Thermodynamic Aspects of Steel Reoxidation Behavior by the Ladle Slag System of CaO-MgO-SiO₂-Al₂O₃-Fe_tO-MnO-P₂O₅

SEON-HYO KIM and BO SONG

The reoxidation behavior of steels by slag in the secondary steelmaking process was addressed by investigating the thermodynamic equilibria between the liquid iron containing Mn and P and CaO-MgO-SiO2- Al2O3-P2O5-MnO-Fe*t*O ladle slag at 1873 K. The activity coefficient of Fe*t*O shows a maximum value in the vicinity of the basicity $((X_{\text{CaO}} + X_{\text{MgO}} + X_{\text{MnO}})/(X_{\text{SiO}_2} + X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5})) = 2.5$ at the specific mole fraction range of Fe*t*O, while that of MnO seems to increase gradually with increasing the basicity. However, the values of $\gamma_{Fe,O}$ and γ_{MnO} showed minima with respect to P₂O₅ content of slag. In addition, the values of $\gamma_{Fe,O}$ and γ_{MnO} increased as (pct CaO)/(pct Al₂O₃) ratio increased at given SiO₂, MgO, and P2O5 contents. The conversion equations between the Fe*t*O and MnO activities and their calculated activities *via* regular solution model were derived by the correlation between the measured and calculated activities over the limited ranges of Fe*t*O and MnO contents. The regular solution model was used to estimate the oxygen potential in the slag. For MgO saturated slags, $a_{Fe_1O_{(l)}} = 0.864 a_{FeO_{(R.S.)}}$, $a_{MnO_{(l)}} =$ 6.38 $a_{\text{MnO}_{(R.S.)}}$. For Al₂O₃ saturated slags, $a_{\text{Fe}_{f}\text{O}_{(l)}} = 2.086 a_{\text{FeO}_{(R.S.)}}$, $a_{\text{MnO}_{(l)}} = 14.39 a_{\text{MnO}_{(R.S.)}}$

slag (reducible oxides such as Fe_tO, MnO, and SiO₂), and refractory in ladle and tundish should be prevented effec- **II. EXPERIMENTALS** tively. The high oxygen potential in the ladle slag may cause reoxidation of the elements in liquid iron such as Al and The master slags were prepared by premelting the mixture Ti, resulting in contamination of steel. Especially, in the case of reagent grade CaCO₃, Al₂O₃, SiO₂, and MgO in a graphite of ultra-low-carbon steel produced by decarburization and crucible, then crushed and bake of ultra-low-carbon steel produced by decarburization and subsequent deoxidation processes in RH vessel, the oxygen decarburization. A vertical resistance furnace with heating
content in liquid iron is extremely low. Therefore, Fe,O and elements of LaCrO₃ was used. The experime content in liquid iron is extremely low. Therefore, Fe_iO and elements of LaCrO₃ was used. The experimental apparatus *MnO* in the refining slag can bring about reoxidation of Al is shown in Figure 1. The metal/slag equ MnO in the refining slag can bring about reoxidation of Al easily. Therefore, it is necessary to avoid reoxidation reaction to P and Mn were approached from the slag to metal side by the ladle slag for the stable production of ultra-low- in the experiments; P was added to the slag as a form of $NH_4H_2PO_4$. An argon gas flow rate of 200 mL/min was used

activity of Fe_tO in slag, but it has been estimated so far by sulfuric acid, P_2O_5 , Mg(ClO₄)₂, sponge Ti heated at 620 °C, the amount of Fe_tO and MnO in slag for convenience. The and Mg(ClO₄)₂ again. Thirty the amount of Fe_rO and MnO in slag for convenience. The slag components such as CaO, MgO, Al₂O₃, SiO₂, P₂O₅, electrolytic iron containing approximately 500 to 1000 ppm *etc*. may affect the activities of Fe_cO and MnO by the interaction oxygen initially and 8 or 12 tion, and the activity coefficients of Fe_iO and MnO may MnO, $\text{Fe}_2\text{O}_4 \cdot 2\text{H}_2\text{O}$, and $\text{NH}_4\text{H}_2\text{PO}_4$ were melted in a also be dependent on the basicity and other properties of MgO or Al₂O₃ crucible a also be dependent on the basicity and other properties of slag. Therefore, it is not accurate to describe the oxygen An appropriate amount of Fe-Mn alloy was introduced to potential of slag only in terms of the amount of Fe_cO and the melt by dropping afterward to adjust the composition of

were discussed from the standpoint of steel cleanliness and

I. INTRODUCTION calculated by using the regular solution model proposed RECENTLY, the demand for ultra-low-carbon steel with
high cleanliness has been progressively increasing. To obtain
high-purity steel, the deoxidized products should be com-
pletely removed and the reoxidation of aluminum

