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Prediction Model of Wear Amount of Work Roll ®)

Check for

and Replacement Moment in Finishing Rolling Based
on Lévy’s Improved Arithmetic Optimization
Algorithm Twin Support Vector Regression

CHUNYANG SHI, YIKUN WANG, JIANJUN HU, LEI ZHANG, and PEILIN TAO

For the control of the wear amount of work rolls and replacement moment in finishing rolling,
most of the traditional models are unable to accurately predict the optimal finishing wear
amount and replacement moment of work roll in advance, which may lead to the disruption of
the production rhythm, and even cause product quality defects. This research describes a Lévy’s
improved arithmetic optimization algorithm twin support vector regression (LAOA-TSVR)
prediction model for wear amount of work roll and replacement moment in a finishing mill.
Firstly, the research group initially employed real production data from a hot strip finishing mill
to identify influential factors of wear amount of work roll through correlation analysis using
SPSS. Subsequently, to validate its predictive performance, the model was compared against
three classical algorithms: Back Propagation (BP), Radial Basis Function (RBF), and Support
Vector Machine (SVM), confirming LAOA-TSVR’s superior accuracy. Finally, the model
underwent practical production testing with a dataset totaling 200 sets. The findings reveal that
the model attains a 95.2 pct hit rate for predicting wear amount of work roll within + 0.5 pct.
Likewise, it achieves a 98.3 pct hit rate for predicting the replacement moment of work roll for

finishing mill.
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I. INTRODUCTION

As rivalry in steel production heats up, steel man-
ufacturing technology is continually evolving. Steel
production methods are now more focused on efficiency,
energy-saving,  environmental  friendliness, and
high-quality, high-precision manufacturing.' > Exces-
sive wear on the work rolls alters the shape of the roll
gap, directly impacting strip shape and, consequently,
strip quality. Quantitatively controlling the wear
amount of work roll is challenging in current
production.

Conducting a comprehensive analysis of wear amount
of work roll and developing a high-precision prediction
model for wear amount of work roll and replacement
moment in finishing rolling contributes to enhancing
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automatic control of thickness and shape for hot strip
finishing mill. By identifying the optimal replacement
moment for work rolls, production costs of hot strip
finishing mill can be reduced, maximizing work roll
utilization and ensuring smooth production while
enhancing product quality.” ® Therefore, it is crucial
to investigate the wear patterns of work roll for finishing
mill and develop a reliable prediction model to enhance
finishing plate shape, product quality, and production
efficiency, mitigate rolling accidents, and decrease steel
cost per ton.

Intelligent steel rolling is currently a hot topic in the
field of science and engineering research, but few
researchers and scholars have studied and explored the
hot rolling finishing process prediction model, and many
researchers are still using traditional modeling methods
such as random forests.”® Traditional optimization
methods have several shortcomings when working with
complex problems involving high dimensions and mul-
tiple multimodality. These shortcomings include the
limited consideration of influencing factors in tradi-
tional machine learning models, a susceptibility to
getting stuck in locally optimal solutions, the risk of
overfitting when dealing with large datasets, and prob-
lems related to sample imbalance.’ ' As a result,
researchers suggested a time series model to predict the
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wear amount of work rollers based on recurrent neural
networks, but the method suffers from problematic
defects such as training complexity, gradient vanishing
and gradient explosion, and interpretability.'> ' With
technological advancements, researchers have devised
genetic algorithm models that optimize issue solutions
by imitating the biological evolution process. However,
defining the parameters for this method is complicated,
the algorithm has large iteration times, and the inter-
pretability is poor. These issues cause deficiencies in
predicting accuracy, endpoint hit rates, and model
calculation time.!'>"!7]

