The Effect of Al₂O₃ on Liquidus Temperatures of Fayalite Slags

B. ZHAO, E. JAK, and P.C. HAYES

The effect of alumina on the liquidus temperatures of fayalite slags at iron saturation has been investigated experimentally. Equilibrated synthetic slags were quenched, and the samples were subsequently examined using optical microscopy and electron probe microanalysis (EPMA). The isotherms in the fayalite primary field and boundary lines were determined, and the results were presented in the form of pseudo-ternary phase diagrams of "FeO"-CaO-SiO₂ with 0, 2, 4, and 6 wt pct Al_2O_3 in the slag. The experimental results show that the alumina addition expands the fayalite primary phase field and decreases the liquidus temperatures in the fayalite primary phase field.

I. INTRODUCTION

THE slag compositions used in copper smelting lie in the vicinity of the fayalite (2FeO·SiO₂) primary phase field. To date, the FeO-Fe₂O₃-SiO₂ and "FeO"-CaO-SiO₂ phase diagrams have been used to estimate the liquidus temperatures of these copper smelting slags.*⁽¹⁻⁷⁾ In practice,

*In this article, all iron is given as FeO, which actually represents $\mbox{FeO} + \mbox{Fe}_2 O_3.$

however, the slags contain not only "FeO", CaO and SiO₂, but also other components, such as, Al₂O₃ and MgO.^[8,9,10] These additional components are introduced through the mineral concentrates, fluxes, recycled converter slag, coal ash, or dissolved refractories.

The "FeO"-CaO-SiO₂ system, in equilibrium with metallic iron, was first investigated by Bowen *et al.*,^[11] who carried out research in the high-silica region. Allen and $\text{Snow}^{[12]}$ investigated this system in the low-silica region. Muan and Osborn^[13] then constructed the entire ternary diagram based on these experimental data.

The "FeO"-Al₂O₃-SiO₂ system, in equilibrium with metallic iron, has been studied by a number of investigators.^[14,15,16] These results can be used to evaluate the effect of an alumina addition on the liquidus temperatures of fayalite slag.

Henrich^[17] discussed the function of alumina in copper smelting slags. He proposed that, in slags containing larger quantities (20 to 30 wt pct) of alumina, the alumina should be considered as an acid, and the liquidus temperature of a slag will rise with increasing alumina content. However, no experimental data were given to support this conclusion. According to Newton and Wilson,^[18] "alumina is never added intentionally, as it makes the slag viscous, and is generally an undesirable constituent of slags." Lankford *et al.*^[19] stated that alumina is seldom employed as a flux, but it is present in a large number of raw materials as an impurity and, therefore, is present in slag.

Schairer^[20] investigated phase equilibria in the Al_2O_3 -CaO-"FeO"-SiO₂ system in equilibrium with metallic iron.

Five sections were presented in the form of pseudo-ternary phase diagrams. Muan and Osborn^[21] also studied several sections in this system. However, investigations of aluminacontaining slags have not been carried out in the composition ranges relevant to copper smelting slags. In fact, to date, no experimental information has been found on the effect of alumina on the liquidus temperatures of copper smelting slag. Verney^[6] has shown that the liquidus temperatures for alumina-containing slags cannot be accurately estimated from the "FeO"-CaO-SiO₂ system.

The objective of the present work is, then, to determine the liquidus temperatures in the fayalite primary phase field of the multicomponent Al_2O_3 -"FeO"-CaO-SiO₂ system in equilibrium with metallic iron. The investigation concentrates on the composition range relevant to copper smelting slags, *i.e.*, in the fayalite primary phase field near silica saturation. The results can be directly used to more accurately predict the liquidus temperatures of copper smelting slag.

II. EXPERIMENTAL

A. Experimental Procedure

The experimental procedure is similar to the one previously used by the PYROSEARCH group at the University of Queensland.^[22-28] The slag samples were prepared from the following chemicals, obtained from Sigma-Aldrich Pty. Ltd. (Australia): 99.8 pct Al₂O₃, 99.95 pct CaCO₃, 99.9 pct Fe powder, 99.98 pct Fe₂O₃ and 99.9 pct SiO₂. The chemicals were mixed in an agate mortar to the required compositions. Then, 15 to 20 pct excess Fe powder (<10 μ m in size) was added to the slag samples to ensure that the slag was equilibrated with metallic iron. About 0.3 g of the mixture was pelletized and placed in platinum foil (0.025-mm thick) or Fe foil (99.9 pct, 0.1-mm thick) envelopes. The experiments were carried out in a vertical silicon carbide furnace. The furnace temperature was controlled within ± 1 K. A Pt-Pt/13 pct Rh thermocouple placed in an alumina sheath was located adjacent to the sample to accurately measure the sample temperature. The thermocouple was calibrated by a reference thermocouple supplied by National Measurement Laboratory (CSIRO, Melbourne, Australia) and was periodically checked against the melting point of pure gold. The overall temperature accuracy was estimated to be within ±2 K.

B. ZHAO, Research Officer, E. JAK, Senior Research Fellow, and P.C. HAYES, Associate Professor, are with PYROSEARCH, Department of Mining, Minerals and Materials Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia.

Manuscript submitted October 21, 1998.

Fig. 1—Pseudo-ternary sections in the Al_2O_3 -"FeO"-CaO-SiO₂ system with wt. pct Al_2O_3 in slag in equilibrium with metallic iron (temperature in K).

The sample was first placed in the cool zone, and the bottom end of the furnace was sealed by a plastic film. After ultra high purity nitrogen (total impurities ≤ 5 ppm, oxygen \leq 1 ppm) was passed through the furnace tube for 15 to 30 minutes to remove the air, the sample was raised into the hot zone adjacent to the thermocouple. The experiment was usually carried out in two steps. The first step was to premelt the sample at a temperature higher than the liquidus to ensure that the sample is homogeneous. The sample was then equilibrated at the desired temperature for a time sufficient to achieve equilibrium. The equilibration usually takes from 2 to 20 hours, depending on the mixture composition and temperature, *i.e.*, at higher temperatures or lower silica contents, a shorter time was employed; otherwise, the sample was kept for a longer time. If the sample has not attained local equilibrium, then the composition of the glass phase, as measured by the electron microprobe, will not be uniform, and this sample will be rejected. There was no attempt to control the oxygen partial pressure of the system in the gas phase, since local equilibrium with iron metal is achieved in the sample. After equilibration, the sample was quenched directly in the cooling water.

