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Self-Attention-Based Convolutional Parallel Network:
An Efficient Multi-Input Deep Learning Model
for Endpoint Prediction of High-Carbon BOF
Steelmaking

TIAN-YI XIE , FEI ZHANG, YI-REN LI, QUAN ZHANG, YAN-WEI WANG,
and HAO SHANG

In this work, a data-driven model for endpoint prediction of basic oxygen furnace (BOF)
steelmaking based on both tabular features (information about hot metal, scrap, additives,
blowing practices) and time series (curves of off-gas profiles, sonar slagging, and blowing
practices) was developed and implemented. The model was designed with the following
distinctive artificial intelligence (AI) characteristics: convolutional neural networks, patching
embedding, wavelet decomposition, a parallel structure, a self-attention mechanism, a
collaborative attention mechanism, and so on. The model presented in this work is named
the self-attention-based convolutional parallel network (SabCP) and was applied to high-carbon
steelmaking scenarios. SabCP predicts the endpoint of molten steel temperature (Temp) and
chemistry (contents of carbon (C), phosphorus (P), and sulfur (S)). For training, validation, and
testing, historical data from 13,656 heats were collected. The testing results show that the mean
absolute errors (MAEs) of SabCP for temperature and the contents of carbon, phosphorus, and
sulfur are 6.374 �C, 7.192 9 10�3, 2.390 9 10�3, and 2.224 9 10�3 pct, respectively, while the
mean square errors (MSEs) are 67.345, 1.132 9 10�4, 1.306 9 10�5, and 1.298 9 10�5,
respectively, which are lower than those of other published models with same dataset.
Relevant importance analyses for tabular features, time series time steps, and channels are also
performed. SabCP has been implemented in a prediction module, and the practical results show
its strong robustness and generalizability. This model provides significant feasibility for fully
eliminating the conventional physical temperature, sampling, and oxygen test (TSO test), which
may greatly decrease the cost of BOF steelmaking.
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I. INTRODUCTION

ENDPOINT control for making high-carbon steel
through the BOF steelmaking process is challenging;
this is because within the carbon content range of
0.08~0.35 pct, both the decarbonization rate and slag

condition rapidly change and become unstable during
oxygen blowing. There are two conventional methods
for ensuring that the endpoint temperature and chem-
istry are within the specified range. Decarbonization
occurs at a much lower level than that of the spec, and
then, re-carbonization practices are conducted after
tapping and lab chemistry analysis. The second method
is to perform a temperature, sampling, and oxygen test
(TSO test) before tapping. Both methods are very costly
and time-consuming. If an accurate endpoint prediction
model can be developed, significant benefits will be
brought to BOF steelmaking, especially in high-carbon
scenarios. However, it is a complex, nonlinear, and
vigorous process involving both physical and chemical
transformations. Therefore, AI models designed for
analyzing complex nonlinear systems are highly suit-
able for modeling and predicting the steelmaking
process.
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Multiple studies have already applied AI models to
various aspects of steelmaking. For example, Wang
et al.[1] and Zhang et al.[2] analyzed additive amounts for
BOF steelmaking with various machine learning models.
Xin et al.[3] and Feng et al.[4] predicted the endpoint
temperature of a ladle furnace (LF) with a modified
deep neural network and Bayesian belief network. In
regard to direct reduced iron (DRI) and electric arc
furnace (EAF) steelmaking, Son et al.[5] studied the slag
foaming estimation of an EAF with a long short
memory network (LSTM), and Devlin et al.[6] utilized
machine learning models to analyze the optimal loca-
tions for renewable energy-based steel production. At
the microscopic level, particularly concerning impuri-
ties, there are also many examples. Abdulsalam et al.[7]

applied unsupervised machine learning models for the
detection of nonmetallic inclusion clusters. A survey
conducted by Webler et al.[8] highlighted a method
proposed by Alatarvas et al.[9] for automatic classifica-
tion of inclusions via logistic regression.

There are multiple existing studies on the endpoint
prediction of BOF steelmaking. They mainly adopt the
following technical approaches: (1) using an original or
modified backpropagation (BP) neural network with
tabular data that consist of information derived from
hot metal, scrap, additive, and blowing practices, such
as in References 10 through 20; (2) using an original or
modified support vector machine (SVM) with tabular
data such as in References 18,21 through 25; (3) using
SVM or convolution neural networks with flame fea-
tures (radiation, temperature, and image features) to
make predictions, such as in References 26 through 28]
and (4) using a case-based reasoning (CBR) model with
tabular data for predictions, such as in References 29
through 31.

The above studies have indicated the significant
potential of AI data-driven models for solving problems
related to steelmaking and have achieved good results.
However, they might be improved by overcoming the
following limitations:

(1) Inefficient models adopted. Some research has used
classical machine learning models (SVM, random
forest, etc.) and neural networks (LSTM, BP, etc.).
According to research and surveys,[32–37] such
models have less robustness and predictive capacity
than the state-of-the-art (SOTA) machine learning
and deep learning models. The SOTA models should
be tested and compared.

(2) Insufficient modifications in the backbones. Some of
the deep-learning-based studies introduced new data
preprocessing and loss function optimization algo-
rithms. However, they did not modify the existing
feature extraction networks (backbones). Some
widely proven effective backbone improving tech-
niques, such as attention mechanisms and residual
connections, have not been tried and implemented.

(3) There is a lack of ablation experiments. Some
studies have proposed new algorithms for data
preprocessing and loss function optimization.
However, ablation experiments were not conducted.

Whether the added algorithms are useful and the
specific parts contributing to the improvement of the
model have not been determined.

(4) Simple features. Their input features are relatively
simple, such as tabular features or flame images,
which can only represent a part of the period of
steelmaking. Moreover, the cases selected in such
studies are very limited.

In the present work, a method has been proposed to
achieve endpoint prediction of the BOF steelmaking and
compensate for the shortcomings of the aforementioned
research. The originality of this method stems from (1) the
design of a multi-input deep learning algorithm, the
reliability of which was validated by achieving the
challenging high-carbon BOF steelmaking endpoint pre-
diction; (2) the introduction of the hybrid input and the
time series data that can fully represent the entire
steelmaking process for BOF endpoint prediction; (3) the
analysis of the importance of each channel and time step of
the time series for the endpoint with self-attention-based
networks; and (4) extensive experimentation, ample data
acquisition, and comprehensive analysis are conducted.
The importance of the proposed prediction method is

(1) demonstrating the applicability of time series and
hybrid input for endpoint prediction, thereby designing
a data-driven approach to predicting; (2) achieving
endpoint prediction through the utilization of efficient
deep learning algorithms and hybrid inputs; and (3)
laying the technical groundwork for eliminating the
TSO test, carbon catching, endpoint automation con-
trol, and future unsupervised or self-supervised pre-
training model development. The advantages of this
method lie in its high backbone efficiency, utilization of
data with high information density, small storage
footprint, and ease of preprocessing, making it highly
suitable for widespread adoption. For steel plants
lacking robust statistical digital infrastructure, endpoint
prediction can be achieved with the numerical data
automatically recorded by their coal gas recovery and
level-two systems. A more detailed description of the
specific contents of this study is as follows:

(i) For the first time, the challenging high-carbon end-
point prediction of BOF steelmaking was imple-
mented using composite inputs, including tabular
data and time series data. Good results are achieved.

