(V) layer of Al/Ni(V)/Cu UBM was pre-
served even after 2,000 h of aging. No Sn patch
formed between the interface of solder and UBM,
even up to 2,000 h of aging. The thickness of
(Cu1�y,Niy)6Sn5 IMC at the chip side was measured
under specific aging conditions (Table II). The thick-
ness of (Cu1�y,Niy)6Sn5 for Sn-3.0Ag-1.5Cu joints was
slowly increased with aging time. In the Sn-3.0Ag-
0.5Cu joints, the (Cu1�y,Niy)6Sn5 IMC gradually grew
from 1.10 mmat the as-assembled condition to 1.73 mm
at 500 h of aging, and then contracted to 1.36 mm at

Table I. Measured y Values in (Cu1�y,Niy)6Sn5 IMCs
Formed near Chip and Substrate Sides in

Sn-3.0Ag-(0.5 or 1.5)Cu Joints Aged at 150°C

Aging
Time (h)

Sn-3.0Ag-0.5Cu Sn-3.0Ag-1.5Cu

Chip
Side

Substrate
Side

Chip
Side

Substrate
Side

0 0.29–0.32 0.34–0.44 0.05–0.11 0.31–0.44
168 0.21–0.32 0.34–0.44 0.04–0.11 0.28–0.44
500 0.21–0.32 0.34–0.44 0.04–0.11 0.20–0.44
1000 0.15–0.32 0.27–0.44 0.03–0.11 0.19–0.44
1500 0.11–0.32 0.24–0.44 0.03–0.11 0.18–0.44

Fig. 6. Cross-sectional image of interfacial morphology at the chip side in the Sn-3.0Ag-1.5Cu joints after aging at 150°C for various times: (a)
168 h, (b) 500 h, (c) 1,000 h, and (d) 2,000 h.
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2,000 h of aging. The different growth behavior of
the (Cu1�y,Niy)6Sn5 IMC between Sn-3.0Ag-0.5Cu
and Sn-3.0Ag-1.5Cu systems may be attributed to
the formation of Sn patches.

Interfacial Reaction at the Substrate Side
during Aging

During 1,500 h of aging, the interfacial morphol-
ogies near the substrate side are similar at various
aging times. Figure 7a shows typical interfacial

morphology near the substrate side in the
Sn-3.0Ag-0.5Cu joints for 500 h of aging. After
detailed EPMA composition analysis, the major
interfacial product in the interface of solder and
EN was identified as (Cu1�y,Niy)6Sn5. With the aid
of high-magnification BEI, thin, irregular-type and
layer-type interfacial products were found between
(Cu1�y,Niy)6Sn5 and EN after 1,500 h of aging. An
enlarged BEI of typical interfacial morphology at
the substrate side in the Sn-3.0Ag-0.5Cu joint aged
for 500 h is presented in Fig. 8. The thin, irregular-
type and layer-type products were confirmed as
(Ni1�x,Cux)3Sn4 and P-rich layer, respectively, on
the basis of quantitative EPMA analysis. After
2,000 h of aging, (Ni1�x,Cux)3Sn4 IMC grew to 2.08
6 0.41 mm in thickness (Fig. 7b).

For Sn-3.0Ag-1.5Cu joints, the interfacial mor-
phologies at the substrate side are similar at various
aging times. The morphologies in the joints after
500 h and 2,000 h are exhibited in Figs. 7c and d,
respectively. The major product between solder and

Table II. Average Thicknes of (Cu1�y,Niy)6Sn5 IMC
(mm) Formed at the Chip Side for the Sn-3.0Ag-(0.5

or 1.5) Cu Joints Aged at 150°C

Solder Joint

Aging Time (h)

0 168 500 1000 1500 2000

Sn-3.0Ag-0.5Cu 1.10 1.38 1.73 1.53 1.49 1.36
Sn-3.0Ag-1.5Cu 1.52 1.86 1.86 1.96 1.97 2.06

Fig. 7. Cross-sectional image of interfacial morphology at the chip side in the Sn-3.0Ag-0.5Cu joints aged for (a) 500 and (b) 2,000 h and in the
Sn-3.0Ag-1.5Cu joints aged for (c) 500 h and (d) 2,000 h.
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EN was confirmed as (Cu1�y,Niy)6Sn5 IMC. With the
aid of high-magnification BEI and FE-EPMA, thin
(Ni1�x,Cux)3Sn4 IMC and a P-rich layer were also
revealed in the interface of (Cu1�y,Niy)6Sn5 and
EN after 2,000 h of aging.
The thickness of (Cu1�y,Niy)6Sn5 IMC at the sub-

strate side was measured in the center of the solder/
EN interface (Fig. 9). In the Sn-3.0Ag-1.5Cu joints,
(Cu1�y,Niy)6Sn5 at the substrate side grew slowly
with aging time. The thickness of (Cu1�y,Niy)6Sn5

in the Sn-3.0Ag-0.5Cu joints also increased with
increasing aging time up to 1,500 h. Nevertheless,
the thickness of (Cu1�y,Niy)6Sn5 was maintained at
;3.4 mm after .1,500 h. This may be attributed to
the growth of (Ni1�x,Cux)3Sn4 IMC.