B. Sample Examination

The quenched sample was mounted and polished for analysis. First, optical microscopy was employed to identify the phases present in the sample. The compositions of the phases were then measured using a JEOL* 8800L electron probe

*JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

X-ray microanalyser. An accelerating voltage of 15 kV and a probe current of 15 nA were used. The Duncumb–Philibert ZAF correction procedure supplied with the JEOL 8800L was applied. The standards used for analysis were from Charles M. Taylor Co. (Stanford, California): Al_2O_3 for Al,

Table I.	Experin	nental	Result	s on	the	CaO-	"FeO"	-SiO
S	vstem in	Equili	brium	with	Me	etallic	Iron	

			Corr	mositi	ion (W+	Pct)
Experiment	DI	Temperature				<u>n:c</u>
Number	Phases	(K)	FeO	CaO	AI_2O_3	S1O ₂
464	liquid	1473	45.2	24.7	0.0	30.1
	fayalite		35.3	32.4	0.0	32.3
	wustite		99.5	0.3	0.0	0.2
468	liquid	1423	51.4	17.7	0.0	30.9
	fayalite		41.5	26.8	0.0	31.7
	wustite		99.5	0.2	0.0	0.3
480	fayalite	1393	60.3	8.9	0.0	30.8
495	wustite	1.472	99.6	0.0	0.0	0.4
485	liquid	14/3	63.9	0.0	0.0	36.1
405	liquid	1402	/0.0	0.0	0.0	30.0
495	fovalita	1405	50.1 64.2	11.4 5.2	0.0	30.5
	wistite		04.2	5.2	0.0	50.0 0.4
499	liquid	1463	62.5	0.0	0.0	37.5
477	favalite	1405	70.1	0.0	0.0	29.9
514	liquid	1423	58.3	9.1	0.0	32.6
511	favalite	1125	69.1	0.9	0.0	30.0
534	liquid	1473	67.7	2.1	0.0	30.2
	favalite		69.1	0.8	0.0	30.1
535	liquid	1403	52.0	12.7	0.0	35.3
	favalite		66.6	3.1	0.0	30.3
537	liquid	1423	45.6	20.2	0.0	34.2
	fayalite		40.8	27.3	0.0	31.9
551	liquid	1393	50.2	14.2	0.0	35.6
	fayalite		65.6	4.1	0.0	30.3
552	liquid	1403	44.8	19.1	0.0	36.1
	fayalite		42.8	25.3	0.0	31.9
556	liquid	1423	53.4	5.5	0.0	41.1
	fayalite		69.8	0.5	0.0	29.7
	silica	1 1 0 0	1.7	0.1	0.0	98.2
557	liquid	1403	49.9	7.7	0.0	42.4
	fayalite		69./	0.6	0.0	29.7
560	Silica	1422	1.1	0.0	0.0	98.9
300	fovolito	1425	20.2	23.0	0.0	21.0
	wollostopite		53	20.9 44 1	0.0	50.6
566	liquid	1393	48.0	44.1 8.8	0.0	43.2
500	favalite	1575	69.2	0.0	0.0	30.2
	silica		13	0.0	0.0	98.7
567	liquid	1383	47.7	15.1	0.0	37.2
201	favalite	1000	66.6	3.2	0.0	30.2
574	liquid	1383	44.1	18.4	0.0	37.5
	fayalite		50.1	18.3	0.0	31.6
	wollastonite		18.0	32.2	0.0	49.8
591	liquid	1383	46.1	10.0	0.0	43.9
	fayalite		68.9	0.7	0.0	30.4
	silica		1.2	0.0	0.0	98.8
593	liquid	1373	45.0	17.2	0.0	37.8
	fayalite		50.1	18.3	0.0	31.6
	wollastonite		32.2	18.0	0.0	49.8
594	liquid	1393	42.2	19.9	0.0	37.9
	wollastonite		18.0	32.2	0.0	49.8
505	fayalite	1202	50.1	18.3	0.0	31.6
595	liquid	1393	48.2	11.1	0.0	40.7
506	liquid	1402	00.3 524	1.4 0 1	0.0	30.3
390	favalita	1423	550 68 7	0.4	0.0	30.0
507	liquid	1403	00./ 49./	10.4	0.0	40 2
571	favalite	1403		13	0.0	30.2
601	liquid	1423	39.3	18.3	0.0	42.4
	wollastonite	1.20	24.2	26.6	0.0	49.2
617	liquid	1373	45.0	12.8	0.0	42.2

Table I. Continued

Experiment		Temperature	Composition (Wt Pct)			
Number	Phases	(K)	FeO	CaO	Al_2O_3	SiO_2
	fayalite		68.5	1.6	0.0	29.9
618	liquid	1373	44.9	11.0	0.0	44.1
	fayalite		68.7	1.2	0.0	30.1
	silica		1.0	0.1	0.0	98.9
629	liquid	1423	38.0	15.5	0.0	46.5
	silica		0.8	0.1	0.0	99.1
	wollastonite		28.5	22.8	0.0	48.7
661	liquid	1373	45.5	17.1	0.0	37.4
	fayalite		55.2	13.9	0.0	30.9
	wollastonite		20.3	30.4	0.0	49.3
662	liquid	1373	45.6	14.6	0.0	39.8
	fayalite		66.9	3.2	0.0	29.9
663	liquid	1423	39.8	22.1	0.0	38.1
	wollastonite		6.5	42.8	0.0	50.7
664	liquid	1423	39.3	23.5	0.0	37.2
	fayalite		39.6	28.5	0.0	31.9
679	fayalite	1358	66.3	3.9	0.0	29.8
	wollastonite		29.2	22.5	0.0	48.3
683	liquid	1403	52.4	16.8	0.0	30.8
	fayalite		43.5	25.0	0.0	31.5
	wustite		99.6	0.1	0.0	0.3
706	liquid	1396	54.8	13.6	0.0	31.6
717	liquid	1463	45.0	23.2	0.0	31.8
	fayalite		37.3	30.3	0.0	32.4
752	liquid	1373	45.7	10.6	0.0	43.7
	fayalite		69.0	1.2	0.0	29.8
846	liquid	1373	45.1	10.5	0.0	44.4
	fayalite		68.3	1.2	0.0	30.5
	silica		1.0	0.0	0.0	99.0
847	silica	1363	1.0	0.0	0.0	99.0
	fayalite		66.9	1.4	0.0	31.7
	wollastonite		34.5	17.2	0.0	48.3
848	liquid	1368	44.6	10.9	0.0	44.5
	fayalite		67.9	1.4	0.0	30.7
	silica		1.0	0.0	0.0	99.0

 Fe_2O_3 for Fe, and $CaSiO_3$ for Ca and Si. The average accuracy of the electron probe microanalysis (EPMA) measurements was estimated to be within ± 1 pct of element concentration in wt pct.