(ii) A matching deep learning model with inputs of both
time series and tabular features was proposed. It is
based on a self-attention mechanism and a convo-
lutional neural network. At the same time, the
patching method and wavelet decomposition are
used to process the input time series. Ablation
experiments were carried out, and the performance
of the proposed model was compared with that of
modified SOTA models.

(iii) A strong correlation was found between the BOF
endpoint and the time series, including the off-gas
profile and blowing practice curves. This demon-
strated that the endpoint can be relatively accu-
rately predicted with only time series.
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(iv) A BOF endpoint prediction module based on
SabCP was programmed and applied to external
validation. The results show that SabCP has good
prediction accuracy and robustness. Its perfor-
mance and human–machine interface (HMI) and
results are listed in detail.

(v) The data have been carefully analyzed. For tabular
data, data cleaning was conducted, followed by
statistical analysis. The filtered data were utilized
with machine learning models to predict the end-
point and analyze the importance of the features.
For time series data, data cleaning has also been
applied, and a transformer model has been utilized
to analyze the importance of each time step and
channel for the target. Ultimately, various deep
learning models have been employed to predict
endpoints using time series data.

II. DATA DESCRIPTION

The raw history data were collected from 13,656
heats. After data cleaning and feature engineering, 8328
heats remained. A total of 5328 heats of the remaining
data for each target were randomly divided into the
training set, 1500 heats into the validation set, and 1500
heats into the test set. The main steel grades considered
in this study are those requiring high-carbon endpoints
(‡0.08 pct), including HRB400, HRB500, Q355, and
Q420. To ensure the generalization capability and
robustness of the model, some steel grades with lower
required endpoint carbon contents (0.04–0.06 pct)
produced in this work were also considered, such as
ER70, TH10Mn2, and H08.

A. Tabular Data

Columns in tabular data determine features, and rows
determine values of each heat in such features. Tabular
features include information of preset value, hot metal,
scarp, additives and blowing practices. Tabular data are
divided into three parts, and their statistical descriptions
are detailed in Table I (std: standard deviation). The
description of each part is as follows:

� Preset data: preset values of oxygen blowing practices
and endpoints. The preset oxygen blowing before the
Temperature, Sample, Carbon (TSC), and TSO tests
come from the second calculation of the level-two
system. That is, after determining the relevant data of
the loaded hot metal and scrap, the level-two system
calculates the oxygen blowing amount more accu-
rately.

� Static data: physical or chemical qualities of hot me-
tal, scrap, and additives (additive data before and
after the TSC test were separately input into the
model).

� Dynamic data: dynamic oxygen blowing practices and
TSC-related values.

Feature engineering and importance analysis of tabular
data. The importance of each feature is the average of
the importance analysis results of the light gradient
boosting machine (LightGBM)[38] and categorical
boosting (Catboost)[39] algorithms. For LightGBM,
the importance of features was defined by the total
number of splits and the total/average information gain
during the training process. The importance of a feature
is greater when it is chosen more often as a split node.
For Catboost, the loss function change[23] method is
adopted for importance analysis. It refers to counting
the change in the model’s loss that contains and does not
contain a certain feature. The calculation process is
described in Eqs. [1] and [2],[23] where Eiv is the
mathematical expectation of the formula value without
the i th feature, the metric is the loss function specified
in the training parameters, and v is the vector with
formula values for the dataset.

importancei ¼ �ðmetricðEivÞ �metricðvÞÞ ½1�

importancei ¼ abs metric Eivð Þ � best valueð Þ
� abs metric vð Þ � best valueð Þ: ½2�

The results of the feature importance analysis for
different tasks are visualized in the Results and Discus-
sion section.

B. Time Series Data

A time series is a sequence composed of times and
their corresponding observed values over a continuous
period. The sampling frequency of the time series is once
per second. The time series data in this work consisted
of the following curves:

(a) Curves of the off-gas profile, which directly repre-
sent the carbon–oxygen reaction. The off-gas profile
is a curve consisting of the real-time content of the
main gases in the exhaust gas of steelmaking. These
gases include carbon monoxide, carbon dioxide,
nitrogen, oxygen, and hydrogen, and curves of their
gas content percentage (GP) in off gas are abbrevi-
ated as GP-CO, GP-CO2, GP-N2, GP-O2, and
GP-H2 in this work. The gas flow curve (denoted as
Gas-Flow) is also included in the off-gas profile.

(b) The curve of sonar slagging directly represents the
slag condition. Sonar slag is a method of measuring
slag condition by sound intensity. The curve shows
the real-time slag condition. In this work, it is de-
noted as Sonar.

(c) The curves directly represent the blowing practices.
These curves include the total oxygen blowing curve
(denoted as O2-Blown), the instantaneous oxygen
blowing intensity curve (denoted as O2-Blowing),
and the oxygen lance height curve (denoted as
Lc-height). The curves of blowing practice can
comprehensively summarize the oxygen blowing
conditions of each heat.
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Data preprocessing: For data cleaning (the cleaning
standards are detailed in the Appendix), all time series
are padded to 1024 time steps with zero. An example of
an time series in one typical heat is shown in Figure 1

The importance of each time step and channel is
calculated by a transformer encoder.[40]

The weight of the multihead attention layer is the
importance. The structure of the transformer encoder is
shown in Figure 2. The results are detailed in the Results
and Discussion section.

C. Targets and Metrics

The temperature of the hot steel (TSO-Temp (�C)),
the carbon content of the hot steel (TSO-C (pct)), the
phosphorus content of the hot steel (TSO-P (pct)), and
the sulfur content of the hot steel (TSO-S (pct)), were
measured via the TSO test. Figure 3 shows the distri-
bution and relationship between each target. Combina-
torial metrics were used to evaluate the model. The basic
metrics adopted were as follows:

R2 ¼ 1�
P

Yi�bY
� �2

P
Yi�Yð Þ2 and MAE ¼ 1

n

Pn
i¼1 Yi � bY

�
�
�

�
�
�,

where R2 is the coefficient of determination; MAE is
the mean absolute error; Yi is the true value with index i

in dataset Y; bY is the predicted value of Yi; Y is the
average of Y; and n is the number of samples contained
in Y.
To better evaluate the manufacturability of the

model, the BOF steelmaking quality control require-
ments and key process indices (KPIs) of the BOF
steelmaking plant were used. The following hit rate
criteria are added.

� For TSO-Temp, the proportion of the predicted value
within ±10�C, ±15�C, and 20�C of the true value.

� For TSO-C, the proportion of the predicted value
within ±0.01 pct, ±0.015 pct, and ±0.02 pct of the
true value.

� For TSO-P and TSO-S, the proportion of the pre-
dicted value within �0:001pct, �0:003pct, and
�0:005pct of the true value.