To address the aforementioned shortcomings, the
group proposed a prediction model for ending wear
amount of work roll based on LAOA-TSVR algorithm.
Due to the multiple factors influencing wear amount of
work roll in the finishing mill, the research group used
SPSS to conduct a correlation analysis of the parameters
in the finishing process, resulting in the model’s input
variables. TSVR computation requires random assign-
ment of values to specific parameters. This increases
computational load, reduces operational efficiency, and
may affect prediction accuracy.'’®'”) To overcome this
issue, the research group used the AOA technique for
parameter optimization. However, the AOA method
still has limitations, such as limited exploration capa-
bilities and a tendency to prematurely converge to
non-optimal solution.*”! To solve this, the research
group developed the Lévy algorithm to improve the
AOA algorithm (LAOA), giving it benefits such as
easier parameter modification, an extended exploration
range, fast convergence, and a strong capacity to jump
out of local minima. Eventually, the group merged
LAOA and TSVR and used stochastic search to
optimize the kernel function, adjustment parameters,
and penalty factor tuning, improving the model’s
computing speed, exploration capabilities, and predic-
tion accuracy on the original premise.”' **! According
to the production process standards of a hot strip
finishing mill, work rolls need to be replaced when their
wear exceeds 6mm (Refer to the industrial trials section
for details). The research group combined this criterion
with the wear amount of work roll predictive model to
forecast the replacement moment in finishing rolling.
Finally, the model was tested in an industrial trial, and
the findings revealed that it had a greater prediction
accuracy. This model provides realistic assistance for
predicting wear amount of work roll and roll replace-
ment moment in a steel mill’s actual production process.

II. INDUSTRIAL TRIALS

Figure 1 depicted the process flow of the trial
procedure. The research group acquired essential data
from the real-time data report of a hot strip finishing
mill as input volume data for creating the LAOA-TSVR
model and saved these data in the model’s database,
which was used as the model’s training and test sets. The
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F7 work roll of a hot strip finishing mill unit, which was
a 4-roll mill with a mechanism depicted in Figure 2(a),
was chosen as the subject of study in the industrial test
technique. These work rolls were made of infinite chilled
cast iron. The material for rolled strip steel was Q235B,
with an initial work roll diameter of 600mm. Industrial
trial data required for the rolling process were collected
using relevant rolling line detection equipment. This
mainly included roll gap, strip threading speed, rolling
length, side guide opening, roll diameter, rolling force,
roll contact length, reduction amount, strip width, exit
strip width, rolling speed, and working temperature.
According to the production process requirements of a
hot strip finishing mill, when the wear amount of the F7
work rolls exceeded 6mm, it was necessary to be
replaced promptly. The wear amount of work roll was
measured using the #l grinder equipment (Type:
ProfiGrind2500-25x600), the structure of which was
shown in Figure 2(b). And the wear value of the work
roll was taken as the output of the model.

III. DATA PROCESSING

A. Correlation Analysis

Collected the roll diameter replacement data of the F7
rolling mill in a hot strip finishing mill, coupled with
production data. Firstly, any outliers should be removed
from the data. Then, 1500 samples should be chosen for
the training set and 500 for the test set. To gather model
input variables throughout the modeling phase, a
correlation study of 1000 sets of production data was
performed using SPSS. The obtained correlation coef-
ficients were shown in Figure 3. The final list of primary
input variables influencing wear amount of work roll
prediction includes rolling speed, strip threading speed,
working temperature, roll gap, rolling length, side guide
opening, roll diameter, roll contact length, rolling force,
reduction amount, strip width, and exit strip width. The
correlation coefficient results were presented in Table I.

B. The normalization of input data

Since different parameters have different physical
meanings and different scales, in order to ensure the
comparability of the sample data, improve the reliability
of the wear prediction model of the work roll and the
convergence speed, the chosen data must be normalized
before training. The data are normalized to the [0,1]
interval according to their highest and minimum values.
The method for data normalization is Eq. [1].

(X - Xmin)

X =
P Xmax - Xmin

(1]
where: X, represents the standardized sample value;
Xmax, represents the maximum value of the sample
data; Xp,, represents the minimum value of the sam-
ple data.
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Fig. 3—Data correlation analysis chart.