Only metal cation contents were measured by EPMA; the oxygen content was added according to the assumed oxidation state. All iron was calculated as FeO in the present work. However, it should be kept in mind that small amounts of Fe^{3+} are always present in the sample, even in contact with metallic iron.

III. RESULTS AND DISCUSSION

Experiments were carried out in the fayalite primary phase field in the Al_2O_3 -"FeO"-CaO-SiO₂ system in equilibrium with metallic iron. The results are presented in the form of pseudo-ternary sections "FeO"-CaO-SiO₂ at a fixed weight percentage of Al_2O_3 , as shown in Figure 1. The quaternary system is viewed as a compositional tetrahedron with one component at each apex. The base is the "FeO"-CaO-SiO₂ system, and Al_2O_3 is the top apex. Horizontal planes in the tetrahedron represent levels of constant alumina content. In Figure 1, the position of selected planes is indicated as a grey

Table II.	Experimental Results on the Al ₂ O ₃ -CaO-"FeO"-
SiO ₂ Sy	stem with Al ₂ O ₃ in Liquid Close to 2 Wt Pct in
	Equilibrium with Metallic Iron

Experiment		Temperature	Con	npositi	on (Wt	Pct)
Number	Phases	(K)	FeO	CaO	Al_2O_3	SiO ₂
1	liquid	1453	60.3	0.0	2.3	37.4
	fayalite		69.9	0.0	0.0	30.1
5	liquid	1413	50.8	7.9	2.4	38.9
	fayalite		68.5	0.8	0.0	30.7
6	liquid	1413	54.5	9.1	2.3	34.1
_	fayalite		67.8	1.7	0.0	30.5
1	liquid	1463	60.3	0.0	2.1	37.6
11	liquid	1202	09.5	0.0	0.0	30.5
11	favalite	1393	40.7 68.6	9.2	2.9	41.2 30.5
14	liquid	1423	55.2	8.5	2.1	34.2
15	liquid	1433	52.3	7.0	2.1	38.6
18	liquid	1453	58.6	0.0	2.1	39.3
	silica		1.1	0.0	0.0	98.9
19	liquid	1433	54.6	5.0	2.1	38.3
20	liquid	1433	59.1	6.1	2.1	32.7
21	liquid	1415	50.9	7.9	2.1	39.1
22	liquid	1415	53.1	9.0	2.1	35.8
23	liquid	1443	59.5	0.0	2.1	38.4
	rayalite		/0.2	0.0	0.0	29.8
24	liquid	1/133	1.2 55.7	5.3	0.0	90.0 36.0
24	favalite	1455	69.7	0.5	0.0	29.8
25	liquid	1413	52.1	7.4	2.3	38.2
	fayalite		69.3	0.8	0.0	29.9
26	liquid	1433	60.9	6.0	2.0	31.1
	fayalite		69.1	1.1	0.0	29.8
27	liquid	1413	51.3	8.0	2.0	38.7
28	liquid	1393	48.5	10.4	1.9	39.2
	fayalite	–	68.6	1.5	0.0	29.9
31	liquid	1447	76.0	0.0	2.0	22.0
22	fayalite	1422	/0.8	0.0	0.0	29.2
52	fovolito	1455	33.0 70.5	2.5	2.1	40.0
	silica		13	0.1	0.0	29. 4 98.7
35	liquid	1453	64.6	2.7	2.3	30.4
	favalite		70.5	0.4	0.0	29.1
36	liquid	1413	51.4	4.8	2.2	41.6
	fayalite		70.2	0.3	0.0	29.5
	silica		1.1	0.0	0.0	98.9
38	liquid	1393	47.9	7.0	2.1	43.0
	fayalite		69.5	0.6	0.0	29.9
40	silica	1255	1.0	0.0	0.0	99.0
40	fovalita	1355	42.0 68 5	11.4	2.1	44.5
	wollastonite		35.2	16.8	0.0	48.0
49	liquid	1393	52.7	11.9	2.4	33.0
.,	favalite		65.5	4.0	0.0	30.5
52	liquid	1373	44.3	9.4	2.2	44.1
	fayalite		68.3	0.9	0.0	30.8
	silica		0.9	0.1	0.0	99.0
53	liquid	1373	44.5	12.8	2.2	40.5
~ 4	fayalite	1070	67.0	2.3	0.0	30.7
54	liquid	13/3	49.1	14.5	5.1	33.3
55	liquid	1372	59.5	9.5 11 6	0.0	31.2
55	favalite	13/3	57.0	14.0	2.0 0.0	32.0 31.0
59	liquid	1345	40.1	11.7	2.7	45.5
	favalite	10.0	68.6	1.3	0.0	30.1
	wollastonite		35.0	16.7	0.1	48.2
	silica		1.0	0.1	0.0	98.9