Table I. Descriptive Statistics of the Tabular Features

Class Features Units Max Min Mean Std

Preset Values set oxygen consumption before TSC test Nm3 5652.000 3715.000 4503.892 206.627
set oxygen consumption before TSO test Nm3 6563.000 4508.000 5011.015 272.456
target steel temperature �C 1680.000 1600.000 1644.488 12.024
target [C] pct 0.150 0.040 0.074 0.013

Static Values hotmetal [C] pct 4.999 3.589 4.432 0.194
hotmetal [Si] pct 0.742 0.024 0.300 0.085
hotmetal [Mn] pct 0.367 0.084 0.149 0.029
hotmetal [S] pct 0.346 0.001 0.033 0.010
hotmetal [P] pct 0.159 0.067 0.117 0.010
hotmetal [V] pct 0.069 0.018 0.036 0.008
hotmetal [Ti] pct 0.160 0.005 0.071 0.027
hotmetal weight kg 142800.000 102000.000 123906.168 2108.320
hotmetal temperature �C 1448.000 1250.000 1354.521 38.508
self-produced script weight kg 20000.000 0.000 4239.091 2670.897
iron lump weight kg 12369.000 0.000 141.823 816.252
hot pressed iron weight kg 9300.000 0.000 62.207 405.943
slag–steel weight kg 8800.000 0.000 973.260 1242.862
heavy scrap weight kg 10200.000 0.000 134.452 727.892
other scrap weight kg 6300.000 0.000 1.002 79.455
lime weight (before TSC) kg 5808.000 500.000 3286.633 472.200
dolomite weight (before TSC) kg 3624.000 148.000 2105.257 387.073
limestone weight (before TSC) kg 3498.000 0.000 362.646 558.044
raw dolomite weight (before TSC) kg 3519.000 0.000 696.000 504.905
inhibitor weight (before TSC) kg 567.000 0.000 8.468 40.519
ferrous cold material weight (before TSC) kg 10858.000 0.000 3243.380 1692.903
other material weight (before TSC) kg 9808.000 0.000 394.985 1199.756
lime weight (after TSC) kg 505.000 0.000 1.242 22.116
dolomite weight (after TSC) kg 579.000 0.000 5.805 46.635
limestone weight (after TSC) kg 1091.000 0.000 7.183 52.831
raw dolomite weight (after TSC) kg 1026.000 0.000 4.575 42.635
inhibitor weight (after TSC) kg 293.000 0.000 0.609 10.261
ferrous cold material weight (after TSC) kg 5583.000 0.000 411.945 439.155
other material weight (after TSC) kg 4904.000 0.000 48.178 215.990

Dynamic Values oxygen consumption before TSC test Nm3 5510.000 3972.000 4585.501 188.145
oxygen consumption before TSO test Nm3 6134.000 4388.000 5093.427 215.333
TSC thermal arrest [C] pct 0.760 0.100 0.398 0.153
TSC temperature �C 1650.000 1510.100 1605.652 22.461
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In particular, models may have conflicting MAEs and
R2 values due to predicted value distribution (e.g., lower
MAEs but lower R2 values). In this case, since the
factory takes the MAE as the key model evaluation
index, and the MAE’s statistical evaluation of the model
is more intuitive and interpretable, the model with a
lower MAE will be regarded as the better model.

III. SELF-ATTENTION-BASED CONVOLU-
TIONAL PARALLEL NETWORK (SABCP)

SabCP is a deep learning model proposed for accu-
rately predicting the endpoint of BOF steelmaking; it
incorporates tabular and time series data, with a
network structure comprising data preprocessing and
parallel backbone components. SabCP follows a patch-
wise approach, dividing inputs into patches for inde-
pendent feature extraction using the same backbone
model. The feature vectors from each patch are then
merged and projected to produce the final output.
Further details on SabCP are provided, with its general
structure depicted in Figure 4. The training strategy, list
of hyperparameters, and tuning results are shown in
Appendix.

A. Data Preprocessing Module

The data preprocessing module is mainly composed of
two parallel parts, namely, a time series patching and
wavelet transform network and a tabular feature
embedding network. The outputs of these two parallel

Fig. 2—Structure of the transformer encoder.[40] X—input;
Y—target.

Fig. 1—An example of time series data in one typical heat, including (a) off-gas-related curves, (b) a sonar slagging curve, and (c) blowing
practice-related curves, s—second.
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parts are concatenated. The final output of the data
preprocessing module are multiple sequence tensors.
Detailed descriptions of each part are provided in Fig. 6.

1. Time series patching and the wavelet transform
network

The time series wavelet decomposition network
extracts features from different sequence segments and
frequencies in time series data. Research by Nie et al.[41]

demonstrated that the patchwise method is more suit-
able for processing long time series data; it treats a patch
of time series as an individual token, which decreases the
model complexity to avoid overfitting. Because each
patch hardly affect the other in the model training
process, the locality of the time series is preserved. In
addition, SabCP uses the self-attention mechanism, and
its time complexity of attention computation is propor-
tional to the square of the time series length. The
patchwise model greatly reduces the computational time
complexity of the self-attention mechanism. Further-
more, this patchwise model can be used to develop
unsupervised or self-supervised pre-trained models for
time series in the future. Initially, the processed time

series data are divided into a1 (where a 1 ¼ 2i) equal

patches. Each patch then undergoes two-dimensional
discrete wavelet transformation (2D-DWT). This pro-
cess enables separate extraction of features from differ-
ent frequency components of the time series, thus
enhancing the model’s overall feature extraction capa-
bility. Eq. [3] represents the father scaling function / for
any input x, while Eq. [4] represents the mother wavelet
basis w:

/ xð Þ ¼ 1 if0 � x<; 1
0 otherwise

�

½3�

w xð Þ ¼
1 0 � x<0:5
�1 0:5 � x<1
0 elsewhere

8
<

:
½4�

For a two-dimensional (2D) input x; yð Þ, Eq. [5] is a
2D scaling function / x; yð Þ. The2D wavelet functions
for the horizontal edge (HÞ, vertical edge (V), and

diagonal direction (D) are wH (Eq. [6]), wV (Eq. [7]), and

wD (Eq. 8]), respectively.

/ x; yð Þ ¼ / xð Þ/ yð Þ ½5�

Fig. 3—Distribution and relationship between each target.
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wH x; yð Þ ¼ w xð Þ/ yð Þ ½6�

wV x; yð Þ ¼ / xð Þw yð Þ ½7�

wD x; yð Þ ¼ w xð Þw yð Þ: ½8�

Fig. 4—General structure of SabCP. a1—number of patches from the time series, n1—number of patches from tabular features, c1—embedding
dimension of each embedded patch.