Effect of Cu Content in Solder on Formation
of (Cu1�y,Niy)6Sn5 IMC near the Chip Side
during Assembly

As mentioned before, the amount of dissolved
Ni in (Cu1�y,Niy)6Sn5 near the chip side for the

Sn-3.0Ag-1.5Cu joint was smaller than that for the
Sn-3.0Ag-0.5Cu. On the other hand, the thicknesses
of the Ni(V) layer were 0.22 6 0.11 mm in the
Sn-3.0Ag-0.5Cu joint and 0.50 6 0.05 mm in the
Sn-3.0Ag-1.5Cu joint, respectively. Therefore,
the amount of consumed Ni(V) layer in the
Sn-3.0Ag-0.5Cu joint was greater than that in the
Sn-3.0Ag-1.5Cu joint. The different interfacial reac-
tions between Sn-3.0Ag-0.5Cu and Sn-3.0Ag-1.5Cu
joints could be related to the concentration of Cu in
the solder. If the entire Cu layer dissolved into the
Sn-Ag-Cu solder, then the Cu concentration (in %)
in the molten solder can be calculated as

CCu in solder ¼
WCu in solder bump 1WCu in pre�solder 1WCu layer

Wsolder bump 1Wpre�solder 1WCu layer
3 100

(1)

where WI represents the weight of I, and WCu in I is
the weight of Cu in I. To obtain WI, the density and
volume of flip-chip solder bump, pre-solder, and Cu
layer are required. The density of Sn-3.0Ag-0.5Cu
and Sn-3.0Ag-1.5Cu solder can be obtained by

rSn�pAg�qCu 5
100

100� p� q

rSn
1

p

rAg
1

q

rCu

(2)

where p and q represent the weight percentage of
Ag and Cu in solder and rI indicates the density of I.
The densities of Sn, Ag, and Cu are 7.30, 10.49, and
8.94 g/cm3, respectively.18 Therefore, the calculated
densities of Sn-3.0Ag-0.5Cu and Sn-3.0Ag-1.5Cu,
respectively, are 7.37 and 7.39 g/cm3.

Before the first reflow for the flip-chip solder
bump, the Sn-3.0Ag-(0.5 or 1.5)Cu solder bump used
in this study exhibited a cylindrical shape, with a
height of 90 mm and a diameter of 100 mm. After
stencil printing, the pre-solder bump on the substrate
also showed a cylindrical shape, 42 mm in height and
90 mm in diameter. The volume and weight of the
flip-chip solder bump, pre-solder bump, and Cu layer
were calculated and are summarized in Table III. The
masses of Cu in the flip-chip solder bump and pre-
solder bump are also listed in Table III. The
Cu contents in molten solder were estimated to be
0.98 wt.% for Sn-3.0Ag-0.5Cu joint and 1.71 wt.%
for Sn-3.0Ag-1.5Cu joint.

On the basis of thermodynamic data for the
Sn-Ag-Cu system,10,19–23 an enlarged Sn corner of
the Sn-Ag-Cu ternary isotherm at 240°C was pro-
posed to illustrate the effect of Cu content in solder
on the formation of (Cu1�y,Niy)6Sn5 IMC near the
chip side (see Fig. 10). The saturation solubility of
Cu in the molten solder with 3.0 wt.% Ag at 240°C
is ;1.51 wt.%, which is larger than the Cu content
in molten solder for the Sn-3.0Ag-0.5Cu joint.
Therefore, the molten solder in the Sn-3.0Ag-
0.5Cu joint will be able to dissolve the Cu layer com-
pletely, and the Ni(V) layer will be exposed and then
come into contact with the molten solder. The Ni in

Fig. 8. BEI showing the interfacial morphology at the substrate side
in the Sn-3.0Ag-0.5Cu joint aged for 500 h.