Table II. Continued

Experiment		Temperature	Con	npositi	on (Wt	Pct)
Number	Phases	(K)	FeO	CaO	Al_2O_3	SiO ₂
65	liquid	1363	43.1	13.5	2.1	41.3
	fayalite		67.3	2.4	0.0	30.3
66	liquid	1363	41.2	12.2	2.0	44.6
	favalite		33.9	17.9	0.0	48.2
67	liquid	1352	41.4	14.3	2.4	41.9
	fayalite		67.6	2.5	0.0	29.9
	wollastonite		30.9	21.1	0.1	47.9
68	liquid	1349	40.5	11.9	2.5	45.1
	fayalite		69.4	1.3	0.0	29.3
	wollastonite		35.9	16.7	0.1	47.3
	silica		0.9	0.1	0.0	99.0
74	liquid	1360	41.4	17.7	2.0	38.9
76	liquid	1453	60.2	2.4	2.1	35.3
	fayalite		70.4	0.2	0.0	29.4
89	liquid	1355	42.3	16.8	2.2	38.7
	wollastonite		22.3	28.4	0.1	49.2
90	liquid	1373	38.8	20.5	2.8	37.9
	fayalite		41.6	26.5	0.0	31.9
93	liquid	1436	56.5	1.8	2.1	39.6
	silica		1.2	0.0	0.0	98.8
94	liquid	1383	45.4	8.9	2.1	43.6
	fayalite		69.1	0.9	0.0	30.0
	silica		0.9	0.1	0.0	99.0
105	liquid	1373	46.0	15.5	2.0	36.5
107	liquid	1363	41.6	18.4	2.4	37.6
	fayalite		45.7	22.5	0.0	31.8
109	liquid	1353	42.4	17.0	2.1	38.5
	fayalite		61.8	7.7	0.0	30.5
126	liquid	1358	42.3	16.8	2.1	38.8
	wollastonite		23.5	27.5	0.0	49.0
128	liquid	1353	42.9	14.7	2.3	40.1
	wollastonite		29.0	22.3	0.1	48.6
	fayalite		66.2	3.4	0.0	30.4
187	liquid	1433	55.1	4.0	2.2	38.7
	fayalite		69.5	0.3	0.0	30.2
189	liquid	1413	50.6	6.7	2.3	40.4
	fayalite		69.1	0.6	0.0	30.3

plane, and the composition range investigated is indicated as a dark zone.

The mixture compositions made up for study were selected in such a way that the liquid phase in the sample after equilibration had a composition lying in these horizontal planes, which are designated as 0, 2, 4, and 6 wt pct of the Al₂O₃ planes. The precipitation of solid phases changes the Al₂O₃ content in the liquid phase. The compositions of the phases present in the quenched samples are, however, measured by EPMA after the experiments; the bulk mixture compositions are not important in the current work. The bulk compositions were adjusted after preliminary experiments to obtain Al₂O₃ contents in the liquid phase close to the fixed values of 2, 4, and 6 wt pct Al₂O₃. Only those liquid compositions that have the Al₂O₃ content near the selected values have been used in the construction of the pseudo-ternary sections. Special attention was also paid to the positions of boundary lines of the fayalite primary phase field with the wollastonite ((Ca,Fe)₂SiO₄) and tridymite (SiO₂).

Experimental data for compositions of liquid and solid phases are given in Tables I through IV. The results of liquidus determination for the sections containing 0, 2, 4, and 6 wt pct of Al_2O_3 in the liquid phase are presented in

Table III.	Experimental Results on the Al ₂ O ₃ -CaO-"FeO"-
SiO ₂ Sys	tem with Al ₂ O ₃ in Liquid Close to 4 Wt Pct in
	Equilibrium with Metallic Iron

			Con	mositi	on (Wt	Pct)
Experiment Number	Phases	(K)	FeO	CaO	Al ₂ O ₃	SiO ₂
8	liquid	1433	55.0	5.1	3.2	36.7
	fayalite		69.0	0.5	0.0	30.5
12	liquid	1393	49.2	11.6	3.2	36.0
	fayalite		67.5	2.2	0.0	30.3
13	liquid	1423	52.9	5.5	3.5	38.1
20	fayalite	1412	69.4	0.5	0.0	30.1
29	liquid	1415	49.2 30.1	0.0	4.1	50.7
55	favalite	1373	70.0	07	4.0	29.3
	silica		1.0	0.0	0.0	99.0
39	liquid	1393	54.7	10.4	3.3	31.6
	fayalite		67.7	2.4	0.0	29.9
41	liquid	1355	40.4	11.9	3.9	43.8
42	liquid	1433	56.7	0.0	4.4	38.9
42	fayalite	1422	70.3	0.0	0.0	29.7
43	fovolito	1455	5/.1	3.0 0.4	4.0	34.7 20.4
44	liquid	1413	51 1	0.4 6.8	0.0 4 1	38.0
	favalite	1415	69.1	0.7	0.0	30.2
45	liquid	1413	53.6	8.3	4.2	33.9
46	liquid	1413	57.9	7.2	4.2	30.7
	fayalite		68.1	1.6	0.0	30.3
47	liquid	1413	50.4	4.4	4.1	41.1
48	liquid	1349	39.7	11.5	3.4	45.4
	fayalite		68.4	1.3	0.0	30.3
50	wollastonite	1202	54.6	17.2	0.0	48.2
30	favalite	1595	54.0 66.0	9.0	4.5	30.6
51	liquid	1335	37.1	12.9	4.8	45.2
51	favalite	1555	67.8	1.5	0.0	30.7
	wollastonite		33.5	17.9	0.1	48.5
56	liquid	1373	42.1	9.0	4.0	44.9
	silica		1.0	0.1	0.0	98.9
60	liquid	1433	37.2	11.4	4.8	46.6
	fayalite		69	1.1	0.0	29.9
61	Silica	1413	1.0	0.1	0.0	98.9 41.5
01	favalite	1415	51.0 69.9	2.9	4.0	20.0
	silica		1.3	0.0	0.0	29.9 98.6
63	liquid	1393	48.5	10.5	4.1	36.9
	fayalite		68	1.8	0.0	30.2
64	liquid	1393	46.6	6.2	4.1	43.1
	fayalite		69.3	0.5	0.0	30.2
71	silica	1200	0.8	0.1	0.1	99.0
/1	liquid	1398	45.8	6.3	4.2	43./
72	liquid	1360	1.2	0.0	0.0 4 3	90.0 11 Q
12	silica	1509	41.7	0.1	4.5	98.9
73	liquid	1339	37.7	11.3	5.0	46.0
	fayalite		69.2	1.1	0.0	29.7
	silica		1.0	0.1	0.0	98.9
75	liquid	1360	38.0	20.3	3.4	38.3
	fayalite	1070	43.2	25.8	0.0	31.0
77	liquid	1373	45.2	13.4	4.2	37.2
70	Tayalite	1372	0/./ 50.2	2.8	0.0	29.5
/0	favalite	13/3	50.2 64 8	13.1	4.7	30.0
79	liquid	1358	40.3	18.4	4.0	37.3
80	liquid	1358	39.3	18.8	9.1	32.8
	fayalite		41.6	26.9	0.0	31.5
85	liquid	1348	40.4	14.3	4.0	41.3
	fayalite		67.9	2.3	0.0	29.8