Fig. 5—An example of transformed time series by single-stage 2D-DWT. The components are cA (a), cH (b), cV (c), cD (d).
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If the length and width of the input x; yð Þ are M and
N, respectively, in the j series of transformation, the
scale basis function (Eq. [9]), and shift basis function
(Eq. [10]) are described as follows (M ¼ 2m, N ¼ 2n):

/0;m;n x; yð Þ ¼ 2j=2/ 2jx�m; 2j � n
� �

½9�

wi
j;m;n x; yð Þ ¼ 2j=2w 2jx�m; 2j � n

� �
; i ¼ H;V;Df g:

½10�
Finally, the 2D-DWT transforms a multichannel time

series (2D input, channels 9 time steps) into four
components: a low-frequency component W/

(Eq. [11]) and three high-frequency components Wi
w; i ¼

H;V;Df g (Eq. [12]), where f x; yð Þ is a discrete form of
x; yð Þ:

W/ 0;m; nð Þ ¼ 1
ffiffiffiffiffiffiffiffiffi
MN

p
XM�1

x¼0

XN�1

y¼0
f x; yð Þ/0;m;n x; yð Þ

½11�

Wi
w j;m; nð Þ ¼ 1

ffiffiffiffiffiffiffiffiffi
MN

p
XM�1

x¼0

XN�1

y¼0
f x; yð Þwi

j;m;n x; yð Þ; i

¼ H;V;Df g:
½12�

In SabCP, 2D-DWT is performed in a single stage
(j ¼ 1Þ; that is, a multichannel time series is directly
decomposed into low-frequency components (cAs),
horizontal high-frequency components (cHs), vertical

high-frequency components (cVs), and diagonal
high-frequency components (cDs). Each component is
a tensor of five channels.
After 2D-DWT, to maintain tensor integrity, each

tensor is padded and processed by the same two-dimen-
sional convolutional network (Conv2d) with c 1 kernels
of size 5. Figure 5 illustrates the wavelet-transformed
matrix from the unpadded time series shown in Figures 1
and 6(a) shows the structure of the time series patching
and wavelet transform network.

2. Tabular feature embedding network
The tabular feature embedding network embeds

tabular data, increases data dimension, and extracts
initial features; it includes an embedding layer, a
one-dimensional dilation convolutional layer,[42] allow-
ing interval sampling and enlarging receptive fields with
a dilation rate parameter, and Conv2ds. For an input
sequence x of length M, kernel weight h, dilation
parameter d, and time series information s, the dilated
convolution function is expressed as Eq. [13].

F sð Þ ¼
XM�1

i
hðiÞ � xs�d�i: ½13�

The dilation convolution layer expands the time series
dimension and enhances feature extraction by enlarging
the receptive field. Initially, the input length is changed
from n 0 to n 1 by the embedding layer. Then, a
one-dimensional (1D) dilation convolutional layer pro-
cesses the extended input to add dimensions and further
extract features.

Fig. 6—Structure of the proposed data preprocessing module: (a) time series patching and wavelet transform network, (b) tabular feature
embedding network.
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The input dimension of its first layer is 1, resulting in
an output dimension of 512 =a 1. The extended input is
then residually connected to the output after dimension
augmentation via a 1 9 1 convolution kernel. The
resulting output forms a tensor with a length of n 1

and a width of 512/a 1. These tensors are further
processed by Conv2ds with c 1 kernels. Figure 6(b)
illustrates the structure of the tabular feature embedding
network.

B. Parallel Backbone

The parallel backbone efficiently extracts features; it
includes an attention-based convolutional temporal
network for local feature extraction and a gated
self-attention network for global feature extraction.
The output of the data preprocessing module is inde-
pendently fed into these two components. Their outputs
are added, processed by a Conv2d layer, flattened, and
projected to a single output. The structure of the parallel
backbone is shown in Figure 7.

1. Attention-based convolutional temporal network
According to previous research,[42–44] convolutional

neural networks (CNNs) have demonstrated a robust
ability to extract local features from time series. An
attention-based convolutional temporal network com-
prises multiple attention-based convolutional temporal
blocks, each integrating a causal dilation convolution
layer, collaborative attention module, layer normaliza-
tion layer, rectified linear unit (ReLU) function, and
dropout layer. Causal dilation convolution layer ensures
a one-way model structure. The causal convolution part
in a casual dilation convolution layer is expressed as
Eq. [14], where x is the input sequence, H is the length of
x, p xð Þ is the final output, and pðxtjx1; x2 _s _s; xt�1Þ is the
output of the previous layers.

p xð Þ ¼
YH

t¼1
pðxtjx1; x2 _s _s; xt�1Þ: ½14�

The collaborative attention module effectively weights
the eigenvectors, considering both the channel and
time step dimensions. Yu et al.[45] demonstrated the
efficacy of standard deviation pooling (std-pooling)

Fig. 7—The structure of the proposed parallel backbone: (a) structure of the attention-based convolutional temporal network; (b) structure of
the gated self-attention network. N1—the number of attention-based convolutional temporal blocks, N2—the number of gated self-attention
layers.
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and average pooling (avg-pooling) for feature extrac-
tion and weight calculation. Initially, std-pooling and
avg-pooling operations are conducted on each channel
and time step of the original sequence. Subsequently,
Conv1d is employed for the excitation transformation
of the output feature vector post squeeze operation,
thereby forming the final attention weight. The struc-
ture of the attention-based convolutional temporal net-
work is shown in Figure 7(a).

2. Gated self-attention network
According to previous research,[40,46,47] models

employing the self-attention mechanism exhibit superior
capability in extracting global features from sequence
inputs. Additionally, Wang et al.[48] demonstrated that
incorporating avg-pooling at various scales can enhance
the model’s sensitivity to global correlations within time
series data. Inspired by these studies, the gated self-at-
tention network is designed with multiple gated

self-attention layers, and each layer contains a multi-
scale avg-pooling module and a gated self-attention
module. The input is processed by positional encoding.
The structure of the gated self-attention network is
shown in Figure 7(b).
In a multiscale avg-pooling module, the input under-

goes processing through multiple avg-pooling layers,
each employing different kernel size. Specifically, for the
i-th avg-pooling layer, the kernel size is determined to be

2ði�1Þ � 1, with padding that maintain consist output
dimensions. Subsequently, the outputs of these
avg-pooling layers are padded, aggregated and pro-
cessed by Conv1d with k = 3. The input is also
connected residually to the output.
In a gated self-attention layer, the input is processed

by a transformer encoder layer with multiple heads
(default = 8). The feedforward neural network (FFN)
in the transformer encoder is replaced by gated linear
units (GLUs).[49] GLUs utilize two fully connected

Fig. 8—Importance of visualized tabular features.
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Fig. 9—The importance of channels and time steps in different tasks.
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layers, with one employing a Gaussian error linear unit
(GELU) as the activation function. The Hadamard
products of their outputs are fed into a third fully
connected layer to produce the final GLU output.

IV. RESULTS AND DISCUSSION

A. Results of the Importance Analysis of Tabular
Features

Figure 8 illustrates the visualization of the importance
of each tabular feature. The columns on the right
indicate positive correlations, while those on the left
indicate negative correlations. The length of each
column corresponds to the strength of correlation with
the target feature.
According to Figure 8, it can be concluded that the

target [C] and steel temperature are significant for each
target. Additionally, the oxygen content at each stage
and the initial state of the hot metal also exhibit
considerable importance. Furthermore, the significance
of pre-TSC additives outweighs that of post-TSC
additives.