Fig. 9. Thickness of (Cu1�y,Niy)6Sn5 IMC formed at the substrate
side for Sn-3.0Ag-(0.5 or 1.5)Cu joints aged at 150°C.
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the Ni(V) layer will thus dissolve into the molten
solder and result in the formation of the
(Cu1�y,Niy)6Sn5 IMC with a higher Ni content. With
respect to the Sn-3.0Ag-1.5Cu joint, if the Cu layer
completely dissolved into molten solder, then the
Cu content in solder was 1.71 wt.%, which was
greater than the saturation limit at 240°C. There-
fore, only some parts of the Cu layer are dissolved
into the molten solder. After the Cu content in mol-
ten solder reaches its saturation limit, the remain-
ing Cu layer will react with solder to form Cu6Sn5

IMC on the Ni(V) layer. Because the Ni(V) layer is
not exposed to the liquid phase of the Sn-3.0Ag-
1.5Cu solder, the Ni was incorporated into the
Cu6Sn5 IMC through slow solid-state diffusion,
resulting in preservation of most of the Ni(V) layer.
The dissolved Ni in (Cu1�y,Niy)6Sn5 IMC for Sn-
3.0Ag-1.5Cu joint was thus less than that for Sn-
3.0Ag-0.5Cu joint.

Diffusion Path Evolution in
(Cu1�y,Niy)6Sn5 IMC near the
Chip Side during Aging at 150°C

Compositions of the (Cu1�y,Niy)6Sn5 IMC near
the chip side in the Sn-3.0Ag-(0.5 or 1.5)Cu joints
after various aging times are summarized in Table
I. At the chip side, the maximum values of y in
(Cu1�y,Niy)6Sn5 were 0.32 for Sn-3.0Ag-0.5Cu
joints and 0.11 for Sn-3.0Ag-1.5Cu joints at all aging
times. However, the minimum value of y in
(Cu1�y,Niy)6Sn5 for both Sn-Ag-Cu joints varied with
aging time.

To investigate the detailed variation of the com-
position of Ni in the (Cu1�y,Niy)6Sn5 IMC near the
chip side, several electron microprobe trace points
were set from (Cu1�y,Niy)6Sn5 adjacent to the Ni(V)
layer into (Cu1�y,Niy)6Sn5 near the solder. Typical
location and quantitative analysis results for trace
points in the Sn-Ag-Cu joints aged for 1,500 h are
presented in Fig. 11 and Table IV. In the Sn-3.0Ag-
1.5Cu joint aged for 1,500 h, the value of y
in (Cu1�y,Niy)6Sn5 decreased from 0.11 at the
(Cu1�y,Niy)6Sn5/UBM interface to 0.03 at the
solder/(Cu1�y,Niy)6Sn5 interface. For joints aged
for 168, 500, and 1,000 h, the value of y in
(Cu1�y,Niy)6Sn5 was reduced from 0.11 at the
(Cu1�y,Niy)6Sn5/UBM interface toward specific min-
imum concentrations at the solder/(Cu1�y,Niy)6Sn5

interface (Table I).
For the Sn-3.0Ag-0.5Cu joint aged .1,500 h,

the value of y in (Cu1�y,Niy)6Sn5 near the UBM
was ;0.32 and decreased to 0.11 when approach-
ing the solder side (Fig. 11b and Table IV). How-
ever, the value of y in (Cu1�y,Niy)6Sn5 close to the
UBM was maintained at ;0.32 for various aging
times and was then reduced to the minimum
value at the solder/(Cu1�y,Niy)6Sn5 interface
(Table I).

According to phase equilibrium data of the
Sn-Cu-Ni system,24–29 a Sn-Cu6Sn5-Ni3Sn4 ter-
nary-phase region in the Sn-Cu-Ni ternary iso-
therm was proposed to discuss the diffusion
path in the (Cu1�y,Niy)6Sn5 IMC near the chip
side. The maximum and minimum concentrations
of Ni dissolved in (Cu1�y,Niy)6Sn5 at different
aging times were mapped to the ternary isotherm
(Fig. 12). In the Sn-3.0Ag-1.5Cu joints, the diffu-
sion path after assembly began at
(Cu0.89,Ni0.11)6Sn5 (point I1) adjacent to the
UBM and continued toward (Cu0.95,Ni0.05)6Sn5

close to the solder (point I2), as shown in Fig.
12a. With increasing aging time, the diffusion
path in (Cu1�y,Niy)6Sn5 IMC changed from path
I1–I3 at 168 h of aging to path I1–I4 at 2,000 h of
aging.