IV. MODEL BUILDING

This article discusses the LAOA algorithm is mainly
used to optimize the main kernel function, adjustment
parameters, and penalty factors in TSVR, taking the
best prediction accuracy as the goal of parameter
optimization, generating new solutions by using arith-
metic operations, and evaluating the fitness of each
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solution and selecting the optimal solution until the
stopping condition is satisfied, so as to find the optimal
model parameters and establish the prediction model of
wear amount of work roll and replacement moment in
finishing rolling based on LAOA-TSVR. The progres-
sion of LAOA-TSVR hybrid intelligent algorithm is
shown in Figure 4.

A. Establishment of LAOA Model

The Lévy algorithm is used to improve the weights
and thresholds of the AOA algorithm, and the revised
algorithm has the advantages of faster convergence,
faster running speed, larger searching range, and simpler
to jump out of the local optimum, etc. The three steps of
the AOA algorithm and the optimization of the Lévy
algorithm are as follows:

To facilitate algorithm exploration and selection
during the development phase, AOA defines a search
control coefficient, i.e., the Mathematical Optimization
Accelerator (MOA), as shown in Eq. [2].

(Max — Min)
T

where: Max, the maximum value of the accelerator 1;
Min, the minimum value of the accelerator 0.2; ¢z, the
current number of iterations; 7', the maximum number
of iterations.

When the random number r; > MOA(t), the algo-
rithm expands the search space to avoid local extremes,
otherwise local exploitation is performed to improve the
accuracy of the solution.

MOA(z) = Min + ¢ x [2]
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Based on the high dispersion property of the domain
resulting from multiplication and division operations,
the AOA algorithm utilizes multiplication and division
search strategies to randomly explore a wider search
area, with the position update equation as shown in
Eq. [3].

| Xoest (1) = (MOP+¢) X ((UB—LB) x u+LB), 1, <0.5
X(f“)*{ bXbesl(t)+M0Pf<((UB—LB)XH-:!LB)v ’520«5 3]

where: X(7+1), the solution at the t + 1th iteration;
Xbest(2), the population’s best individual up to the cur-
rent iteration; r,, random number between 0 and 1; e,
the local minimum; u, control parameter with a value
of 0.5.

Based on the high-density value domain characteris-
tics of the results of addition and subtraction opera-
tions, the AOA algorithm applies addition and
subtraction search strategies to perform deep explo-
ration of the search space, thereby enhancing solution
accuracy, as shown in Eq. [4].

X(l‘-‘rl)* Xbesl(l)—MOPX((UB—LB)X#+LB), r3<0.5 [4]
- Xbcsl([)+MOP><((UB—LB)X#+LB), r3>0.5

where: r3, random number between 0 and 1; Xpes(7),
best(t) represents the population’s best individual up
to the current iteration; UB, the upper limit for the rel-
evant variable values; LB, the lower limit for the rele-
vant variable values.

In Egs. [3] and [4], MOP stands for Mathematical
Optimization Probability, and its calculation formula is
as shown in Eq. [5].

N
MOP(1) = 1 (T) [5]
where, o, define the sensitivity parameter for develop-
ment accuracy, which is set to 5 in this case.

Applying Lévy flight to the update of solution
positions, the algorithm performs another Lévy flight
update of individual positions after the initial update.
This helps in escaping local optima and expanding the
search capability. The method of position update is as
follows:

X(t+1)=X(1)+o® Lévy(4) [6]

where: «, is the step scaling factor; Lévy(4), indicating
that it follows a Lévy distribution with a parameter of
A, and the formula is:

Lévy ~u=1" [7]

Due to the complexity of Lévy flight, the Mantegna
algorithm is employed to simulate it, with its mathe-
matical representation as follows:

s=1 8]
v}

where u and v follow a normal distribution with
parameters o, and oy:

w~ N(O, ai) 9]
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v~ N(0,07) [10]
[rasp sin(%ﬁ> -

e r(#)ﬁz(?)
oy =1 [12]

In order to seek a reasonable computational load, a
constant of 1.5 is taken for f, at which point g, is a
constant 0.6966.