Table II. Performance of SabCP and Other Models in Different Tasks

Targets Models R2 MAE (�C) ±10�C ±15�C ±20�C

TSO-Temp (�C) SabCP 0.785 6.374 0.801 0.921 0.977
informer 0.780 6.417 0.797 0.924 0.971
autoformer 0.782 6.380 0.796 0.921 0.971
SCINet 0.780 6.405 0.798 0.921 0.977
FEDformer 0.781 6.398 0.800 0.925 0.977
D-linear 0.778 6.438 0.797 0.922 0.972
PatchMixer 0.784 6.376 0.794 0.917 0.976

TSO-C (Pct) models R2 MAE (pct) ±0.01 pct ±0.015 pct ±0.02 pct
SabCP 0.650 7.192 9 10�3 0.755 0.869 0.941
informer 0.640 7.321 9 10�3 0.747 0.868 0.936
autoformer 0.646 7.198 9 10�3 0.755 0.877 0.939
SCINet 0.645 7.260 9 10�3 0.758 0.871 0.939
FEDformer 0.646 7.259 9 10�3 0.752 0.867 0.944
D-linear 0.644 7.276 9 10�3 0.757 0.869 0.935
patchMixer 0.647 7.195 9 10�3 0.760 0.873 0.936

TSO-P (Pct) models R2 MAE (pct) ±0.01 pct ±0.003 pct ±0.005 pct
SabCP 0.705 2.390 9 10�3 0.326 0.734 0.896
informer 0.690 2.439 9 10�3 0.313 0.724 0.881
Autoformer 0.701 2.399 9 10�3 0.327 0.729 0.898
SCINet 0.696 2.409 9 10�3 0.335 0.735 0.887
FEDformer 0.699 2.401 9 10�3 0.325 0.731 0.899
D-linear 0.691 2.437 9 10�3 0.322 0.729 0.901
patchMixer 0.703 2.393 9 10�3 0.322 0.735 0.899

TSO-S (Pct) models R2 MAE (pct) ±0.01 pct ±0.003 pct ±0.005 pct
SabCP 0.843 2.224 9 10�3 0.378 0.781 0.911
informer 0.829 2.398 9 10�3 0.339 0.748 0.900
autoformer 0.841 2.228 9 10�3 0.384 0.775 0.907
SCINet 0.831 2.352 9 10�3 0.361 0.752 0.901
FEDformer 0.840 2.230 9 10�3 0.399 0.777 0.908
D-linear 0.837 2.234 9 10�3 0.433 0.761 0.894
patchMixer 0.842 2.227 9 10�3 0.393 0.770 0.907

Fig. 10—Structure of the modified prediction method with SOTA
models.
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B. Results of the Importance Analysis of Time Series
Data

The importance of the channels and time steps of the
time series data is shown in Figure 9. Heatmaps
illustrate the importance of channels and time steps in
time series data. The total oxygen blowing curve and
instantaneous oxygen blowing intensity curve are
notably crucial across all tasks. There are slight differ-
ences in heatmaps for predicting TSO-P and TSO-S.
GP-O2 and GP-H2 are less important across all tasks.
Overall, later time steps are more important, while time
steps exhibit consistent importance for the TSO-Temp,
TSO-C, and TSO-S predictions. However, in predicting
the TSO-P, the middle time step is less important.

C. Results of the Comparison of SabCP with SOTA
Time Series Analysis Models

Table II provides a comparison of the performance of
SabCP with that of SOTA time series prediction and
classification models. The control SOTA models include
the Informer model proposed by Zhou et al.,[50] the
Autoformer model proposed by Wu et al.,[51] the

SCINet model proposed by Liu et al.,[52] the FEDformer
model proposed by Zhou et al.,[47] the D-linear model
proposed by Zeng et al.,[53] and the PatchMixer model
proposed by Gong et al.[54]

Since these models were not originally designed as
multi-input models, they have been modified to main-
tain the same input patterns as SabCP. The time series
and tabular features are embedded using linear and
conv1d layers. This modification preserves data infor-
mation while resizing the data to match the input format
of the SabCP backbone. The modified method is
illustrated in Figure 10. The results are listed in
Table II. The data for the best values in each task are
bolded.
According to Table II, it can be concluded that

SabCP performs better in all tasks than the modified
multi-input SOTA models. For predicting TSO-Temp/
C/P/S, R2 reaches 0.785, 0.650, 0.705, and 0.843, and the
MAEs reach 6.374 �C, 7.192 9 10�3 pct, 2.390 9 10�3

pct, and 2.224 9 10�3 pct, respectively. In addition to
the prediction of TSO-P, for other targets, the hit rate is
more than 90 pct. To show this more clearly, one

Fig. 11—The prediction results of the SabCP for TSO-Temp (a), TSO-C (b), TSO-P (c), and TSO-S (d), Pred—predicted, Baseline—Pred
values = True values, Offset—max range of the hit rates criterion, Dist.— statistical distribution of the samples.
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hundred heats were randomly sampled from the test
results. The SabCP prediction results for the test set are
detailed in Figure 11.

According to Figure 11, accurate predictions are more
likely for true values distributed in the middle and low
ranges for each prediction task. Conversely, large true
values, particularly extremely large values, pose greater
difficulty in prediction.

In line with the principle of BOF steelmaking, a
higher C/P/S content in hot steel corresponds to a more
intense oxidation process. Consequently, the rate of
change in such element content is greater, leading to
lower predictability. Additionally, the scarcity of end-
point samples with high temperature or element (C/P/S)
content results in insufficient weighting and difficulty in
prediction. Furthermore, the limited number of end-
point samples with high temperatures or element con-
tents exacerbate the challenge of prediction.

D. Results of the Comparison of SabCP with SOTA
Machine Learning Models

Currently, the prevailing approach for BOF endpoint
prediction involves developing machine learning (ML)
data-driven models utilizing tabular features.[1–25] This
section juxtaposes SabCP with a variant model, denoted

as SabCP-rTpw, which excludes its time series input and
processing component. This enables a comparison with
SOTA machine learning models employing identical
tabular inputs. The models used are extreme gradient
boosting (Xgboost),[55] LightGBM, Catboost, the tabu-
lar attention network (TabNet),[56] and neural oblivious
decision ensembles (NODE).[57] The comparative results
between the SabCP and SOTA machine learning models
are presented in Table III.
In each task, SOTA machine learning models utilizing

tabular data exhibited inferior performance compared
to SabCP with multiple inputs, with R2 scores ranging
from 5 to 10 pct lower. However, they all outperformed
the SabCP-rTpw model, which also utilizes only tabular
data, with R2 scores ranging from 1 to 3 pct higher.
Furthermore, in each task, decision tree-based models

(XGBoost, LightGBM, and Catboost) demonstrated
superior performance compared to neural net-
work-based models (TabNet and NODE), which was
particularly evident when predicting TSO-Temp and
TSO-C.

