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Determination of Time-Spatial Varying Mold Heat
Flux During Continuous Casting from Fast Response
Thermocouples

HAIHUI ZHANG and PENGCHENG XIAO

To ensure accurate estimation of mold heat flux, this study investigated the impacts of the
thermocouples placement inserted in the mold wall, the temperature sampling rate (fs), and the
noise level of temperature data on the precision of two-dimensional Inverse Heat Conduction
Problem (2DIHCP). The results showed the accuracy of heat flux estimations decreases as the
distance between the thermocouple and the mold surface increases, and it is recommended that
the distance should not exceed 3 mm. The accuracy of the heat flux initially increases as fs
increases from 5 to 10 Hz, reaches a relatively stable state as fs increases from 10 to 60 Hz, and
eventually decreases as fs increases from 60 to 100 Hz. Additionally, higher temperature
measurement errors typically lead to decreased accuracy in inverse analysis. 2DIHCP was
employed to compute the heat flux for a mold simulator experiment, and the results
demonstrated its effectiveness in reconstructing the mold heat flux at the meniscus level during
the time lapse of a mold oscillation cycle.
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I. INTRODUCTION

THE continuous casting of molten steel is a vital
process in modern steelmaking, where molten steel is
poured into a water-cooled mold and continuously
extracted as a solidified strand. During the initial stages
of molten steel solidification, heat is transferred from the
steel to the mold, affecting the surface quality of the
solidified strand.[1] Accurate measurement of mold heat
flux is essential for understanding the heat transfer
mechanism, optimizing the casting process, and pre-
venting defects in the solidified strand.[2–6]

The measurements of mold heat flux are performed by
determination of the temperature gradients in the copper
plate of the mold using thermocouples inserted in the
mold wall, and/or by determination of the increase of the
temperature of the cooling water.[7] The mold heat flux,

especially in the vicinity of the mold meniscus area, where
the initial shell thickness is within 5 mm, plays a critical
role in determining the surface quality of the steel
strands.[8] The mold heat flux can display oscillations
over time. When transient measurements of heat flux are
taken at themeniscus level, oscillating fluctuations in heat
flux can be observed. These oscillations are not propa-
gated to the rest of mold.[9] The further studies[10–12] have
shown that the mold heat transfer signal consists of low-
and high-frequency components. The heat flux with a
frequency less than half of the mold oscillation frequency
is categorized as a low-frequencymold heat flux.This type
of heat flux is associated with low-frequency phenomena,
such as solidification shrink, unevenness growth of the
shell, melt flows, and level fluctuations. On the other
hand, the heat flux near the liquid slag surface has a
high-frequency signal with a frequency equal to the mold
oscillation frequency. This high-frequency heat flux
corresponds to high-frequency phenomena, such as
oscillation mark formation, partial meniscus solidifica-
tion, and so on. Along the casting direction, the high-fre-
quency heat flux signal tends to weaken. Thus, transient
measurements of mold heat flux can provide insight into
the different mechanisms at work in the mold.
The temperature data may not capture the full range

of temperature variations within the mold if the tem-
perature sampling rate is too low. This is because
high-frequency temperature variations are incorrectly
represented as lower frequency components in the data,
resulting in inaccurate heat flux estimates. In order to
measure the solidification phenomena occurring at
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different time scales and frequencies, Shannon sampling
theorem[13] dictates that the sampling frequency fs must
be greater than the Nyquist frequency (2fh), fs ‡ 2fh,
where fh is the highest frequency of the signal. There-
fore, to monitor the charge of heat flux during a mold
oscillation cycle, the temperature sampling frequency
must be high enough. Currently, the highest reported
frequency exceeds 50 Hz[9,10] for thermocouples and 250
Hz[14] for optical fiber temperature sensors.

The conventional technique of determining tempera-
ture gradient with two thermocouples cannot be used to
directly measure heat flux at the meniscus due to the
transient temperature field of the mold, especially at the
mold meniscus area where significant heat flow longitu-
dinally upwards to the cold top of the mold. As a result,
the methods of inverse heat conduction problems must
be employed when the heat flux is estimated from the
observed temperatures. But high-temperature sampling
rate might increase computational complexity of the
heat flux estimations by inverse methods. Additionally,
a high sampling rate can introduce a large amount of
noise in the temperature data due to sensor measure-
ment errors, leading to a reduction in accuracy in heat
flux estimation. Previous studies[15,16] have demon-
strated that increasing the temperature sampling rate
might decrease the accuracy of heat flux estimation by
inverse problem. Therefore, it is crucial to investigate
the effects of temperature sampling rate on the accuracy
of mold heat flux estimation using inverse methods.