B. Establishment of TSV R model

The TSVR algorithm aims to derive two regression
functions by solving two quadratic programming prob-
lems to optimize the objective function. Suppose the
training sample is an n-dimensional vector and the
number of training samples is p. Let the matrix
A= [xl, e 7xp]T € R”*" be the input training sample,
the vector Y = [yl, e ,yp] "€ R” be the output training
sample, and the vector e be a 1 vector of the appropriate
dimension.

Prediction of the wear amount of work roll is a
multiple-input single-output nonlinear system. It is
necessary to introduce the kernel function

2
K= (xT,4") = exp(— %),0>0, is the width of
Gaussian kernel function. The sample is mapped to the
high-dimensional space, and linear regression is per-
formed through the high-dimensional feature space to
obtain the regression function g(x) = K = (x7, 4" w +
b where o is the weight vector and b is the bias.

By introducing Lagrange multipliers o and f§ vectors
and combining them with the Karush—Kuhn-Tucker
(KKT) conditions, we can obtain the dual problem of
the objective function, as shown in Eqgs. [13] and [14].
max — % o"H(H'H) ' H o+ fH(H'H) ™

<a< (Cie

Hlo— 12,0

[13]

max — % BTH(HH)'H"p+h"H(H"H) " 'H'p
+hTB,0
<p< Cae [14]

where: C; >0, adjustment parameter; C, >0, adjust-
ment  parameter; H=[K(4,4")e]; [=Y—ez;
h =Y+ ee; e,e > 0, for adjustment parameters.
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Table I. Data Correlation Analysis Table

Correlation
Dependent Variable Variable Coefficient
Wear Amount of rolling speed 0.466
Work Roll strip threading speed 0.226
working temperature 0.612
roll gap 0.132
rolling length 0.436
side guide opening 0.092
roll diameter 0.539
roll contact length 0.471
rolling force 0.783
reduction amount 0.513
strip width 0.449
exit strip width 0.748

C. Establishment of LAOA-TSVR Model

The detailed procedure of optimizing the TSVR
algorithm for LAOA is as follows:

Step 1: Obtain data related to wear amount of work
roll, preprocess the data, and generate the
training set and sample set;

Step 2: Initialize decision variable parameters and
generate the initial solution;

Step 3: Utilizing the algorithm’s addition, subtraction,
multiplication, and division search strategies,
update the solution’s position, evaluate the new
solution on the objective function, and search
for nearby potential optimal solutions;

Step 4: Evaluate the fitness of the current solution to
check if it meets the criteria for the optimal
solution. If it does, output the optimal
parameters. If not, continue to refine the
solution using the search strategy that
includes addition, subtraction, multiplication,
and division, until the termination criteria are
met;

Step 5: Insert the optimal parameters into the weight
and bias vectors to compute w and b. Next,
apply these values to the regression function
g(x) to develop the predictive model for
estimating the wear of finishing work rolls
and the timing for their replacement.
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V. MODEL PREDICTION RESULT

The LAOA-TSVR algorithm prediction model was
used to generate final prediction results. Real values
from the training and test sets were compared with the
corresponding predicted values. The outcomes are
presented in Figures 5, 6, 7, and 8.

VI. MODEL COMPARISON AND RESULTS
ANALYSIS

To evaluate the prediction effectiveness of the model
against traditional algorithms, we employed BP, RBF,
SVM, and LAOA-TSVR models. We compared models
using metrics such as fluctuation degree (SSR/SST),
fitting degree (SSE/SST), root mean square error
(RMSE), mean absolute error (MAE), and hit rate
(HR). The parameter settings are as follows: BP
(learning rate: 0.05, max training iterations: 1000,
required accuracy: le-5, min error: 0.005), RBF (hidden
nodes: 10, max iterations: le4, precision: 0.001, alpha:
0.01), SVM (error penalty: ¢ = 1.0, kernel: rbf, degree:
3, gamma: auto, coef0: 0, stop precision: le-3), and
LAOA-TSVR (lambda: 1.5, search solutions: 10, max
iterations: 1000). Predicted and actual values from the
BP, RBF, SVM, and LAOA-TSVR models were ana-
lyzed to assess convergence speed. The results are
depicted in Figures 9 and 10.