Table III. Continued

Experiment		Temperature	Con	npositi	on (Wt	Pct)
Number	Phases	(K)	FeO	CaO	Al_2O_3	SiO ₂
	wollastonite		31.5	20.5	0.1	47.9
90	liquid	1355	40.4	18	4.1	37.5
101	liquid	1348	40.6	18.1	4.0	37.3
102	liquid	1343	40.1	12.1	4.0	43.8
103	liquid	1343	39.0	10.7	4.6	45.7
	fayalite		69.1	0.9	0.0	30.0
	silica		0.9	0.1	0.1	98.9
132	liquid	1328	37.9	11.7	4.7	45.7
	fayalite		69.2	1.3	0.0	29.5
	silica		0.9	0.1	0.1	98.9
137	liquid	1345	40.1	17.9	4.1	37.9
	fayalite		69.2	1.3	0.0	29.5
188	liquid	1433	56.6	1.9	4.3	37.2
	fayalite		69.5	0.1	0.0	30.4
190	liquid	1413	51.1	5.4	4.1	39.4
	fayalite		69.5	0.4	0.0	30.1
191	liquid	1338	38.5	18.2	4.6	38.7
	fayalite		51.5	17.1	0.0	31.4
192	liquid	1393	46.8	7.9	4.1	41.2
227	liquid	1323	35.7	11.7	6.1	46.5
	fayalite		68.3	1.3	0.0	30.4
	wollastonite		34.3	17.2	0.2	48.3
228	liquid	1353	40.2	9.9	4.3	45.6
	fayalite		68.9	0.9	0.0	30.2
	silica		0.8	0.1	0.1	99.0
229	liquid	1353	40.8	12.8	4.2	42.2
	fayalite		67.8	1.8	0.0	30.4
231	liquid	1393	47.4	4.8	4.9	42.9
	fayalite		69.5	0.3	0.0	30.2
	silica		1.0	0.0	0.1	98.9
232	liquid	1373	42.7	7.8	4.9	44.6
	fayalite		69.2	0.6	0.0	30.2
	silica		1.0	0.0	0.1	98.9
233	liquid	1373	43.3	8.6	4.1	44.0
	fayalite		68.3	0.8	0.0	30.9
235	liquid	1433	53.3	10.8	4.0	31.9

Figures 2(a) through (d), respectively. In these figures, light lines represent isotherms, and heavy lines represent boundaries between the fayalite and wollastonite, and between the fayalite and tridymite primary phase fields. It can be seen from Figures 2(a) through (d) that the fayalite primary phase field is bounded by the wollastonite and tridymite primary phase fields in the composition range investigated, and that the addition of up to 6 wt pct of alumina does not introduce any new primary phases in this region.

The EPMA measurements show little or no alumina dissolved in fayalite (2FeO·SiO₂). The composition of fayalite does not lie in the alumina-containing sections of the quaternary system. Note that these sections are not true ternary diagrams, and caution should be exercised in predicting subliquidus phase relations.

The results of Bowen *et al.*^[11] on the "FeO"-CaO-SiO₂ system in equilibrium with metallic iron are shown as dashed lines in Figure 2(a), for comparison. There were only two isotherms, at 1473 and 1423 K, determined by Bowen *et al.* in the fayalite primary phase field. It can be seen from Figure 2(a) that there is good agreement between the results of the present studies and those obtained by Bowen *et al.*

The present results are compared to those of Schairer and

Table IV.	Experimental Results on the Al ₂ O ₃ -CaO-"FeO"-
SiO ₂ Sys	tem with Al ₂ O ₃ in Liquid Close to 6 Wt Pct in
	Equilibrium with Metallic Iron

Evporimont		Tomporatura	Con	npositi	on (Wt	Pct)
Number	Phases	(K)	FeO	CaO	Al ₂ O ₃	SiO ₂
57	liquid	1433	60.7	2.7	5.5	31.1
	fayalite		69.4	0.3	0.1	30.2
58	liquid	1423	54.7	0.0	5.3	40.0
	fayalite		70	0.0	0.0	30.0
	silica		1.2	0.0	0.0	98.8
62	liquid	1413	53.6	0.0	6.3	40.1
	fayalite		69.9	0.0	0.0	30.1
<i>c</i> 0	silica	1410	1.4	0.0	0.1	98.5
69	nquia	1418	33.9	0.0	0.2	39.9
70	liquid	1/128	5/ 8	0.0	0.0 5.4	30.7
70	favalite	1420	70.7	0.0	0.0	29.3
	silica		13	0.0	0.0	98.7
81	liquid	1413	52.7	5.9	6.6	34.8
	favalite		70	0.6	0.0	29.4
82	liquid	1413	57.3	4.9	7.2	30.6
	fayalite		70	0.6	0.1	29.3
83	liquid	1393	43.2	6.8	6.0	44.0
	silica		0.7	0.1	0.3	98.9
84	liquid	1393	46.3	10.4	6.1	37.2
86	liquid	1393	54.7	8.6	6.2	30.5
07	fayalite	1200	68.3	2.0	0.1	29.6
87	liquid	1388	43	6.6	6.0	44.4
00	Silica	1200	1 46 1	0.1	0.2	98.7
00	liquid	1300	40.1	10.5	0.1	37.5
92	favalite	1373	40.5	19.7 27.8	7.2	32.0
95	liquid	1373	43.5	13.4	6.0	37.1
96	liquid	1373	52.5	11.1	6.0	30.4
97	liquid	1351	34.9	12.3	6.0	46.8
	silica		0.8	0.1	0.1	99.0
98	liquid	1351	40.3	16.1	6.0	37.6
99	liquid	1353	47.7	14.6	6.1	31.6
	wustite		99	0.6	0.2	0.2
100	liquid	1373	39.1	9.7	6.1	45.1
104	liquid	1343	44.9	15.3	6.7	33.1
100	fayalite	1272	58.2	11.2	0.0	30.6
106	liquid	13/3	55.I 00	10.8	0.0	30.1
110	liquid	1303	77 11 5	6.5	5.0	/3.1
111	liquid	1393	46.8	10.0	5.9	37.3
112	liquid	1373	40.0	9.3	5.9	44.8
113	liquid	1373	44.2	13.1	5.9	36.8
114	liquid	1351	36.4	11.7	5.8	46.1
115	liquid	1351	41.5	16.2	6.0	36.3
127	liquid	1358	35.2	21.3	5.9	37.6
	wollastonite		4.4	44.8	0.3	50.5
	fayalite		40.5	27.5	0.0	32.0
129	liquid	1353	49.6	12.5	6.9	31.0
	wustite		99.0	0.0	0.7	0.3
120	fayalite	1202	65.0	4.9	0.1	30.0
130	silica	1393	40.2	4.5	0.1	43.2
131	liquid	1303	10.9	8.2	6.1	36.0
151	favalite	1375	68.8	1.0	0.1	30.2
133	liquid	1373	52.7	10.5	6.2	30.6
	fayalite		67.1	2.9	0.1	29.9
135	liquid	1373	39.9	8.9	5.9	45.3
	silica		1.0	0.1	0.1	98.8
136	liquid	1345	47.1	14.7	6.5	31.7
	wustite		99.0	0.1	0.6	0.3