The oxygen potential of slag is related directly to the in the furnace. The argon was passed through, in order, tivity of Fe.O in slag, but it has been estimated so far by sulfuric acid, P_2O_5 , $Mg(CIO_4)_2$, sponge Ti he oxygen initially and 8 or 12 g of the mixture of master slag, MnO, $FeC_2O_4 \cdot 2H_2O$, and $NH_4H_2PO_4$ were melted in a MnO in slag. liquid iron. Thereafter, the melts were stirred twice over a In this work, the thermodynamic equilibria between the period of 4 hours by an Al_2O_3 rod for 30 seconds at 2-hour unid iron containing Mn and P and CaO-MgO-SiO₂-Al₂O₂ intervals for the Al₂O₃ crucible experime liquid iron containing Mn and P and CaO-MgO-SiO₂-Al₂O₃ intervals for the Al₂O₃ crucible experiment to facilitate the P_2O_3 -MnO-Fe,O slag system have been carried out in a MgO dissolution of alumina into the s P₂O₅-MnO-Fe_rO slag system have been carried out in a MgO dissolution of alumina into the slag. In the case of the MgO or Al₂O₃ crucible at 1873 K. The activities of Fe_rO and MnO crucible experiment, the melts w or Al₂O₃ crucible at 1873 K. The activities of Fe_tO and MnO crucible experiment, the melts were unstirred because MgO
were discussed from the standpoint of steel cleanliness and is more quickly dissolved into the sla temperature was measured by a thermocouple of (Pt-6 pct Rh)/(Pt-30 pct Rh) placed on the crucible bottom with an SEON-HYO KIM, Associate Professor, and BO SONG, Research Associate and Engineering, Pohang and metal compositions as a function of reaction time in the case
University of Science and Technology, Pohang, Kyungbuk, Korea. o Manuscript submitted August 24, 1998. beyond 5 hours and, thus, the reaction time was chosen as

6 hours to ensure the reaction equilibrium. After reaching Figure 5 represents the values of log $\gamma_{Fe,O_{(I)}}$ obtained from equilibrium, the crucible was withdrawn quickly out of the the experimental data with MgO-saturate

cence spectroscopy method. The manganese content of the until it reaches a minimum value at around 0.8 pct P_2O_5 ; metal was analyzed by atomic absorption spectroscopy. Inert- thereafter, it tends to increase. Such a tendency can be gas fusion-infrared absorptiometry was used for the oxygen approximately expressed by the following equation:

analysis in the metal. The phosphorus content of the metal was determined using the molybdenum blue colorimetry method.

III. RESULTS AND DISCUSSION

The various equilibrium compositions of CaO-MgO-SiO₂-Al₂O₃-Fe_tO-MnO-P₂O₅ slags and metals obtained in this work are summarized in Table I.

The activity of Fe*t*O in the slag can be calculated using the following reaction:

$$
\text{Fe}_{(l)} + \underline{\text{O}} = \text{Fe}_{l}\text{O}_{(l)} \tag{1}
$$

$$
\Delta G_1^{\circ} = -27,740 + 11.66T \text{ (cal/mole)}^{[2]}
$$

Using the equilibrium constant,

$$
K_1 = a_{Fe_1O_{(l)}}/a_0 = a_{Fe_1O_{(l)}}/f_0[\text{pet O}]
$$
 [2]

where $a_{Fe, O_{(I)}}$ is the activity of total iron oxide in slag with respect to pure liquid standard state; $a₀$ is the activity of Fig. 1—Schematic diagram of experimental apparatus. oxygen in metal relative to 1 wt pct standard state. The activity of oxygen dissolved in the metal can be determined by the chemically analyzed oxygen content. The activity coefficient of oxygen was calculated from the available thermodynamic data and chemical results of solutal elements. The following interaction parameters^[3] listed in Table II were used for the calculation.