Temperature measurements are commonly used to
monitor heat flux, which is important for improving
cooling systems, casting practices, and process control.
For example, too low a heat extraction rate will lead to
breakouts, too high a rate to longitudinal cracks.[9,17,18]

To measure heat flux distribution over the entire mold
face, an array of thermocouples is typically embedded
into the mold wall. Although this method is accurate
and easy to use, it can be intrusive and may impact the
mold’s thermal behavior.[19] Alternatively, optical fibers
have emerged as a promising technology for measuring
mold heat flux, offering high accuracy, fast response,
and immunity to electromagnetic interference.[20] The
accuracy of heat flux estimations by inverse methods
using the measured temperatures depends on various
factors, including the location and measurement accu-
racy of the temperature sensor.[21,22] The accuracy can
be improved if the sensor is placed near the boundary of
the unknown heat flux.[15,21] Therefore, it is important to
investigate the influences of the location and measure-
ment accuracy of the temperature sensor on the accu-
racy of the heat flux estimations.

In the field of steel continuous casting, the first attempts
to use inverse problemmethods for determining the mold
heat flux using the observed temperatures were made by
Brimacomb.[23] Brimacomb et al. established an inverse
problem of two-dimensional steady state heat transfer
using the zeroth-order regularizationmethod for estimat-
ing the mold heat flux. Thomas et al.[24] introduced an
inverse heat conduction problem to estimate the heat
transfer at themeniscus using themeasured temperatures.
The model can gain a better understanding of how heat is
transferred at the mold meniscus area. Talukdar et al.[22]

employed a Salp Swarm Algorithm-based inverse heat
transfer approach to predict mold heat flux. This method
was utilized for parameter estimation within a three-di-
mensional steady-state thermal environment. Yao and
Wang et al.[25,26] developed a two-dimensional transient
inverse heat transfer problem by employing a nonlinear
estimation technique. This approach facilitates enhanced
comprehension of the nonuniformheat transfer dynamics
within the continuous casting mold. Consequently, it
enables the identification of previously unknown thermal
resistances existing between the mold and the solidifying
shell. Goldschmit et al.[27,28] developed an inverse analysis
model employing the regularization method. This model
facilitates the evaluation of mold heat flux based on the
temperature data acquired from thermocouples embed-
ded within the mold wall. Talukdar et al.[29] developed an
inverse problem of steady state heat transfer by employ-
ing the conjugate gradient method to determine the mold
heat flux from observed temperatures. Wang et al.[30]

developed a two-dimensional transient inverse heat con-
duction problem using the whole-time domain conjugate
gradient method to estimate the mold heat flux. Jayakr-
ishna et al.[31] developed a three-dimensional steady-state
inverse heat conduction problem to estimate mold heat
flux through parameter estimation.
Inverse heat transfer problems are often classified as

classical ill-posed problems, indicating that a solution may
not exist, and even if it does, it could potentially be
unstable or lack uniqueness. As a result, stabilization
techniques are necessary to obtain reliable results for the
inverse problem.[32] Stabilization techniques for inverse
problems can be classified into gradient-based methods,
such as the Levenberg–Marquardt method,[33–36] the func-
tion specification method,[37] the regularization method,[38]

and the conjugate gradient method,[21,30,39] and stochas-
tic-basedmethods, suchas theBayesianmethod,[40] the fuzzy
inference method,[41] and the deep neural network algo-
rithms.[42,43] Additionally, when dealing with transient heat
transfer phenomena, the time domain over which measure-
ments are utilized in the inverse problem can aid in
categorizing the solution methods. Three distinct time
domainmethods have been proposed: (1) only to the present
time, (2) to the present timeplus a few times steps, and (3) the
complete time domain.Methods based on the time domains
(1) and (2) are sequential in nature. In the first method, the
use ofmeasurements only to thepresent time (1) is also called
the Stolz method. In the second method, a few future
temperatures (2) are used, originally proposed by Beck,[15]

and the associated algorithms are called Beck’s sequential
method. However, sequential methods based on the time
domains (1) and (2) generally become unstable as small-time
steps are used in the analysis. The whole-time domain
approach (3) is powerfulbecausevery small-time steps canbe
taken but it is not as computationally efficient. Themajority
of stabilization techniques, such as function specification,
conjugate gradient method, and regularizationmethods, are
applicable to both sequential and whole domain estimation
forms.[15,39,44]