Table III. Results of the Comparison of SabCP with SOTA Machine Learning Models

Targets Models R2 MAE (�C) ±10�C ±15�C ±20�C

TSC-Temp (�C) SabCP 0.785 6.374 0.801 0.921 0.977
SabCP-rTpw 0.701 7.550 0.733 0.875 0.951
Xgboost 0.711 7.431 0.729 0.893 0.957
LightGBM 0.713 7.375 0.736 0.891 0.957
catboost 0.714 7.328 0.738 0.890 0.959
tabnet 0.703 7.551 0.715 0.885 0.959
node 0.702 7.547 0.728 0.890 0.953

TSC-C (Pct) models R2 MAE (pct) ±0.01 pct ±0.015 pct ±0.02 pct
SabCP 0.650 7.192 9 10�3 0.755 0.869 0.941
SabCP-rTpw 0.594 8.366 9 10�3 0.689 0.846 0.935
Xgboost 0.607 8.040 9 10�3 0.710 0.869 0.934
lightGBM 0.611 7.935 9 10�3 0.713 0.869 0.933
catboost 0.609 7.999 9 10�3 0.715 0.864 0.932
tabnet 0.603 8.062 9 10�3 0.706 0.862 0.927
node 0.603 8.050 9 10�3 0.715 0.861 0.933

TSC-P (Pct) models R2 MAE (pct) ±0.001 pct ±0.003 pct ±0.005 pct
SabCP 0.705 2.390 9 10�3 0.326 0.734 0.896
SabCP-rTpw 0.644 2.729 9 10�3 0.275 0.661 0.865
Xgboost 0.652 2.659 9 10�3 0.283 0.681 0.873
lightGBM 0.657 2.650 9 10�3 0.276 0.685 0.872
catboost 0.653 2.655 9 10�3 0.286 0.687 0.865
tabnet 0.646 2.700 9 10�3 0.274 0.673 0.867
node 0.648 2.686 9 10�3 0.275 0.671 0.869

TSC-S (Pct) models R2 MAE (pct) ±0.001 pct ±0.003 pct ±0.005 pct
SabCP 0.843 2.224 9 10�3 0.378 0.781 0.911
SabCP-rTpw 0.753 3.064 9 10�3 0.253 0.641 0.836
Xgboost 0.776 2.952 9 10�3 0.256 0.659 0.843
lightGBM 0.777 2.906 9 10�3 0.247 0.651 0.859
catboost 0.776 2.933 9 10�3 0.243 0.655 0.854
tabnet 0.762 3.005 9 10�3 0.250 0.644 0.847
node 0.759 3.008 9 10�3 0.243 0.639 0.853
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E. Results of the Ablation Experiment

To assess the rationality of the model structure, an
ablation experiment was conducted on SabCP. Various
components were either removed or replaced, including
(1) removal of the tabular feature embedding network
(SabCP-rTf), (2) removal of the time series patching and
wavelet transform network (SabCP-rTpw), (3) removal
of the patching process in the time series patching and
wavelet transform network (SabCP-rTp), (4) removal of
the 2D-DWT in the time series patching and wavelet
transform network (SabCP-rDwt), (5) removal of the
parallel convolutional temporal network in the data
feature extraction part (SabCP-rCtn), (6) removal of the
gated self-attention network in the data feature extrac-
tion part (SabCP-rGsn), (7) removal of the collaborative
attention module in the parallel convolutional temporal
network (SabCP-rCam), and (8) replacement of the

gated self-attention network with a traditional trans-
former layer (SabCP-rMt). The results of the ablation
experiments are presented in Table IV.
Based on the table results, the absence of either time

series or tabular data significantly impacts model
performance. Time series data are more crucial than
tabular data, with the model exhibiting its poorest
performance when lacking time series and its processing
network. Regarding time series processing, removing
patching or 2D-DWT diminishes model performance,
which is particularly evident in predicting TSO-Temp,
TSO-P, and TSO-S. Concerning model structure, elim-
inating any major component or module decreases
performance, with alterations to the convolutional
temporal network exerting the greatest impact on model
performance.

Table IV. Results of the Ablation Experiments

Targets Models R2 MAE (�C) ±10�C ±15�C ±20�C

TSO-Temp (�C) SabCP 0.785 6.374 0.801 0.921 0.977
SabCP-rTf 0.744 6.979 0.764 0.909 0.962
SabCP-rTpw 0.701 7.550 0.733 0.875 0.951
SabCP-rTp 0.770 6.559 0.789 0.924 0.971
SabCP-rDwt 0.770 6.546 0.779 0.913 0.977
SabCP-rCtn 0.747 6.904 0.764 0.903 0.969
SabCP-rGsn 0.760 6.654 0.770 0.918 0.973
SabCP-rCam 0.775 6.495 0.798 0.912 0.973
SacCP-rMt 0.777 6.479 0.791 0.924 0.973

TSO-C (Pct) models R2 MAE (pct) ±0.01 pct ±0.015 pct ±0.02 pct
SabCP 0.650 7.192 9 10�3 0.755 0.869 0.941
SabCP-rTf 0.612 8.006 9 10�3 0.713 0.871 0.935
SabCP-rTpw 0.594 8.366 9 10�3 0.689 0.846 0.935
SabCP-rTp 0.638 7.374 9 10�3 0.747 0.872 0.933
SabCP-rDwt 0.641 7.278 9 10�3 0.751 0.869 0.932
SabCP-rCtn 0.623 7.517 9 10�3 0.739 0.865 0.926
SabCP-rGsn 0.634 7.478 9 10�3 0.744 0.864 0.933
SabCP-rCam 0.637 7.369 9 10�3 0.747 0.874 0.935
SacCP-rMt 0.640 7.278 9 10�3 0.748 0.863 0.931

TSO-P (Pct) models R2 MAE (pct) ±0.001 pct ±0.003 pct ±0.005 pct
SabCP 0.705 2.390 9 10�3 0.326 0.734 0.896
SabCP-rTf 0.672 2.550 9 10�3 0.294 0.709 0.885
SabCP-rTpw 0.644 2.729 9 10�3 0.275 0.661 0.865
SabCP-rTp 0.690 2.448 9 10�3 0.320 0.725 0.891
SabCP-rDwt 0.694 2.425 9 10�3 0.329 0.733 0.889
SabCP-rCtn 0.686 2.460 9 10�3 0.317 0.721 0.889
SabCP-rGsn 0.689 2.449 9 10�3 0.314 0.724 0.888
SabCP-rCam 0.688 2.457 9 10�3 0.311 0.723 0.893
SacCP-rMt 0.692 2.428 9 10�3 0.331 0.729 0.894

TSO-S (Pct) models R2 MAE (pct) ±0.001 pct ±0.003 pct ±0.005 pct
SabCP 0.843 2.224 9 10�3 0.378 0.781 0.911
SabCP-rTf 0.805 2.654 9 10�3 0.284 0.711 0.878
SabCP-rTpw 0.753 3.064 9 10�3 0.253 0.641 0.836
SabCP-rTp 0.831 2.366 9 10�3 0.357 0.760 0.893
SabCP-rDwt 0.833 2.271 9 10�3 0.390 0.767 0.903
SabCP-rCtn 0.826 2.378 9 10�3 0.361 0.752 0.895
SabCP-rGsn 0.836 2.241 9 10�3 0.383 0.781 0.905
SabCP-rCam 0.835 2.262 9 10�3 0.405 0.759 0.897
SacCP-rMt 0.839 2.233 9 10�3 0.421 0.758 0.903