Figure 3 exhibits the values of $a_{Fe_1O_{(l)}}$ plotted in the (CaO $+$ MgO + MnO)-(Al₂O₃ + SiO₂ + P₂O₅)-(Fe_tO) pseudoternary system on a mole fraction basis. The isoactivity lines of $a_{Fe_fO_(f)}$ show the increasing tendency with approaching the corner of (Fe*t*O), which is in good agreement with the result by Turkdogan and Pearson^[4] for the slag system of $(CaO + MgO + MnO) - (SiO₂ + P₂O₅) - (Fe_tO).$

Figure 4 shows the activity coefficients of Fe_tO as a function of the basicity $((X_{\text{CaO}} + X_{\text{MgO}} + X_{\text{MnO}})/(X_{\text{SiO2}} +$ $X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5}$) suggested by Elliott and Luerssen^[5] at the various mole fractions of Fe*t*O. As shown in Figure 4, the value of γ_{Fe_t} o_(*l*) does initially increase as the basicity increases to a value of about 2.5, and then it may start to decrease beyond the extreme value at the given mole fraction of Fe*t*O. In other words, the maximum value of the Fe*t*O activity coefficient exists in the vicinity of $(X_{C_80}$ + $X_{\text{MgO}} + X_{\text{MnO}}$ $/(X_{\text{SiO}_2} + X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5}) = 2.5$. It is further shown that the maximum value of $\gamma_{Fe,O(l)}$ generally tends to decrease with the increasing mole fraction of Fe*t*O. Therefore, in order to prevent the reoxidation by ladle slag in the practical process, the slag basicity should be selected not to be in the vicinity of the value of 2.5, which is likely to avoid increasing the oxygen potential in slag induced by the increase of activity coefficient of Fe*t*O. On the other hand, it was reported that the high basicity could act favorably for the elimination of alumina inclusions by increasing the Fig. 2—Variation of slag and metal compositions as function of reaction dissolution rate of alumina into slag.^[6] Therefore, as expecttime. ed from these results, it can be suggested that a careful consideration in selecting the suitable basicity of the ladle slag system is required for the steel cleanliness.

the experimental data with MgO-saturated slags at 1873 K furnace and quenched rapidly in an ice-water bath. With respect to the molar fraction of P_2O_5 . As the P_2O_5 .
The slag compositions were determined by the X-ray fluores-
content increases, the activity coefficient o content increases, the activity coefficient of Fe_tO decreases