In order to effectively monitor the variation of mold
heat flux during each mold oscillation cycle, the sequen-
tial method is deemed more suitable than the whole-time
domain approach. This can be attributed to the time
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delay present in the latter method during the feedback
computation of the heat flux. In the engineering
community, sequential function specification method
developed by Beck has been widely used and successful
in solving one-dimensional inverse heat conduction
problems for more than 50 years.[45] In this method,
the heat flux is assumed to be a constant or linear
function over several number of future time steps, and
then the stability of the solution in the time domain can
be improved by selecting an appropriate number of
future time steps.[15] As demonstrated by Beck,[15] the
sequential method is preferred due to it is so much more
efficient and gives only slightly different results from the
whole domain method. Nevertheless, elevating the
temperature sampling rate, which consequently reduces
the time step within the sequential method, often results
in a compromise in the precision of heat flux recon-
struction. This is particularly pronounced in scenarios
involving the heat flux that varies both spatially and
temporally in the context of two- and three-dimensional
heat transfer problems.[16,46,47] Furthermore, the func-
tion of heat flux might exhibit discontinuities. Effectively
handling the discontinuity function form of the
unknown remains a hot topic within the realm of
inverse problem research. Tourn et al.[48] highlighted
that the incorporation of such a regularization term
enables the accurate capture of jump discontinuities
present within the unknown function.

Therefore, a sequential regularization method based
two-dimensional Inverse Heat Conduction Problem
(2DIHCP) was proposed to estimate the mold flux using
the temperatures measured by thermocouples.

Subsequently, an exploration was undertaken to analyze
the impact of thermocouples parameters, such as the
depth of thermocouples beneath mold surface (w1), the
temperature sampling rate (fs), and the noise level of
temperature data (r), on the precision of the 2DIHCP.
Finally, 2DIHCP is applied to reconstruct heat flux across
oscillating mold hot surface for a mold simulator runs.

II. THE METHODOLOGY

A. The Experimental

The trial of continuous casting was performed using a
mold simulator, as illustrated in Figure 1. The mold
simulator comprises an induction furnace, a water-cooled
copper mold, a shell withdrawal mechanism (extractor),
and a fast thermal monitoring system. The inverse-type
water-cooled coppermold (30 mm 9 50 mm 9 350 mm)
with oscillation capability was utilized in the mold
simulator. Themold has aU-shapedwater-cooling groove
with 10 mm diameter internally, with a water inlet and
outlet situated at the quarter-width and three-quar-
ter-width positions of the mold, respectively. The mold
was placed in an extractor so that only one face was
exposed to the liquid melt. The mold and extractor,
initially at room temperature, were then submerged into
themolten steel andheld for a few seconds, allowing a shell
to solidify normal to the external surface. Subsequently,
the extractor drew the solidifying shell downwards,
enabling the fresh molten steel to come in contact with
the mold for subsequent solidification, similar to the
start-up of a continuous casting process.

Fig. 1—Mold simulator apparatus and the locations of thermocouples insides the mold wall.
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As shown in Figure 1, two columns of T-type
thermocouples (2 9 8) are embedded at different depths
along the centerline of the mold wall, positioned 3 and
8 mm away from the hot surface (AB) of the mold and
separated by 3 mm vertically. Sixteen highly sensitive
T-type thermocouples, with a diameter of 0.5 mm, were
used to measure the corresponding mold temperatures
at a sampling frequency of 60 Hz, using a data
acquisition system. The temperature of the second
column of thermocouples located on the boundary C4

(CD) was used to determine the temperature boundary
condition f*(t*). This was achieved by interpolating the
linear correlation between the two adjacent measured
temperatures for the nodes situated between the two
thermocouples. This configuration of thermocouples in
the mold was chosen selected based on the research of
Badri et al.[49] Furthermore, the temperature history of
the first column of thermocouples, denoted as a vector T