Table IV. Continued

Experiment		Temperature	Composition (Wt Pct)			
Number	Phases	(K)	FeO	CaO	Al_2O_3	SiO ₂
	favalite		57.3	12.0	0.0	30.7
138	liquid	1351	40.1	9.2	5.9	44.8
	fayalite		69.1	0.8	0.0	30.1
139	liquid	1351	42.2	13.8	6.2	37.8
	fayalite		67.1	3.0	0.0	29.9
147	liquid	1393	49.5	2.4	6.2	41.9
			/0.0	0.1	0.0	29.9
148	liquid	1373	1.2	0.0 6.7	0.1	98.7
140	favalite	1575	43.2 69.4	0.7	0.0	30.1
149	liquid	1373	44.2	10.4	6.7	38.7
	fayalite		68.1	1.3	0.0	30.6
150	liquid	1359	40.7	7.8	6.4	45.1
	fayalite		69.3	0.5	0.0	30.2
	silica		0.9	0.1	0.2	98.8
151	liquid	1337	34.5	12.2	5.9	47.4
1.50	silica	1005	0.7	0.1	0.1	99.1
152	liquid	1337	40.2	16.6	5.9	37.3
154	fayalite	1412	62.4	6.9	0.0	30.7
154	fovolito	1415	57.0	5.5	0.2	30.9
170	liquid	1323	33.2	12.5	0.2 6.5	30.0 47.8
175	wollastonite	1525	32.5	12.5	0.5	47.8
	silica		1.0	0.2	0.1	98.6
180	liquid	1323	35.9	14.3	6.2	43.6
	wollastonite		30.0	20.8	0.1	49.1
	fayalite		67.2	2.2	0.0	30.6
181	liquid	1333	41.1	16.5	8.7	33.7
	fayalite		45.1	22.4	0.0	32.5
182	liquid	1333	41.4	16.2	8.4	34.0
	fayalite		46.9	20.3	0.0	32.8
102	spinel	1222	46.5	0.0	53.2	0.3
183	liquid	1333	36.7	10.4	6.0	46.9
	layante		08.4	0.9	0.0	30.7
184	liquid	1323	35.5	16.3	6.3	90.9 /1 0
104	favalite	1525	65.7	3.5	0.0	30.8
185	liquid	1323	38.9	16.8	9.4	34.9
100	favalite	1020	44.6	22.5	0.1	32.8
	spinel		45.2	0.0	54.6	0.2
186	liquid	1313	32.5	12.2	7.4	47.9
	wollastonite		33.9	17.5	0.2	48.4
	silica		0.9	0.1	0.3	98.7
193	liquid	1413	52.2	2.3	7.2	38.3
104	fayalite	1412	69.4	0.1	0.0	30.5
194	liquid	1413	52.4	4.1	6.8	36.7
105	liquid	1303	09.4 17.3	0.5 1 Q	0.1	50.2 40.6
195	favalite	1375	69.6	4.9	0.0	40.0 30.1
196	liquid	1393	47.6	6.6	6.9	38.9
170	favalite	1070	69.1	0.6	0.0	30.3
197	liquid	1312	33.4	12.1	7.4	47.1
	fayalite		68.3	1.2	0.0	30.5
	wollastonite		34.2	17.4	0.1	48.3
	silica		0.9	0.1	0.2	98.8
198	fayalite	1312	66.5	3.2	0.0	30.3
	wollastonite		27.1	23.8	0.2	48.9
100	mullite	1204	1.5	19.4	35.4	43.7
199	liquid	1304	51.4	12.2	8.8	4/.6
	wollastonita		3/ /	1.5	0.0	30.2 48 0
	silica		0.8	0.1	0.1	98.0
226	liquid	1353	34.2	19.0	6.1	40.7

602-VOLUME 30B, AUGUST 1999

Table IV. Continued

Experiment		Temperature	Composition (Wt Pct)			
Number	Phases	(K)	FeO	CaO	Al_2O_3	SiO_2
	wollastonite		18.7	31.6	0.0	49.7
227	liquid	1323	35.7	11.7	6.1	46.5
	fayalite		68.3	1.3	0.0	30.4
	wollastonite		34.3	17.2	0.2	48.3
230	liquid	1353	45.4	15.5	5.7	33.4
	fayalite		55.5	13.2	0.0	31.3
234	liquid	1353	46.8	15.0	5.6	32.6
	fayalite		52.2	16.0	0.0	31.8
236	liquid	1373	42.9	6.1	6.8	44.2
	fayalite		69.4	0.3	0.0	30.3
	silica		0.9	0.1	0.1	98.9
237	liquid	1373	42.9	8.0	6.1	43.0
	fayalite		68.7	0.8	0.0	30.5
238	liquid	1413	52.0	2.4	6.1	39.5
	fayalite		69.3	0.1	0.0	30.6
239	liquid	1393	47.3	5.7	5.9	41.1
	fayalite		68.9	0.4	0.0	30.7
240	liquid	1353	40.0	10.1	6.0	43.9
	fayalite		68.5	1.0	0.0	30.5
241	liquid	1333	37.3	12.5	6.0	44.2
	fayalite		68.3	1.4	0.0	30.3
242	liquid	1333	43.8	15.5	8.2	32.5
	fayalite		51.8	16.8	0.0	31.4
	wustite		99.0	0.0	0.8	0.2
	spinel		47.3	0.0	52.6	0.1