Table I. The Equilibrium Compositions of Slag and Metal at 1873 K

Number*	Metal (Mass Pct)			Slag (Mass Pct)						Activity Coefficient		
	[Mn]	[P]	[O]	CaO	MgO	SiO ₂	Al_2O_3	Fe _t O	MnO	P_2O_5	$\gamma_{\rm{FetO}}$	γ_{MnO}
M11	0.410	0.079	0.002	31.14	22.73	10.47	34.19	0.29	0.33	0.005	3.14	4.48
M12	0.210	0.090	0.035	27.53	15.08	5.17	33.32	9.88	7.77	0.426	1.88	1.97
M13	1.020	0.211	0.007	30.81	20.78	12.77	27.53	1.48	5.98	0.018	2.84	2.83
M14	0.330	0.045	0.020	37.92	13.54	6.43	32.42	4.14	4.52	0.204	2.60	3.09
M15	0.790	0.050	0.008	51.08	16.76	16.97	5.36	4.09	3.44	1.469	1.21	4.49
M16	0.140	0.017	0.050	37.40	13.22	16.93	9.35	14.38	7.26	0.658	1.99	2.16
M17	0.240	0.017	0.051	40.08	9.14	6.28	16.51	16.13	9.93	1.122	1.70	2.59
M18	0.150	0.269	0.037	13.32	28.01	12.88	26.10	11.44	7.12	0.286	1.92	1.82
M19	0.180	0.354	0.027	15.57	30.32	15.29	24.97	7.55	5.31	0.150	2.22	2.24
M20	0.210	0.076	0.026	32.87	14.97	5.62	33.28	7.20	5.00	0.256	1.94	2.31
M21	0.200	0.098	0.054	25.18	12.53	9.32	23.08	15.50	12.91	0.731	1.85	1.74
M22	0.240	0.066	0.028	35.75	12.96	5.29	30.26	8.27	5.92	0.740	1.81	2.39
M23	0.014	0.133	0.107	7.33	16.69	8.26	33.76	30.58	2.27	0.392	1.75	1.30
M24	0.068	0.009	0.093	36.37	12.14	10.17	6.72	27.22	5.01	1.492	1.89	2.72
M25	0.039	0.085	0.118	18.36	10.87	6.38	27.15	29.67	5.95	0.959	1.96	1.46
M26	0.053	0.007	0.069	41.54	14.71	5.07	6.44	27.27	2.53	1.541	1.45	3.23
M27	0.046	0.160	0.102	9.82	18.31	11.44	20.18	29.55	9.51	0.486	1.86	1.04
M28	0.056	0.040	0.098	27.01	8.92	8.31	20.59	26.66	6.07	1.412	1.87	1.80
M29	0.082	0.060	0.063	35.45	11.07	9.03	24.06	13.59	4.05	1.343	2.45	2.63
M30	0.095	0.027	0.035	47.79	12.81	10.62	14.85	8.82	2.22	2.106	2.51	3.71
M31	0.220	0.039	0.044	45.84	8.38	6.47	19.75	11.09	6.09	1.573	2.16	3.38
A11	0.480	0.382	0.002	23.30	5.00	8.42	61.63	0.23	0.60	0.011	3.69	2.68
A12	0.350	0.118	0.009	19.30	6.18	7.44	57.34	2.39	6.53	0.019	1.72	0.87
A13	1.100	0.218	0.002	22.86	11.53	11.04	51.29	0.54	1.88	0.022	1.53	1.91
A14	0.170	0.121	0.023	16.08	7.48	5.94	55.57	5.37	8.70	0.047	1.97	0.82
A15	0.920	0.341	0.009	18.56	9.19	2.53	61.99	1.68	5.20	0.043	2.33	2.73
A16	0.150	0.071	0.036	13.63	4.88	3.64	55.62	12.52	8.86	0.040	1.26	1.05

 $*M: MgO$ crucible, and A: $Al₂O₃$ crucible.

Table II. The Interaction Parameters Used in This Work^[3]

			\times 10 ³ $X_{P_2O_5}$ + 0.428
$e_{\Omega}^{0} = -1750/T + 0.734$ $e_{\Omega}^{Mn} = -0.021$ $e_{\Omega}^{p} = 0.07$			
$e_{\text{Mn}}^{\text{O}} = -0.083$	$e^{\text{Mn}}_{\text{Mn}}=0$	$e_{\text{Mn}}^{\text{P}} = -0.0035$	
			This result indicates that the ladle sl

$$
\log \gamma_{Fe_1O_{(I)}} = 0.00925 \times 10^6 \, X_{P_2O_5}^2 - 0.0833
$$
\n
$$
\times 10^3 \, X_{P_2O_5} + 0.428
$$
\n[3]

This result indicates that the ladle slag containing an appropriate amount of P_2O_5 is beneficial for the prevention of steel reoxidation by Fe*t*O in slag in comparison with the ladle slags containing extremely low or comparatively high P_2O_5 contents. Needless to say, the high P_2O_5 content in slags is harmful for dephosphorization. One would ideally like to have as little P_2O_5 in the ladle slag as possible, as a significant amount of phosphorus could revert to the metal, causing serious chemistry problems.

The activity of MnO is another crucial parameter affecting the oxygen potential in the slag.

$$
\underline{\mathbf{Mn}} + \underline{\mathbf{O}} = \mathbf{MnO}_{(l)} \tag{4}
$$

$$
\Delta G_4^{\circ} = -59,470 + 25.84T \, (\text{cal/mole})^{[2]}
$$
 [5]

$$
K_4 = a_{\text{MnO}(l)} / a_{\text{Mn}} a_{\text{O}}
$$

where a_{MnO} is the activity of MnO in the slag with respect to pure liquid standard state; a_O and a_{Mn} are the activities of oxygen and manganese in the metal relative to 1 wt pct standard state. The activity of MnO can be also calculated using the chemical analysis results and the thermodynamic data in Table II.