2 RM, will be utilized to develop the inverse problem for
determining the mold surface heat flux.

The experiment proceeded in the followingmanner: 30 kg
of medium carbon steel was melted in an induction furnace
with a MgO lining and an argon atmosphere of 99.99 pct
purity.The temperatureof themolten steelwas thenadjusted
to the targetvalue to control the superheat.MetalAl (~100g)
was added to the molten steel as a deoxidizer. Subsequently,
a layer of decarburizedmolten flux (0.5 kg) was added to the
surface of themolten steel to create a layer ofmoltenflux 6 to
9 mm thick on the top of the liquid steel. Step I: After
submerging the oscillating water-cooled copper mold and
extractor into themelt at the target depth, the level ofmolten
steel was located in the thermocouple-measuring zone of the
mold. Step II: the mold and extractor were held for several
seconds to forman initial shell normal to the external surface
of themold, ensuring that the initial shell was strong enough
to prevent tearing during extraction. Step III: The extractor
then withdrew the solidifying shell downward at a constant
speed to simulate continuous casting, while the moldmoved
upward at a certain speed to compensate for the rise in the
mold level, so that the level of liquid melt remained in the
same position relative to the mold. Step IV: Upon comple-
tion of the casting, the mold and extractor along with the
attachedsteel shellwere removedfromthemeltandcooled to
room temperature. Throughout this process, the mold was
kept oscillating sinusoidally at the pre-set frequency and
stroke from the time it was submerged into the molten steel
until the casting was completed.

Due to the presence of an air gap between the mold
and the extractor, the heat transfer from the mold to the
extractor can be considered negligible. Therefore, the
heat transfer along the central line of the mold in the
casting direction is considered two-dimensional (2D). As
a result, the heat transfer within the rectangular area
ABCD of the mold, represented in Figure 1 and denoted
as X*, is considered two-dimensional. The rectangular
area, ABCD, with a height (AB) H* of 21 mm and a
width (BC) W* of 8 mm consists of four boundary
conditions represented by C1 (DA), C2 (AB), C3 (BC),
and C4 (CD). Since the temperature of the mold wall is
between 300 K and 600 K,[10,50] it is reasonable to
assume that the material properties of the mold (heat

capacity, density, and thermal conductivity) remain
constant. The direct problem of investigating 2D heat
transfer in the ABCD rectangular area is governed by
the Fourier heat transfer partial differential equation
with corresponding thermal boundary conditions.

qc
@T�

@t�
¼ kDT�; in domain X� ¼ 0;W�½ � � 0;H�½ � ½1a�

�k
@T�

@n

�
�
�
�
C1[C2[C3

¼ q�; unknown ½1b�

T�ðC4; t
�Þ ¼ f� t�ð Þ; measured ½1c�

T� x�; y�; 0ð Þ ¼ T�
int; ½1d�

where q is the density in kg m�3, c represents the
specific heat in J kg, T* is the temperature in K, t* is
the time in second, k is the thermal conductivity in
W m�1 K�1, q* is the heat flux to be estimated for the
boundary conditions of C1, C2, and C3 with the unit in
W m�2, n is the outer normal of boundary. f*(t*) is the
temperature boundary condition on C4 with the unit in
K.

B. Definition of the Inverse Problem

The fundamental principle of inverse problems is to
find the unknown heat flux q, subsequently using this
heat flux q to calculate the temperature T in a manner
that results in a perfect fit between T and the observed
temperatures Y. Therefore, the inverse heat conduction
problem can be represented as an optimization problem
with partial differential equation (PDE) constraints.[32]

That is,

min s ¼
Xr

i¼1

Yjþi�1 � Tjþi�1
�
�

�
�
2 þ a hdq

j
�
�

�
�
2
: ½2a�

s:t:
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¼ DT; tj � t � tjþr�1 in X ¼ 0;W½ � � 0;H½ �

½2b�

� @T

@n

�
�
�
�
C1[C2[C3

¼ qj; to be estimated ½2c�

TðC4; tÞ ¼ f tð Þ; measured ½2d�

T x; y; tj
� �

¼ Tini: ½2e�
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All variables in Eqs. [2a] through [2e] are dimension-
less. The dimensionless quantities were defined as
follows:

T ¼ T� � Tref

DT
; Y ¼ Y� � Tref

DT
; DT ¼ qrefLref

k
; qj

¼ qj�

qref
; x; yð Þ ¼ x�; y�ð Þ

Lref
; t ¼ kt�

qcL2
ref

:

Here, r (‡1) is the number of future time steps. The
Finite Difference Method (FDM)[51] is employed to
solve the above direct problem of partial differential
equation given by Eqs. [2b] through [2e]. In this
approach, the computational domain (X), ABCD, is
discretized into an nx 9 ny uniform grids, with the
boundaries C1, C2, and C3 split into n1 (=nx), n2
(=ny), and n3 (=nx) divisions, respectively. Then, the

unknown heat flux qj (= [qj1,q
j
2,q

j
3]
T) 2 RN at time tj is

denoted as a vector with N (= n1 +n2 +n3) compo-

nents. qj1, q
j
2 , andqj3 are vectors of dimensions n1 9 1,

n2 9 1, and n3 9 1, corresponding to the heat fluxes
on C1, C2, and C3, respectively. ||Æ|| denotes the stan-
dard Euclidean norm. The right-hand side of Eq. [2a]
contains a spatial regularization term, a||hdq

j||2, which
is used to penalize the spatial variation of the pre-
dicted heat flux.[15,48,52–55] There are three types of spa-
tial regularizations: zeroth-, first-, and second-order. a
(>0) is the regularization parameter, d is 0, 1 and 2
represent the order of spatial regularization.

qj ¼ ½qj1; q
j
2; � � � ; qjn1

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
q
j
1

; qjn1þ1; q
j
n1þ2; � � � ; q

j
n1þn2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

q
j
2

; qjn1þn2þ1; q
j
n1þn2þ2; � � � ; q

j
N

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{
q
j
3

�T:

½3�

Yj ¼ ½Yj
1;Y

j
2; � � � ;Y

j
M�T ½4�

Tj ¼ ½Tj
1;T

j
2; � � � ;T

j
M�T; ½5�

where both Yj and Tj are M 9 1 temperature vector at
time tj, M is the number of measurements. qjn is the

n-th component of heat flux qj at the time tj. Y
j
m and

Tj
m are the measured and the calculated temperature at

the position m and the time of tj, respectively.
hd is dth-order spatial derivative operator acting on

three different boundary heat fluxes (Table I).[15,48,52–55]

In zeroth-order regularization (d =0), a||hdq
j||2 is the

penalization for the magnitude of heat fluxes. In
first-order regularization (d =1), hdq

j can be interpreted
as an approximation of the spatial gradient of the heat
flux. In second-order regularization (d =2), hdq

j can be
interpreted as an approximation of the second-order
spatial derivative of the heat flux. Moreover, first-order
regularization constrains solutions with large spatial
gradients, whereas second-order regularization penalizes
solutions that have considerable second-order spatial
derivatives. Furthermore, it is possible for heat flux, q,

to be discontinuous at the intersection points between
two neighboring boundaries, such as the points A and B
in Figure 1. Consequently, the spatial regularizations are
individually applied for each boundary heat flux of C1,
C2, and C3. Then, hd is defined as follows:

hd ¼ blkdiagðhd;1; hd;2; hd;3Þ: ½6�

The minimization of the objective function Eq. [2] can
be achieved by taking the partial derivative of Eq. [2]
with respect to the vector of qj, setting this equal to zero.
This yields an estimator for unknown heat flux qj.

qj ¼
Xr

i¼1

JTi JiþahTdhd

 !�1

Xr

i¼1

JTi ðYjþi�1 � ~T
jþi�1Þ þ

Xr

i¼1

JTi Jiq
�

( )

:

½7�

Here, ~T
jþi�1

is the temperature calculated by using the
assumed heat flux q*. Usually, q* is an a priori estimate
of qj. q* = qj-1 is a common choice. However, q* can
be set to zero if no a priori information about the heat
flux is available, which will consequently reduce the
computations required.[15] Jj is called as the M 9 N
sensitivity coefficient matrix at time tj, and could be
obtained by solving the sensitivity coefficient problem
given in Appendix A.