Yagi,^[14] as shown in Figure 3. The temperatures of the univariant points, representing the equilibrium of liquid with tridymite and fayalite in the Al₂O₃-"FeO"-SiO₂ system, are plotted against the alumina content. It can be seen from Figure 3 that the difference in this region between the present work and the results of Schairer and Yagi is less than 10 K.

The liquidus temperatures in the fayalite primary phase field are reduced by the addition of alumina to slag, as shown in Figure 4. Three typical slag compositions in the fayalite primary phase field were chosen to determine the effect of an Al₂O₃ addition on liquidus temperatures. The initial compositions were selected near silica saturation and are given in the Figure 4 caption. The liquidus temperatures of these slags were compared to the slags having 2, 4, and 6 wt pct Al₂O₃ and the same "FeO"/CaO/SiO₂ ratios. It can be seen from Figure 4 that the additions of up to 6 wt pct Al₂O₃ decrease the liquidus temperatures for all fayalite slags. The effect of each Al₂O₃ weight percent addition to the slag is estimated to decrease the liquidus temperature by approximately 3 K.

The addition of alumina leads to the expansion of the fayalite primary phase field toward lower "FeO" concentrations. This can be illustrated by Table V. In the composition range investigated, there is a point A representing equilibrium of liquid with wollastonite, tridymite, fayalite, and metallic iron. The compositions and temperatures of point A, from Figures 2(a) through (d), are listed in Table V. It can be seen from Table V that the position of point A changes with the addition of alumina to the slag. The SiO₂ content of the point-increases from 44.2 to 47.2 wt pct with the addition of 6 wt pct of Al₂O₃, while the "FeO" content decreases significantly from 42.3 to 35.6 wt pct. Thus, the fayalite primary phase field expands toward higher silica and lower iron oxide concentrations with the addition of

c. 4 wt% Al₂O,

d. 6 wt% Al₂O₃

Fig. 2—(*a*) through (*d*) Experimentally determined liquidus isotherms in the fayalite primary field of the Al_2O_3 -"FeO"-CaO-SiO₂ system in equilibrium with metallic iron (temperature in K).

Fig. 3—The relationship between liquidus temperature and alumina content along the boundary line of tridymite and fayalite in the Al_2O_3 -"FeO"-SiO₂ system in equilibrium with metallic iron: solid lines—experimental work; and dashed lines—results of Schairer and Yagi.^[14]

Fig. 4—The effect of Al_2O_3 on liquidus temperatures for the following slags: (\Box) 45 pct "FeO," 11 pct CaO, and 44 pct SiO₂; (\bigcirc) 50 pct "FeO," 10 pct CaO, and 40 pct SiO₂; and ($\textcircled{\bullet}$) 55 pct "FeO," 10 pct CaO, and 35 pct SiO₂.

alumina. It also can be seen from Table V that the liquidus temperature of point A is decreased from 1361 to 1318 K by the addition of 6 wt pct alumina.

One of the systems which is similar to Al₂O₃-CaO-"FeO"-SiO₂ is Al₂O₃-CaO-MgO-SiO₂. Osborn *et al.*^[29] constructed

Table V.Experimentally Determined PointA—Equilibrium of Liquid + Wollastonite + Tridymite+ Fayalite + Metallic Iron (Figure 2)

		Poin	t A (Fig. 2))	
Section Al ₂ O ₂ in Slag	Com	Composition (Wt Pct)			
(Wt Pct)	CaO	"FeO"	SiO ₂	(K)	
0	13.5	42.3	44.2	1361	
2	11.8	41.3	44.9	1353	
4	11.5	38.0	46.5	1333	
6	11.2	35.6	47.2	1318	

Fig. 5—Liquidus surfaces in the pseudobinary CaO-"FeO" system at 40 pct SiO_2 : solid line—without Al_2O_3 ; and dashed line—with 8 pct Al_2O_3 .

pseudoternary sections on the base of CaO-MgO-SiO₂ at 5 pct Al₂O₃ intervals, from 5 to 35 pct Al₂O₃. Similarly, their results showed that addition of Al₂O₃ to slag decreases the liquidus temperature in the olivine primary-phase field. It was observed that a new primary-phase spinel (MgAlO₄) appeared between the olivine and MgO primary-phase fields with a 15 pct addition of Al₂O₃. With a 25 pct Al₂O₃ addition, the olivine primary-phase field is completely replaced by the spinel primary-phase field. In the present investigation, the spinel (Fe_xAl_{3-x}O_{4+y}) phase was only found at the lower-silica region in samples containing more than 8.0 pct Al₂O₃ in the liquid phase (Table IV).

It has been found by Verney^[6] that the better smelting conditions (lower fuel consumption) can be obtained with a final slag composition of 40 wt pct SiO₂, 32 wt pct "FeO", 20 wt pct CaO, and 8 wt pct Al₂O₃ (slag B) rather than with another slag composition of 42 wt pct SiO₂, 35 wt pct "FeO", 15 wt pct CaO, and 8 wt pct Al₂O₃ (slag A). This fact can be explained by the results obtained in the present work. Figure 5 shows the effect of Al₂O₃ on the fayalite primaryphase field and liquidus temperatures at 40 pct SiO₂. The solid line represents the results from the CaO-"FeO"-SiO₂ system (Figure 2(a)). The dashed line is obtained from the Al₂O₃-CaO-"FeO"-SiO₂ system (Figures 2(b) through (d)) by extrapolation of the present results at 0 to 6 pct Al₂O₃ to 8 pct Al₂O₃. It can be seen from Figure 5 that two primary phase fields, fayalite and wollastonite, exist in the composition range investigated. With increasing CaO contents, the liquidus temperature decreases in the fayalite primary-phase field and increases in the wollastonite primary-phase field. However, with an 8 pct addition of alumina, the fayalite primary-phase field extends so that the liquidus temperature continuously decreases with increasing CaO content up to 23 pct CaO. The addition of 8 pct Al_2O_3 , therefore, results in the location of both slags A and B in the fayalite primary phase field, and the liquidus temperature of slag B (~1300 K) is lower than that of slag A (~1325 K). This lower liquidus temperature with an alumina addition explains the better smelting conditions (lower fuel consumption) observed by Verney^[6] for slag B rather than slag A.