Figure 6 shows the MnO activity plotted in the $(CaO +$ Fig. 3—Plot of isoactivity line of Fe_iO in the (CaO + MgO + MnO)-
(SiO₂ + Al₂O₃ + P₂O₅)-(MnO) pseudoternative system.

mary system at 1873 K. It can be seen that the MnO activity nary system at 1873 K. It can be seen that the MnO activity

Fig. 4—Relationship between $\gamma_{Fe,O}$ and $(X_{CaO} + X_{MgO} + X_{MnO})/(X_{SiO_2} +$ $X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5}$ ratio under the fixed mole fraction of Fe_tO at 1873 K.

Fig. 5—The effect of P_2O_5 on γ_{Fe_1O} at 1873 K.

shows an increasing tendency with approaching the direction of the $(CaO + MgO + Fe_tO)$ -(MnO) pseudobinary system.

Figure 7 indicates the values for γ_{MnO} plotted against $X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5}$ ratio at 1873 K. the basicity defined by $(X_{\text{CaO}} + X_{\text{MgO}} + X_{\text{Fe}_f\text{O}})/(X_{\text{SiO}_2}$ $X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5}$ at 1873 K. The data seem to be somewhat cally appears to increase as the basicity increases, confirming a function of the basicity expressed by the $(X_{Ca0}$ + that the high value of the $(X_{\text{CaO}} + X_{\text{MgO}} + X_{\text{Fe}_f\text{O}})/(X_{\text{SiO}_2} + X_{\text{MnO}})/(X_{\text{SiO}_2} + X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5}$) ratio is not good for the prevention of steel sen^[5] plotted the values of $\gamma_{MnO(n)}$ obtained from the actual

Fig. 6—Plot of isoactivity line of MnO in the $(CaO + MgO + Fe_iO)$ - $(SiO₂ + Al₂O₃ + P₂O₅)$ -MnO pseudoternary system.

Fig. 7—Relationship between γ_{MnO} and $(X_{CaO} + X_{MgO} + X_{Fe,O})/(X_{SiO_2}$ +

scattered; however, the activity coefficient of $MnO_(l)$ statisti- operation data, as well as the previous laboratory data,^[7] as) ratio and reported $X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5}$ ratio is not good for the prevention of steel that the maximum value of $\gamma_{\text{MnO}(l)} (\approx 3)$ existed on the basicreoxidation by MnO. This result is in fairly good accordance ity value of 2.5. It cannot be assured from their plot, however, with the previously reported ones.^[5,7-9] Elliott and Luers-
that the maximum value of γ_{\text that the maximum value of $\gamma_{MnO_{(l)}}$ is present at a certain critical basicity ratio, since the data points used by them

were scattered to a great extent. Morales and Fruehan^[9] a critical value of about 1.8 and then decreases beyond the recently studied the relationship between $\gamma_{MnO_{(I)}}$ and basicity critical ratio, where the melting

The dependence of $\gamma_{MnO_{(l)}}$ on the mole fraction of P₂O₅ In this work, the regular solution model proposed by
is shown in Figure 8. As a result, the value of $\gamma_{MnO_{(l)}}$ repre-
sents the same tendency as the varia of $X_{P_2O_5}$ considered in this work, indicating that the phosphomulticomponent regular solution is expressed by the follow-
rus oxide in the slag should be controlled critically at around
0.5 pct in order to prevent Al by MnO in slag. The variation of $\gamma_{MnO(l)}$ with respect to P_2O_5 content could be roughly expressed as the following

$$
\log \gamma_{\text{MnO}} = 0.0239 \times 10^6 \, X_{\text{P}_2\text{O}_5}^2 - 0.166
$$
\n
$$
\times 10^3 \, X_{\text{P}_2\text{O}_5} + 0.506
$$
\n[6]