C. Method of Solving the Inverse Problem

1. Stopping criteria
If no measurement error in the temperature, the

traditional stopping criteria for Eq. [2] is given by

s � e1 ½8�

Xr

i¼1

JTi ðYjþi�1 � ~T
jþi�1Þ

�
�
�
�
�

�
�
�
�
�
� e2; ½9�

where e1 and e2 are user-prescribed tolerances, and
both values default to 10�3.
However, if the observed temperature data contain

measurement error, Morosov’s criterion states that the
squared difference between the measured temperature
Yr and the calculated temperature T should tend toward
Mr2, where M is the quantity of temperature measure-
ments and r is the constant standard deviation of the
temperature measurement error.[56]

Yr � Tk k2� Mr2 ½10�

2. Regularization parameter selection methods
Morosov’s criterion suggests that the selection of the

regularization parameter a should be contingent upon
the noise level of the observed temperature r, such that
the difference between the measured temperature Yr and
the calculated temperature T is of the same magnitude
as the measurement errors. A function is defined to
facilitate this selection process.
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u að Þ ¼ Yr � Tk k2 - Mr2
�
�
�

�
�
�: ½11�

Then, the selection of regularization parameter can be
formulated as an optimization problem, in which the
optimal regularization parameter, a*, is determined by
minimizing the value of the objective function u að Þ.
That is,

a� ¼ arg minu að Þ: ½12�
If the noise level r of the observed temperature data is

unknown, the L-curve criterion can be used to determine
a suitable value for the regularization parameter. This
criterion plots a curve of {X,Y} = {lg(||Y-T||), lg(||hd(q

1,
q2, q3…)||)}, that typically has an ‘‘L’’ shape, with the
optimal regularization parameter corresponding to the
point of maximum curvature at the corner of the
curve.[54,56] More information on methods for selecting
regularization parameters can be found in classical
literature.[51,52]

3. Solution procedure
Figure 2 shows the iteration process of the 2DIHCP

algorithm. The first step is to make an initial guess for
the heat flux, qj. Then, the temperatures corresponding
to the thermocouple locations are calculated by solving
the direct problem given by Eqs. [2b] through [2e] using
qj. Next, solve the sensitivity coefficient problem given in
Appendix A for the sensitivity coefficient matrix Jj
during the time from 0 to tr. These calculated temper-
atures are then compared to the measured ones. If the
stopping criteria given by Eqs. [8] through [10] are
satisfied, the heat flux value is correct and the time step j

increases to j+1, and the calculation for the next time
step is conducted until the end of the time step. If the
stopping criteria are not satisfied, the heat flux value qj is
updated using Eq. [7], and substituted into the direct
problem to calculate the responding temperatures until
the stopping criteria are satisfied.
The partial differential equations (Eqs. [2b] through

[2e] and Eqs. [A2a] through [A2d]) related to the
2DIHCP are solved using the finite difference method
(FDM) with Crank–Nicolson (CN) semi-implicit
scheme. The time steps must be at least as small as the
time steps in the measured temperatures. It is practical
to set the computational time step (Dt*) equal to 1/Nf of
the time interval for temperature sampling.[15]

Dt� ¼ Dt�meas

Nf
¼ 1

fsNf
; ½13�

where fs is the number of samples taken per second
with the unit in Hz. Dtmeas is the time interval of tem-
perature sampling. Nf is a positive integer and defaults
to 1.
Prior to applying this method to inverse calculations,

accuracy of FDM for solving partial differential equa-
tions was verified by the comparison of FDM numerical
results to the analytical solution of a two-dimensional
heat transfer problem from a textbook.[57] Additionally,
it is worth noting that the sensitivity coefficient matrix
can be computed only once if the sensitivity coefficient

Table I. Three Different Derivative Operators for Spatial

Regularization

Regularization
Method Derivative Operator hd;i, i=1, 2 3

Zeroth Order
(d = 0)

hd;i ¼

1
1

. .
.

1

2

6
6
4

3

7
7
5

ni�ni

First Order
(d = 1) hd;i ¼

1 �1
1 �1

. .
.

. .
.

1 �1

2

6
6
6
4

3

7
7
7
5

ni�1ð Þ�ni

.

Second Order
(d = 2)

hd;i ¼
1 �2 1

1 �2

. .
.

. .
.

1 �2 1

2

6
6
6
4

3

7
7
7
5

ni�2ð Þ�ni

Fig. 2—Computational procedure of 2DIHCP algorithm.
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problem is linear. Moreover, updating the heat flux qj

using Eq. [2] only once might be sufficient in most cases
to achieve accurate results.

III. INFLUENCES OF THERMOCOUPLE
PARAMETERS

This section is to verify the inverse problem model
and investigate the impact of the depth of thermocou-
ples beneath mold surface (w1), the temperature sam-
pling rate (fs), and the noise level of temperature data
(r), on the accuracy of heat flux estimations, aiming to
provide recommendations for the thermocouple
settings.