When the Sn-3.0Ag-0.5Cu joints were aged for
fewer than 1,500 h, the diffusion path was also
broadened from path J1–J2 after assembly to path
J1–J5 at 1,500 h of aging (Fig. 12b). After 2,000 h of
aging, the diffusion path in the (Cu1�y,Niy)6Sn5 IMC
become shorter, i.e., path J1–J6. This may be attrib-
uted to the rapid formation of Sn patches after 2,000 h
of aging, as discussed before. It should be noted that
the ratio of [Sn patches] to [Ni(V) layer 1 Sn

Table III. Calculated Weight of Flip-Chip Solder Bump, Pre-solder Bump, and Cu Layer in the UBM and
Calculated Weight of Cu in Flip-Chip Solder Bump, Pre-solder Bump, and Cu Layer

I rI (g/cm
3) VI (cm

3) WI (g) WCu in I (g)

Sn-3.0Ag-0.5Cu solder bump 7.37 7.07 3 10�7 5.21 3 10�6 2.61 3 10�8

Sn-3.0Ag-1.5Cu solder bump 7.39 7.07 3 10�7 5.22 3 10�6 7.83 3 10�8

Sn-3.0Ag-0.5Cu pre-solder 7.37 2.67 3 10�7 1.97 3 10�6 9.85 3 10�9

Cu layer 8.94 3.93 3 10�9 3.51 3 10�8

Fig. 10. Enlarged Sn corner of the Sn-Ag-Ni ternary isotherm at
240°C (see Refs. 10 and 19–23).
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patches] increased from 32.0% at 1,500 h of aging
to 61.6% at 2,000 h of aging.

CONCLUSIONS

• During the assembly process, the Cu layer in the
thin-film UBM was exhausted in the Sn-3.0Ag-

0.5Cu joint. The Ni(V) layer was thus in contact
with molten solder, resulting in formation of
(Cu1�y,Niy)6Sn5 IMC.

• Some portion of the Ni(V) layer was replaced
with Sn patches in the Sn-3.0Ag-0.5Cu joints.
With increasing aging time, the Ni(V) layer
was gradually consumed, and the ratio of [Sn
patches] to [Ni(V) layer 1 Sn patches] increased
to 61.6% at 2,000 h of aging.

• For the Sn-3.0Ag-1.5Cu joint, only some por-
tions of Cu layer were dissolved into molten sol-
der during assembly. Therefore, the remaining
Cu layer rapidly reacted with solders to form
Cu6Sn5, which completely covered the Ni(V)
layer. Ni from the Ni(V) layer was incorporated
into the Cu6Sn5 IMC through slow solid-state
diffusion. Thus the concentration of Ni in
(Cu1�y,Niy)6Sn5 was thus less than that in the
Sn-3.0Ag-0.5Cu joint.

Fig. 11. Cross-sectional image of interfacial morphology at the chip side in solder joints aged for 1,500 h: (a) Sn-3.0Ag-1.5Cu and (b) Sn-3.0Ag-
0.5Cu.

Table IV. Quantitative Analysis Results for Trace
Points in Fig. 11 at Chip Side in the Sn-3.0Ag-(0.5 or

1.5)Cu Joints after 1500 h of Aging

Measurement
Locations

Composition (at.%)

IMCSn Cu Ni

A1 45.9 48.3 5.8 (Cu0.89,Ni0.11)6Sn5

A2 46.3 49.8 3.9 (Cu0.93,Ni0.07)6Sn5

A3 46.8 51.5 1.7 (Cu0.97,Ni0.03)6Sn5

B1 46.1 36.4 17.5 (Cu0.68,Ni0.32)6Sn5

B2 45.9 41.5 12.6 (Cu0.77,Ni0.23)6Sn5

B3 46.7 47.6 5.7 (Cu0.89,Ni0.11)6Sn5

Fig. 12. Sn-Cu6Sn5-Ni3Sn4 ternary-phase region in the Sn-Cu-Ni isotherm. Compositions of (Cu1�y,Niy)6Sn5 near the chip side for various aging
times are mapped to isotherms in (a) Sn-3.0Ag-1.5Cu joints and (b) Sn-3.0Ag-0.5Cu joints.
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• With respect to the interfacial reaction near the
substrate side, (Cu1�y,Niy)6Sn5, (Ni1�x,Cux)3Sn4,
and P-rich layer formed between solder and EN
for both Sn-Ag-Cu joints after assembly and
aging. The major interfacial product was the
(Cu1�y,Niy)6Sn5 IMC except for the Sn-3.0Ag-
0.5Cu joint aged for 2,000 h. After 2,000 h of
aging, (Ni1�x,Cux)3Sn4 IMC grew to 2.08 mm,
which is a value close to that of the
(Cu1�y,Niy)6Sn5 IMC in the Sn-3.0Ag-0.5Cu
joint.

• The diffusion path in the (Cu1�y,Niy)6Sn5 IMC
near the chip side was broadened with aging
time except for the Sn-3.0Ag-0.5Cu joint aged
for 2,000 h. After 2,000 h of aging, the diffusion
path in (Cu1�y,Niy)6Sn5 became shortened in the
Sn-3.0Ag-0.5Cu joint. This can be attributed to
the rapid formation of Sn patches after 2,000 h
of aging.
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