METALLURGICAL AND MATERIALS TRANSACTIONS B



Table V. Comparison of the Best Models in This and Previous Research

Targets Models R2 MAE MSE

TSO-Temp (�C) SabCP 0.785 6.374 67.345
FWA-TSVR[25] — — 342.028
CS-TSVR[25] — — 382.750
WTWTSVR[58] 0.797 4.738 —
MI_IWSVM[59] — — 76.631
DRSupAE-NN[60] — — 67.544
DRSupAE-JITRN[60] 44.084
DSupAE-JITRN[60] 77.338

TSO-C (Pct) SabCP 0.650 7.192 9 10�3 1.132 9 10�4

FWA-TSVR[25] — — 8.237 9 10�4

CS-TSVR[25] — — 8.283 9 10�4

WTWTSVR[58] 0.693 2.600 9 10�3 —
MI_IWSVM[59] — — 2.783 9 10�4

DRSupAE-NN[60] — — 3.984 9 10�4

DRSupAE-JITRN[60] — — 1.911 9 10�4

DSupAE-JITRN[60] — — 4.805 9 10�4

TSO-P (Pct) SabCP 0.705 2.390 9 10�3 1.306 9 10�5

PCA-BP model[10] 0.791 — —
BP model[16] 0.759 — —
PCA–GA–BP model[20] — — 2.250 9 10�5

GBR model[61] 0.599 — 1.018 9 10�5

RFR model[61] 0.608 1.056 9 10�5

M-c BP[62] 0.846 – 9.000 9 10�6

LWOA-TSVR[63] 0.911 6.690 9 10�3 7.850 9 10�5

TSO-S (Pct) SabCP 0.843 2.224 9 10�3 1.298 9 10�5

LWOA-TSVR[63] 0.903 8.230 9 10�3 7.430 9 10�5

Fig. 12—The HMI of the endpoint prediction system with SabCP.
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F. Results of Comparing SabCP with Other Public
Works

The results of BOF endpoint prediction from other
studies are juxtaposed with those of the SabCP model.
Despite variations in data quality, objectives, applica-
tion scenarios (high- or low-endpoint carbon), BOF
vessel structure, and steelmaking processes across these
studies compared to the scenarios addressed in this
study, they remain valuable for reference and compar-
ison. Given that certain studies have reported the MSEs
of their models, this section includes a specific calcula-
tion of the prediction MSE for the SabCP model. The
results are shown in Table V.

V. EXTERNAL VALIDATION

A. The HMI of the Endpoint Prediction Module

Figure 12 illustrates the (HMI) of the endpoint
prediction module, implemented in Python. During
prediction, data are retrieved from the programmable
logic controller (PLC), level one system, or database.
The data undergo automated preprocessing before being
sent to the SabCP model for prediction. Basic data and
predicted values are displayed in separate grids. The
module offers two modes:
‘‘Dynamic,’’ it provides continuous predictions. Due

to the lower sample weights for cases with extremely
high or low oxygen blowing amount, this mode is used
when the oxygen blowing amount is between 4700 and
5500 m3 (mean ± 2 sigma) to ensure accuracy. Once the
oxygen blowing amount exceeds 4700 m3, the model
outputs a set of predictions (TSO-Temp/C/P/S) every
second to guide the process until the point when oxygen
blowing stops.

Fig. 13—The external validation results of SabCP for TSO-Temp (a), TSO-C (b), TSO-P (c), and TSO-S (d).
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‘‘Single,’’ where predictions occur upon pressing the
‘‘Predict’’ button. This mode simulates the tests with
sub-lance, which involve point measurements. A single
prediction can be made at the moment of stopping
oxygen blowing to replace the TSO test. In the external
validation, a single prediction is conducted simultane-
ously with the TSO test.

B. Results of the External Validation

Actual prediction results from 300 consecutive heats
with no abnormal inputs were recorded. A comparison
of these predicted values with the true values is shown in
Figure 13. The prediction accuracy of SabCP slightly
lags that of the test set. The R2 for TSO-Temp, TSO-C,
TSO-P, and TSO-S were 0.740, 0.570, 0.697, and 0.831.
And the MAEs were 7.232 �C, 8.065 9 10�3 pct,
2.817 9 10�3 pct, and 2.712 9 10�3 pct, respectively.
Specifically, for TSO-Temp/C/P/S, the MAE increased
by 0.858 �C, 8.722 9 10�4 pct, 4.265 9 10�4 pct, and
4.875 9 10�4 pct, respectively. This finding underscores
the robustness and generalizability of SabCP. One
hundred samples were randomly selected from the
external validation results and shown in Figure 13.

VI. CONCLUSION

(i) The R2 values of the designed multi-input deep
learning model (SabCP) for TSO-Temp, TSO-C,
TSO-P, and TSO-S were 0.785, 0.650, 0.705 and
0.843, respectively, and the MAEs were 6.374 �C,
7.192 9 10�3 pct, 2.390 9 10�3 pct, and
2.224 9 10�3 pct, respectively. These results show
that SabCP has better performance than other
models.

(ii) The ablation experiments show that changes in the
input categories or structure of SabCP will decrease
its prediction accuracy, especially once the time
series inputs are eliminated or the parallel convolu-
tional temporal network is removed.

(iii) In practical external validation of 300 heats, the
prediction MAEs of SabCP for TSO-Temp,
TSO-C, TSO-P, and TSO-S were 7.232 �C,
8.065 9 10�3 pct, 2.817 9 10�3 pct, and
2.712 9 10�3 pct, respectively, which are close to
the testing results. This proves that SabCP has good
robustness and generalizability.

(iv) According to the importance analysis, the preset
values and blowing practice-related features in
tabular data have greater importance, but the
additive features have less importance. On the other
hand, the curves related to blowing practices have
greater importance; however, the curves related to
gas percentages have less importance. Moreover,
the later time steps of the curves are more impor-
tant than the middle or early time steps.
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APPENDICES: DESCRIPTION OF ERRORS
IN THE DATA

Since the division is random, the data used for the
model learning (training dataset) and the data used for
evaluating the model (validation and test dataset)
contain the same types of errors. The following are
these errors and the approaches to address them.
Measurement errors: For tabular data, measurement

errors are primarily attributed to systematic errors. For
instance, in measuring molten steel temperature, the
typical error associated with a thermocouple ranges
from 1 �C ~ 3 �C. However, there are also random
errors present, such as when humid air causes powdered
material to adhere to the walls of a hopper, resulting in
underfeeding.
In the case of time series data, errors tend to be much

smaller and predominantly systematic. For example,
there may be slight errors associated with oxygen flow
meters, while data obtained from absolute value
encoders for parameters like lance height are virtually
error-free.
Sampling Errors: Due to the large volume of collected

data, certain infrequent steel grades, such as EH14, have
lower sample weights, resulting in suboptimal prediction
results. Consequently, the universal model derived from
this study will be employed as a pre-trained backbone
and subsequently fine-tuned using data from various
steel grades to better fit the specific steel grade.
Labeling Errors: In rare cases, the values of the TSC

test may be erroneously recorded as the values of the
TSO test (target labels). To filter out this incorrect
information, it is necessary to ensure that the carbon
content for each set of TSC tests is higher than that of
the TSO test, and the temperature is lower than that of
the TSO test.
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To minimize data errors, tabular data must conform
to the criteria outlined in Table VI, as per the practical
steelmaking process. Additionally, a large volume of
data is being collected to reduce the prediction error
associated with erroneous data. Introducing the time
series can also solve part of the problem.