As shown in Figure 1, the direct problem in the test
study involves the conduction of heat within a copper
rectangular area labeled ABCD, with dimensions of
0.021 m 9 0.008 m (height 9 width) and an initial
temperature of 0 K. The boundaries C1, C3, and C4 are
insulated. The validation and investigation process
involves the following steps:

Firstly, specify the analytic expression for a pre-set
heat flux gexa(C2,t) on the boundary C2. It is general that
the heat flux function containing a sharp corner poses
the greatest difficulty for recovery by inverse analysis.[15]

To assess the most stringent test conditions, we consid-
ered the heat flux involving a triangular variation in
both time and space. That is,

gexaðC2; t
�Þ ¼ A0f1ðy�Þf2ðt�Þ; ½14�

with f1ðy�Þ ¼

y� � l1
l0

; l1 � y�<l2

1� y� � l2
l0

; l2 � y� � l3

0; others:

8

>>>>><

>>>>>:

; and f2ðt�Þ

¼

t� � s1
s1

; s1 � t�<s2

1� t� � s2
s1

; s2 � t� � s3

0; others:

8

>>>>><

>>>>>:

:

where A0 is 1 9 106 W m�2, l0, l1, l2, and l3 are 0.007,
0.003, 0.010, and 0.017 m, s1, s2, and s3 are 5, 10, and
15 seconds, respectively.

Secondly, set the location of temperature sensors in
the computation domain. The location of temperature
sensors in the computation domain is set as shown in
Figure 1. The domain X comprises two columns of
2 9 8 thermocouples. The first column consists of eight
virtual response thermocouples spaced 3 mm apart in
the vertical direction and situated w1 beneath the mold
hot surface. The second column comprises eight virtual
thermocouples spaced 3 mm apart in the vertical direc-
tion and located on the boundary C4 (CD). Tests with
different configuration of thermocouple parameters,
including the depth of thermocouples beneath mold

surface (w1), sampling rate of temperature (fs), and the
temperature measurement error (r), are listed in
Table II.
Thirdly, generate the simulated measured temperature

data. Apply the pre-set heat flux gexa(C2,t) on the
boundary C2, run the direct problem given by Eqs. [2b]
through [2e] to compute the temperatures using the
FDM, while the sampling frequency of temperature is
set as fs. Then, Gaussian noise signals rx (Y = Yexa +
rx, r is the noise level of the observed temperature, and
x is a random variable and will be within � 2.576 to
2.576 for the 99 pct confidence bounds) are added to the
temperatures (Yexa) to mimic the thermocouple mea-
surement error. Despite the absence of intentionally
added noise to the data, it is worth noting that the
calculated simulated temperature (W1F010N00,
W3F010N00, and W5F010N00) may not be perfectly
precise. These calculated simulated temperature may
still incorporate errors arising from the accumulation of
finite difference method (FDM) rounding errors and
truncation errors.[15,51]

Fourth, the reconstruction of heat flux by the IHCP.
Substitute the simulated measured temperatures
(Table II) into 2DIHCP for the heat flux (gpred)
estimations. All the computations with 17 9 43 discrete
uniform grids are carried out by a computer with an
Intel(R) Core (TM) i7-9700K CPU @ 3.60GHz and
32GB RAM memory.
Finally, evaluate the accuracy of the inverse analysis.

The following relative error between the exact and the
reconstructed result is employed to evaluate the accu-
racy of heat flux estimations:

epred ¼
gexaðx; tÞ � gpredðx; tÞ
�
�

�
�

gexaðx; tÞk k � 100 pct; ½15�

where gexa and gpred are the exact and the predicted
heat fluxes, respectively. A high value of the relative
error, epred, indicates that the reconstructed heat flux is
of lower accuracy.