IV. SUMMARY

Liquidus temperatures in the fayalite primary-phase field and boundary lines in the Al_2O_3 -"FeO"-CaO-SiO₂ system at Al_2O_3 contents from 0 to 6 wt pct, in equilibrium with metallic iron, have been experimentally determined. It has been found that an Al_2O_3 addition expands the fayalite primary phase field toward lower iron oxide concentrations. The liquidus temperatures of the fayalite slags are decreased by approximately 3 K for each 1 wt pct of Al_2O_3 added.

ACKNOWLEDGMENTS

The authors thank Mount Isa Mines Limited for the financial support for this project.

REFERENCES

- A.K. Biswas and W.G. Davenport: *Extractive Metallurgy of Copper*, 3nd ed., Pergamon Press, New York, NY, 1994, pp. 74-98.
- 2. P.J. Mackey: Can. Metall. Q., 1982, vol. 21, pp. 221-60.
- D. Santander: *The Future of Copper Pyrometallurgy*, Proc. Symp. held during the First Latin American Congress of Mining and Extractive Metallurgy, Santiago, Chilean Institute of Mining Engineers, Chile, 1974, pp. 31-89.
- J.M. Toguri, N.J. Themelis, and P.H. Jennings: Can. Metall. Q., 1964, vol. 3, pp. 197-220.
- R.W. Ruddle: *The Physical Chemistry of Copper Smelting*, Institution of Mining and Metallurgy, London, 1993, pp. 40.
- 6. L.R. Verney: Trans. Inst. Min. Metall., 1960, vol. 69, pp. 211-36.
- 7. F.E. Lathe: Trans. Can. Inst. Min. Metall., 1951, vol. 54, pp. 95-104.
- 8. L.R. Verney: Trans. Inst. Min. Metall., 1969, vol. 78, pp. C28-C42.
- C.R. Fountain, M.D. Coulter, and J.S. Edwards: *Copper 1991*, COBRE 91 Int. Symp. Proc., Pergamon Press, New York, NY, 1991, vol. IV, pp. 359-73.
- C.R. Fountain, J.M.I. Tuppurainen, N.R. Whitworth, and J.K. Wright: *The Paul E. Queneau Int. Symp.*, TMS, Warrendale, PA, 1993, vol. II, pp. 1461-76.
- N.L. Bowen, J.F. Schairer, and E. Posnjak: Am. J. Sci., 1933, vol. 26, pp. 193-284.
- 12. W.C. Allen and R.B. Snow: J. Am. Ceram. Soc., 1955, vol. 38, pp. 264-80.
- A. Muan and E.F. Osborn: *Phase Equilibria among Oxides in Steelmak*ing, Addison-Wesley Publishing Company, Reading, MA, 1965, pp. 54 and 113.
- 14. J.F. Schairer and K. Yagi: Am. J. Sci., 1952, Bowen volume, part 2, pp. 471-512.
- R.B. Snow and W.J. McCaughey: J. Am. Ceram. Soc., 1942, vol. 25, pp. 151-60.
- R. Hay, J. White, and T.H. Caulfield: J. Soc. Glass Technol., 1937, vol. 21, pp. 270-80.
- 17. C. Henrich: AIME, Trans., 1916, vol. 56, pp. 621-26.
- 18. J. Newton and C.L. Wilson: Metall. Copper, 1942, p. 126.
- W.T. Lankford, N.L. Samways, R.F. Craven, and H.E. McGannon: *The Making, Shaping and Treating of Steel*, 10th ed., United States Steel, Pittsburgh, PA, 1985, p. 326.
- 20. J.F. Schairer: J. Am. Ceram. Soc., 1942, vol. 25, pp. 241-74.

- 21. A. Muan and E.F. Osborn: Yearbook Am. Iron Steel Inst., 1951, pp. 325-59.
- 22. E. Jak, N. Liu, and P.C. Hayes: *Metall. Trans. B*, 1998, vol. 29B, pp. 541-53.
- 23. E. Jak, H.G. Lee, and P.C. Hayes: Kor. IMM J., 1995, vol. 1, pp. 1-8.
- 24. E. Jak, S. Degterov, B. Zhao, A.D. Pelton, and P.C. Hayes: *Proc. Zinc and Lead Processing Symp.*, Calgary, Canada, Can. Inst. Min. Met. and Petr., Montreal, Quebec, Canada, 1998, pp. 313-33.
- E. Jak, B. Zhao, and P.C. Hayes: Proc. 5th Int. Symp. on Metallurgical Slags and Fluxes, ISS-AIME, Sydney, 1997, pp. 719-26.
- 26. E. Jak, N. Liu, H.G. Lee, and P.C. Hayes: Proc. Lead & Zinc '95 Int. Symp., Sendai, Min. Mat. Inst. of Japan, Japan, 1995, pp. 747-51.
- E. Jak, N. Liu, P. Wu, A.D. Pelton, H.G. Lee, and P.C Hayes: *Proc. 6th* AusIMM Extractive Metallurgy Conf., Brisbane, AusIMM, Parkville, Victoria, Australia, 1994, pp. 253-59.
- E. Jak, N. Liu, H.G. Lee, and P.C. Hayes: *Proc. 6th AusIMM Extractive Metallurgy Conf.*, Brisbane, AusIMM, Parkville, Victoria, Australia, 1994, pp. 261-68.
- 29. E.F. Osborn, R.C. DeVries, K.H. Gee, and H.M. Kraner: *Trans. AIME*, 1954, vol. 200, pp. 33-45.