given MgO, SiO_2 , and P_2O_5 contents, the activity coefficients of Fe_cO and MnO tend to increase with an increase of the $(pct CaO)/(pct Al₂O₃)$ ratio. Therefore, the slag compositions with high (pct CaO)/(pct Al_2O_3) ratio seem to be harmful to suppression of steel reoxidation by iron and manganese oxides in slag. From these results, slag compositions with
low (pct CaO)/(pct Al₂O₃) ratios are likely to be favorable $+67,780X_{\text{MnO}}X_{\text{CaO}} - 21,340X_{\text{MnO}}X_{\text{MeO}}$ low (pct CaO)/(pct Al₂O₃) ratios are likely to be favorable for the production of high cleanliness steel. In case of very $+40,580X_{MnO}X_{SiO_2}$
low (pct CaO)/(pct Al₂O₃) ratio of slags, Al₂O₃ content $+40,580X_{MnO}X_{SiO_2}$ increases inevitably and the capacity of the slag to absorb $+49,790X_{MnO}X_{AIO_{1.5}}+102,510X_{CaO}X_{MgO}$
Al₂O₃ inclusions decreases. Suda *et al.*^[10] investigated the elimination amount of Al_2O_3 inclusion in liquid iron by CaO-SiO₂-Al₂O₃-MgO-Fe_t $O(\leq 5$ pct) slags in terms of the (pct CaO)/(pct Al₂O₃) ratio at the given SiO₂ and MgO $+82,430X_{CaO}X_{AlO1.5}+58,570X_{MeO}X_{SiO2}$ contents and reported that the pick-up amount of A_1O_3 inclusion into slag increases gradually until the ratio reaches $+39,750X_{MgO}X_{PQ_{2,5}}+63,600X_{MgO}X_{AIO_{1,5}}$

Fig. 9—Variation of $\gamma_{Fe,0}$ and γ_{MnO} with respect to (pct CaO)/(pct Al₂O₃) Fig. 8—The effect of P₂O₅ on γ_{MnO} at 1873 K. ratio under the fixed (pct MgO), (pct $SiO₂$), and (pct $P₂O₅$) at 1873 K.

found that the activity coefficient of $MnO_{(l)}$ appeared to ratio in the corresponding ladle slag should be selected increase with the increase of basicity.

$$
RT \ln \gamma_i = \sum_j \alpha_{ij} X_j^2 + \sum_j \sum_k (\alpha_{ij} + \alpha_{ik} - \alpha_{jk}) X_j X_k \quad [7]
$$

equation. \mathbf{x}_i is cation fraction, and α_{ij} is the interaction energy $\log \chi_{\text{LO}} = 0.0239 \times 10^6 \text{ Y}_{\text{D}}^2 - 0.166$ between cations, *i.e.*, (*i* cation)-O-(*j* cation). The reference state of the activity in this case is taken to be a hypothetical pure liquid.

In the regular solution model, the activity of FeO in Figure 9 shows the variation of $\gamma_{Fe,O_{(I)}}$ and $\gamma_{MnO_{(I)}}$ with
the CaO-MgO-SiO₂-Al₂O₃-P₂O₅-MnO-Fe_tO slag can be
the (pct CaO)/(pct Al₂O₃) ratio. It demonstrates that at the
the interaction energy^[11]

$$
a_{\text{FeO}_{\text{(R.S.)}}} = \gamma_{\text{FeO}} X_{\text{FeO}} \tag{8}
$$

 $\frac{2}{\text{MnO}}$ – 31,380*X*²_{CaO} + 33,470*X*₂² S_{SiO_2} – 31,380*X*_{PO_{2.5} – 41,000*X*_A²} $+40,580X_{\text{MnO}}X_{\text{SiO}_2}$ + 60,670 $X_{\text{MnO}}X_{\text{PO}_2}$ $+60,670X_{CaO}X_{SiO2}+188,280X_{CaO}X_{PO2}$ [9]

Table III. Interaction Energy between Cations of Major Components in the Steelmaking Slag[11]

$\ddot{\mathbf{i}}$	Ca^{2+}	Mg^{2+}	Al^{3+}	Mn^{2+}	$Si4+$	$\mathbf{p}5+$	$Fe2+$	$Fe3+$
Ca^{2+}		-100.420	-154.810	-92.050	-133.890	$-251,040$	$-31,380$	-95.810
Mg^{2+}	-100.420		$-71,130$	61.920	-66.940	$-37,660$	33,470	-2.930
Al^{3+}	-154.810	$-71,130$		$-83,680$	-127.610	$-261,500$	$-41,000$	$-161,080$
Mn^{2+}	-92.050	61.920	$-83,680$		-75.310	$-84,940$	7.110	$-56,480$
$Si4+$	-133.890	-66.940	-127.610	-75.310		83.680	-41.840	32,640
P^{5+}	$-251,040$	$-37,660$	$-261,500$	-84.940	83.680		$-31,380$	14.640
$Fe2+$	-31.380	33,470	$-41,000$	7.110	$-41,840$	$-31,380$		$-18,660$
$Fe3+$	$-95,810$	-2.930	$-161,080$	$-56,480$	32,640	14.640	$-18,660$	