When the SSR/SST value of a model approaches 1, it
indicates a better fit between its projected and real
values; a smaller SSE/SST value corresponds to lower
RMSE and MAE, indicating higher prediction accu-
racy. Table II reveals that the SSR/SST values of the BP,
RBF, SVM, and LAOA-TSVR prediction models
increase in the order of SSR/SST, while SSE/SST,
RMSE, and MAE decrease in the order of SSE/SST.
Thus, LAOA-TSVR demonstrates a superior degree of
fit compared to the other three algorithms. The wear
amount prediction model for work rolls developed by
LAOA-TSVR exhibits the lowest relative error and
outperforms the other algorithms. As depicted in
Figure 10, the iteration curve of LAOA-TSVR flattens
first, indicating a faster convergence speed compared to
the other three models. In summary, based on the data
from Table II, it can be concluded that the
LAOA-TSVR prediction model outperforms the other
algorithms.

To assess the prediction performance of the model, we
used the HR (hit rate) analysis. In the analysis of the
prediction model, if the wear amount of work roll meets
the requirements as specified in Eq. [15], it is considered
a successful prediction. The corresponding formula for
calculating the hit rate is shown in Eq. [16].
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Fig. 4—Flowchart of LAOA optimization of TSVR.

96.2 pct, respectively. The hit rates for roll replacement
Ps x (100 pct — k) < P, < Ps x (100 pet + k) [15] moment prediction are as follows: 79.5, 87.1, 91.7, and
94.5 pct, respectively.

In summary, comparing the hit rates and SSE/SST,
SSR/SST of the four models BP, RBF, SVM, and
LAOA-TSVR, the LAOA-TSVR model exhibits supe-
<n ) rior predictive performance examination indexes and the
- % 100 pet highest endpoint hit rate, thus confirming its superior

pc [16] oy .
prediction effectiveness.

where: Ps, the measured wear amount of the work
rolls; Py, the predicted wear amount of the work rolls;
k, with an accuracy rate of 0.5 pct.

A

Yi— 5,

HR:(

Table 111 presents the hit rates of the four prediction
models. From Table III, it is evident that for the
prediction of wear amount of work roll within a range of
4+ 0.5 pct, the hit rates for BP, RBF, SVM, and
LAOA-TSVR models are 77.3, 86.5, 90.6, and
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Fig. 6—Prediction results for the replacement moment during finishing rolling in the training set.
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Fig. 7—Prediction results for the wear amount of work rolls in the test set.

3304—VOLUME 55B, OCTOBER 2024 METALLURGICAL AND MATERIALS TRANSACTIONS B



5.97 * ¥ | | 1 1
0 100 200 300 400 500
Sample/n

The wear amount at the moment of roll replacement/mm

Fig. 8—Prediction results for the replacement moment during finishing rolling in the test set.

8 T T T T
—o—BP
—+—RBF
7 SVM [

—+—LAOA-TSVR
—— Actual Value

Wear amount of work roll/mm

Sample/n
Fig. 9—Comparison of predictive effects of different models.
x10*
8 T T T T T T T T
s
2
. o
S
@ =
S
3
2
/;m -
imndes wibndoniintitonite intisionloniionbtonds |futitiiitedionl; ittt et fiindendiesbiontc
200 250 300 350 400 450 500

Iteration

Fig. 10—Comparison of convergence speed of four algorithms.

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 55B, OCTOBER 2024—3305



Table II. Comparison of Prediction Performance of Four Models

Models Index BP RBF TSVR LAOA-TSVR
Wear Amount of Work Roll RMSE 0.4060 0.3993 0.3930 0.3864
MAE 0.1649 0.1595 0.1545 0.1493
SSE/SST 0.3742 0.2279 0.1573 0.0343
SSR/SST 0.6258 0.7721 0.8427 0.9657
Replacement Moment in Finishing Rolling RMSE 0.3914 0.3845 0.3746 0.3695
MAE 0.1532 0.1479 0.1403 0.1365
SSE/SST 0.4502 0.3173 0.1945 0.0751
SSR/SST 0.5498 0.6827 0.8055 0.9249
Table III. Predicted Hit Rate
Model
BP RBF SVM LAOA-TSVR
Prediction of Wear Amount of Work Roll (Pct) (Pct) (Pct) (Pct)
The Hit Rates for Wear Amount of Work Roll Within a Range of £0.5 Pct 717.3 86.5 90.6 96.2
The Hit Rates for Roll Replacement Moment Prediction 79.5 87.1 91.7 94.5