The time series data are automatically collected and
stored by the low-maintenance gas analyzing system
(LOMAS) and PLC system, ensuring high data quality.
The primary source of data errors arises from abnormal
smelting processes. Therefore, after filtering out
recorded instances of abnormal steelmaking batches
(such as reblowing, stoppage, and slopping), sequences
with lengths ranging from 600 to 1024 time were
selected, and relatively clean data can be obtained.

Some heats lacking time series data underwent data
augmentation using generative adversarial networks
(GANs).

DESCRIPTION OF THE TRAINING AND TUNING
PROCESS

The deep learning models are trained with the mean
square error (MSE) as the loss function and Adam as
the optimizer. The learning rate is set to 0.001, and
ReduceLROnPlateau is the learning rate scheduler. The
models with the highest accuracy on the validation set in
the training process are automatically saved. For each
target, 1,000 automatic hyperparameter optimization

Table VI. The Data Range and Cleaning Criterion

Features Units Range

Set Oxygen Consumption Before TSC Test Nm3 ‡ 3500.000
Set Oxygen Consumption Before TSO Test Nm3 ‡ 4200.000
Target Steel Temperature �C 1600.000–1680.000
Target [C] pct 0.040–0.150
Hotmetal [C] pct 3.500–5.000
Hotmetal [Si] pct 0.010–0.800
Hotmetal [Mn] pct 0.010–0.600
Hotmetal [S] pct 0.001–0.350
Hotmetal [P] pct 0.050–0.160
Hotmetal [V] pct 0.010–0.08
Hotmetal [Ti] pct 0.005–0.160
Hotmetal Weight kg 90,000.000–150,000.000
Hotmetal Temperature �C 1250.000–1450.000
Lime Weight (Before TSC) kg ‡ 500.000
Dolomite Weight (Before TSC) kg ‡ 100.000
Oxygen Consumption Before TSC Test Nm3 ‡ 3500.000
Oxygen Consumption Before TSO Test Nm3 ‡ 4200.000
TSC Thermal Arrest [C] pct 0.010–0.760 pct
TSC Temperature �C 1500.000–1650.000

Table VII. Hyperparameter Boundaries and the Best Hyperparameters of SabCP

Targets Hyperparameters and Boundaries Best Hyperparameters for Each Task

TSO-Temp (�C) a1: [2, 4, 8, 16, 32, 64]
n1: [2, 4, 8, 16, 32, 64]
c1: [128, 256, 512, 1024]

a1 = 32, n1 = 8, c1 = 512
N1 = 3, N2 = 4
number of average pooling kernels = 16
number of self-attention head = 8

TSO-C (Pct) N1: [1, 2, 3, 4, 5, 6]
N2: [1, 2, 3, 4, 5, 6]

a1 = 64, n1 = 16, c1 = 256
N1 = 5, N2 = 2
number of average pooling kernels = 8
number of self-attention head = 16

TSO-P (Pct) number of average pooling kernels: (multiscale average pooling
module) [2, 4, 6, 8, 16, 32]

a1 = 64, n1 = 8, c1 = 512
N1 = 4, N2 = 3
number of average pooling kernels = 4
number of self-attention head = 8

TSO-S (Pct) number of self-attention head: (transformer encoder layer) [2, 4, 8,
16]

a1 = 32, n1 = 16, c1 = 512
N1 = 3, N2 = 3
number of average pooling kernels = 8
number of self-attention head = 16

METALLURGICAL AND MATERIALS TRANSACTIONS B



trials were performed using the Bayesian optimization
algorithm. The hyperparameter boundaries and best
hyperparameters of SabCP are detailed in Table VII.

REFERENCES
1. J. Wang, Q. Fang, W. Zhu, T. Yang, J. Wang, H. Zhang, and H.

Ni: Metall. and Mater. Trans. B., 2024, vol. 55, pp. 1146–55.
2. R. Zhang, J. Yang, H. Sun, and W. Yang: Int. J. Miner. Metall.

Mater., 2024, vol. 31(3), pp. 508–17.
3. Z.C. Xin, J.S. Zhang, J.G. Zhang, J. Zheng, Y. Jin, and Q. Liu:

Metall. and Mater. Trans. B., 2023, vol. 54(3), pp. 1181–94.
4. K. Feng, D. He, A. Xu, and H. Wang: Steel Res. Int., 2016, vol.

87(1), pp. 79–86.
5. K. Son, J. Lee, H. Hwang, W. Jeon, H. Yang, I. Sohn, Y. Kim,

and H. Um: J. Mater. Res. Technol., 2021, vol. 12, pp. 555–68.
6. A. Devlin, J. Kossen, H. Goldie-Jones, and A. Yang: Nat. Com-

mun., 2023, vol. 14(1), p. 2578.
7. M. Abdulsalam, M. Jacobs, and B.A. Webler: Metall. and Mater.

Trans. B., 2021, vol. 52, pp. 3970–85.
8. B.A. Webler and P.C. Pistorius: Metall. and Mater. Trans. B.,

2020, vol. 51, pp. 2437–52.
9. T. Alatarvas, T. Vuolio, E.P. Heikkinen, Q. Shu, and T. Fabritius:

Steel Res. Int., 2020, vol. 91(2), p. 1900424.
10. F. He and L. Zhang: J. Process. Control., 2018, vol. 66, pp. 51–58.
11. Y. Kang, M.M. Ren, J.X. Zhao, L.B. Yang, Z.K. Zhang, Z.

Wang, and G.J. Cao: Mining Metall. Sect. B, 2024, vol. 00, p. 8.
12. L. Fang, F. Su, Z. Kang, and H. Zhu: Processes, 2023, vol. 11(6),

p. 1629.
13. Z. Wang, J. Chang, Q.-P. Ju, F.-M. Xie, B. Wang, H.-W. Li, B.

Wang, X.-C. Lu, G.-Q. Fu, and Q. Liu: ISIJ Int., 2012, vol. 52(9),
pp. 1585–90.

14. W. Li, Q.M. Wang, X.S. Wang, and H. Wang: Chem. Eng. Trans.,
2016, vol. 51, pp. 475–80.

15. R. Wang, I. Mohanty, A. Srivastava, T.K. Roy, P. Gupta, and K.
Chattopadhyay: Metals, 2022, vol. 12(5), p. 801.

16. K.X. Zhou, W.H. Lin, J.K. Sun, J.S. Zhang, D.Z. Zhang, X.M.
Feng, and Q. Liu: J. Iron. Steel Res. Int., 2021, vol. 29, pp. 751–60.

17. X. Shao, Q. Liu, Z. Xin, J. Zhang, T. Zhou, and S. Li: Int. J.
Miner. Metall. Mater., 2024, vol. 31(1), pp. 106–117.
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