Fig. 10—Comparison of $a_{Fe,O}$ between the experimentally measured values The comparison of d_{regu}lar solution in experimentally measured values lated ones by the regular solution model using the new conversion equation.
 $\frac{1}{2}$ and calculated ones by the regular solution model using Ban-ya equation.

$$
- 156,900XSiO2XPO2.5 + 44,770XSiO2XAIO1.5+ 189,120XPO2.5XAIO1.5(J)
$$

even though the reference state for the activity of conventional iron oxide becomes pure iron oxide in equilibration For the CaO-MgO_{sat}-SiO₂-Al₂O₃-P₂O₅-MnO-Fe_tO(<30 with metallic iron. Ban-ya^[11] has reported the thermody-
namic data for the conversion reaction of the reference states
between activity of FeO in a regular solution and that of Fe_tO in an actual slag.
For the CaO-MgO-SiO₂-Al₂O_{3sat}-P₂O₅-MnO-Fe_tO(<12.5

$$
\text{Fe}_i\text{O}_{(l)} + (1 - t)\text{Fe}_{(s \text{ or } l)} = \text{FeO}(R.S.)
$$
\n
$$
\Delta G_{10}^{\circ} = -8540 + 7.142T(J/\text{mole})^{[11]}
$$
\n
$$
\text{C}_i^{\circ} = 2.086a_{\text{FeO}(R.S.)}
$$
\n
$$
\Delta G_{20}^{\circ} = 2.086a_{\text{FeO}(R.S.)}
$$
\n
$$
\text{C}_i = 2.086a_{\text{FeO}(R.S.)}
$$

Ban-ya's conversion equation together with the measured

Fig. 11—Linear correlation of $a_{Fe,O}$ between the measured values and calcu-

values of $a_{Fe_1O(j)}$. It can be seen that in the case of the experimental data using MgO crucibles, the calculated values are greater than the measured ones, while for the data from Al_2O_3 crucibles, the former are smaller than the latter. Therefore, applying the regular solution model to this slag system, it is necessary to find a new Gibbs free energy value It should be noted that in the preceding treatment, all iron
in slag is assumed to be present in the form of ferrous oxide
and the reaction shown in Eq. [10]. By making respective
and the calculated q_{max} and the calc and the amount of ferric oxide in the slag can be neglected.

In a regular solution model, the reference state of FeO

activity was taken as the hypothetical stoichiometric FeO,

even though the reference state for the ac

$$
a_{\text{Fe}_1\text{O}_{(l)}} = 0.864 a_{\text{FeO}_{(R,S.)}} \tag{11}
$$

pct) slag system,

$$
a_{\text{Fe}_f\text{O}_{(I)}} = 2.086 a_{\text{FeO}_{(R,S.)}} \tag{12}
$$

Using Eqs. [8] and [10], the activity of Fe_tO in the slag Figure 11 shows the comparison between the activity of can be calculated with the aid of a regular solution model. Fe*t*O calculated with the help of the preceding conversion Figure 10 indicates the values for the calculated $a_{Fe, O(l)}$ using equations and that using the measured one. The two values Ban-va's conversion equation together with the measured for the activity of iron oxide coincide f

Fig. 12—Comparison of a_{MnO} between the experimentally measured values
and calculated ones by the regular solution model using Ban-ya's^[11] calculated ones by the regular solution model using the new conversion

$$
a_{\text{MnO}_{(l)}} = 6.38 a_{\text{MnO}_{(R,S.)}} \tag{13}
$$

$$
a_{\text{MnO}_{(l)}} = 14.39 a_{\text{MnO}_{(R.S.)}} \tag{14}
$$

with the measured one, although with considerable scatter.