VII. INDUSTRIAL PRODUCTION
VERIFICATION

To verify the practical application effect of the
LAOA-TSVR forecasting model, the model is applied
to a hot strip finishing mill to carry out actual industrial
tests, a total of 200 sets of data, when the wear amount
of work roll exceeds 6mm of the diameter of the work
rolls need to be changed in a timely manner, which is
defined as the moment of changing rolls. The acquired
data were preprocessed and substituted into the model,
and the model prediction effect is displayed in Fig-
ures 11 and 12. The hit rate of LAOA-TSVR model in
forecasting the wear amount of work roll within the
range of &+ 0.5 pct is 95.2 pct, and its accuracy in
predicting the moment of replacement moment is
98.3 pct. In this can be seen in the complex hot rolling
conditions, indicating that the model prediction effect is
better, to meet the actual production needs of a steel
mill.

To verify the practical application effect of the
LAOA-TSVR forecasting model, the model underwent
actual industrial trials in a hot strip finishing mill, where
200 sets of data were collected. When the wear amount
of work roll exceeds 6mm of the diameter, indicating the
need for timely replacement, defined as the roll changing
moment. The acquired data underwent preprocessing
and were then inputted into the model, with the
prediction results displayed in Figures 11 and 12. The
LAOA-TSVR model achieves a hit rate of 95.2 pct in
forecasting the wear amount of work roll within the
range of £ 0.5 pct, and an accuracy of 98.3 pct in
predicting the moment of replacement. This demon-
strates that under complex work rolls application
conditions, the model exhibits superior prediction effec-
tiveness, meeting the actual production requirements of
a hot strip finishing mill.
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VIII. CONCLUSION

This article proposes a prediction model based on the
LAOA-TSVR algorithm for predicting wear amount of
work roll and replacement moment in finishing rolling.
The model offers advantages such as high prediction
accuracy, fast convergence speed, strong fitting ability,
and robust generalization capability. By optimizing
TSVR with LAOA for kernel functions, parameter
tuning, and penalty factors, the model’s computational
speed, exploratory ability, and prediction accuracy are
enhanced compared to the original version.

The LAOA-TSVR model is characterized by a unique
extreme point. Compared with the traditional algorith-
mic model, the LAOA-TSVR model can better avoid
falling into the local optimum and deal with the
nonlinear regression problem, and more accurately
predict the amount of wear of the work roll and
replacement moment in finishing rolling.

The industrial production verification results demon-
strate that the LAOA-TSVR model accurately predicts
the wear amount of work rolls within a range of
40.5 pct, achieving a high hit rate of 95.2 pct. Further-
more, it achieves an outstanding hit rate of 98.3 pct in
predicting the moment for roll replacement, surpassing
other algorithmic models. These findings indicate that
the LAOA-TSVR model meets the demand for precise
prediction of wear amount of work roll and replacement
moment in finishing rolling, providing valuable theoret-
ical guidance for predicting wear amount and replace-
ment moment of work roll in the hot strip finishing
process.

After comparing the predictive performance of four
algorithms (BP, RBF, SVM, and LAOA-TSVR), the
findings highlight the LAOA-TSVR model as the
optimal choice based on its evaluation using RMSE
and MAE indexes. It demonstrates the smallest relative
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Fig. 11—Predictive effect of LAOA-TSVR model in predicting wear amount of work roll in practical applications.
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Fig. 12—Predicted effect of the replacement moment in finishing rolling.

error, superior tracking capability, and the highest
accuracy among the regression models. These results
confirm the strong generalization ability and effective-
ness of the LAOA-TSVR prediction model. This can be
applied to the different rolling processes via transfer
learning in the future.
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