The thermodynamic equilibrium between the metal and the slag system of CaO-MgO-SiO₂-Al₂O₃-P₂O₅-MnO-Fe_{*f*}O $a_{Fe,O_{(l)}} = 0.864 a_{FeO_{(R.S)}}$, $a_{MnO_{(l)}} = 6.38 a_{MnO_{(R.S)}}$ has been investigated in a MgO or Al_2O_3 crucible at 1873 K. The reoxidation phenomena were discussed by virtue of For the CaO-MgO-SiO₂-Al₂O_{3sat.}-P₂O₅-MnO(<9 pct)-
K. The reoxidation phenomena were discussed by virtue of Fe_tO(\leq 12.5 pct) slags, the activities and activity coefficients of Fe_tO and MnO Fe_tO(\leq 12.5 according to variations in slag compositions. By using a regular solution model, the oxygen potential in the slag was also estimated quantitatively.

1. The activity coefficient of Fe*t*O has a maximum value at $B((X_{\text{CaO}} + X_{\text{MgO}} + X_{\text{MnO}}) / (X_{\text{SiO}_2} + X_{\text{Al}_2\text{O}_3} + X_{\text{P}_2\text{O}_5})) \cong$ **REFERENCES**
2.5 at a given mole fraction range of Fe_tO, while that of MnO shows an increase with increasing basicity, with 1. J. Lumsden: *Physical Chemistry of Process Metallurgy*, Interscience, New York, NY, 1961, Part I.

and calculated ones by the regular solution model using the new conversion equation.

equation.

- Figure 12 indicates an inconsistency of $a_{MnO_{(l)}}$ between
the experimentally measured values and the calculated ones
by the regular solution model using Ban-ya's conversion
equation.
Following the same method as that fo Following the same method as that for $a_{Fe,O(0)}$, the conver-

sion equation of the activity of MnO between two reference

states could be reasonably represented at 1873 K within the

specific concentration of MnO as follo
- the increasing (pct CaO)/(pct Al₂O₃) ratio of slags. How-
ever, it is suggested that a moderate (pct CaO)/(pct Al₂O₃) For the CaO-MgO-SiO₂-Al₂O_{3sat.}-P₂O₅-MnO(<9 pct)-
Fe_tO slag should be selected within the Fe_tO slag system, ratio of 1.8.
- 4. From the correlation between the measured values of Fe*t*O and MnO activities and the calculated ones by the Figure 13 shows that the activity of MnO calculated with regular solution model, the general conversion equations the help of the conversion equations coincides relatively well for the estimation of activities of Fe_tO and MnO were with the measured one, although with considerable scatter. The estimation of activities of Fe_tO and M

**For the CaO-MgO_{sat}-SiO₂-Al₂O₃-P₂O₅-MnO(<13 pct)-

IV.** CONCLUSIONS Fe_rO(<30 pct) slags,

$$
a_{\text{Fe}_1O_{(I)}} = 2.086 a_{\text{FeO}_{(R,S)}}, a_{\text{MnO}_{(I)}} = 14.39 a_{\text{MnO}_{(R,S.)}}
$$

New York, NY, 1961, Part I.

- 301-07. 111-33.
-
- 4. E.T. Turkdogan and J. Pearson: *J. Iron Steel Inst.*, 1953, vol. 175, pp. 217-23.
- 5. J.F. Elliott and F.W. Luerssen: *Trans. AIME*, 1955, vol. 203, pp. 1129-36. 10. M. Suda, S. Suetsugu, and S. Suitou: *CAMP ISIJ*, 1990, vol. 3,
- 6. S. Taira, K. Nakashima, and K. Mori: *Iron Steel Inst. Jpn. Int.*, 1993, vol. 33, pp. 116-23.
- 2. H. Suito and R. Inoue: *Trans. Iron Steel Inst. Jpn.*, 1984, vol. 24, pp. 7. T. B. Winkler and J. Chipman: *Trans. AIME*, 1946, vol. 167, pp.
- 3. G.K. Sigworth and J.F Elliott: *Met. Sci.*, 1974, vol. 8, pp. 298-310. 8. H. Suito and R. Inoue: *Trans. Iron Steel Inst. Jpn.*, 1984, vol. 24, pp.
	- 217-23. 9. A.T. Morales and R.J. Fruehan: *Metall. Mater. Trans. B*, 1997, vol.
	- vol. 341.

	p. 241.

	11. S. Ban-ya: *Iron Steel Inst. Jpn. Int.*, 1993, vol. 33, pp. 2-11.
	-