Table II. Configuration of Thermocouple for the Simulated

Measurements

Simulated
Measured
Temperature
Data

Depth of Ther-
mocouples Be-
neath Mold
Surface (w1)

Sampling
Rate of Tem-
perature (fs)

Noise Level
of Tempera-
ture Data (r)

W1F010N00 1 10 0
W3F010N00 3 10 0
W5F010N00 5 10 0
W3F005N00 3 5 0
W3F030N00 3 30 0
W3F060N00 3 60 0
W3F100N00 3 100 0
W3F010N01 3 10 0.1 pct Ymax

W3F010N05 3 10 0.5 pct Ymax

W3F010N10 3 10 1.0 pct Ymax

Ymax is the maximum measured temperature (K).
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In addition, the proposed 2DIHCP involves the
selection of parameters, such as the number of future
time steps (r), the regularization parameter (a), and the
order of spatial regularization (d). These parameters
have an impact on the accuracy of the 2DIHCP.
Furthermore, the selection of optimal values for r, a,
and d is interdependent with thermocouple errors.[16] As
there is no established theory available to guide the
simultaneous selection of optimal parameter values, a
trial-and-error approach has commonly been employed
to determine these three parameters. In this study, a
total of 3780 distinct tests were conducted to determine
these three parameters using the trial-and-error method.
Each parameter (r, a, d) listed in Table III was
individually tested, maintaining the other parameters
at a constant value. The parameter ranges used are also
outlined in this table.

A. Effect of Thermocouple Depth Beneath Mold Surface

The simulated temperature data used in 2DIHCP
were acquired from thermocouples situated at varying
depths (w1) below the mold surface (W1F010N00,
W3F010N00, and W5F010N00). As shown in Figure 3, a
total of 1134 distinct tests were conducted. The accuracy
of the inverse problem is quantified by the relative error
(epred), with the star w symbol indicating the position of
the minimum epred, which aligns with the optimal values
of r and a. Generally, any values of r and a values that
result in a relative error below 10.0 pct can be
considered feasible solutions.[58] Notably, the absence
of spatial regularization (a is 0) yields a relative error
(epred) exceeding 10.0 pct. The optimal range for r is 1 to
2, while the optimal range for a is 10�7 to 10�4, which is
consistent with the previous studies.[15,16]

As the depth of thermocouples beneath mold surface
(w1) increases, the optimal number of future time steps
(r) should be raised to uphold the accuracy of the inverse
problem. For example, the optimal r is 1 and 2 for
thermocouples located 3 and 5 mm beneath the mold
surface, respectively. Increasing the optimal r when w1

increases from 3 to 5 mm resulted in an increase in the
required CPU time. Specifically, the required CPU time
increased from 2.20 to 3.22 seconds for zeroth-order
spatial regularization, from 2.01 to 3.30 seconds for
first-order spatial regularization, and from 1.96 to 3.22
seconds for second-order spatial regularization.

Figure 4 shows the minimum epred and the respective
required computing time (CPU time) for heat flux
reconstructions by the inverse analysis. It could be
observed that the accuracy of heat flux estimations
reduces with increasing the depth of thermocouples
below the surface. Using first-order spatial regulariza-
tion, the minimum epred for estimating heat flux is 6.48,
6.58, and 8.47 pct for thermocouples located 1, 3, and
5 mm beneath the mold surface, respectively. The
reduction in accuracy is 1.54 pct when the depth of
thermocouples beneath mold surface (w1) increases from
1 to 3 mm. However, the accuracy reduction is 26.92 to
31.21 pct when w1 increases from 3 to 5 mm. This trend
is similar to that observed with zeroth- and second-order
spatial regularizations. The results suggest that to
accurately detect mold heat flux, the depth of thermo-
couples beneath mold surface should not exceed 3 mm.
In the context of a semi-infinite solid (0 < x < ¥)

initially at the temperature of T0, the situation involves a
boundary surface at x = 0 exposed to a spatially
constant heat flux with temporal oscillations as q(t) =
Aqcos(2pft), where Aq and f are the amplitude and
frequency of oscillations for the heat flux, respectively.
Following the attenuation of transient effects, the
quasi-stationary temperature distribution in the solid
can be described using the analytical solution,[21]

Tðx; tÞ ¼ T0 þ
Aq

k

ffiffiffiffiffiffiffiffiffiffiffiffi

k
2pfqc

s

exp �x

ffiffiffiffiffiffiffiffiffiffi

pfqc
k

r !

cos 2pft� x

ffiffiffiffiffiffiffiffiffiffi

pfqc
k

r

� p
4

 !

:

½16�
The oscillation amplitude for the temperature at any

location is

AT ¼ Aq

k

ffiffiffiffiffiffiffiffiffiffiffiffi

k
2pfqc

s

exp �x

ffiffiffiffiffiffiffiffiffiffi

pfqc
k

r !

: ½17�

From Eq. [17], it is evident that the oscillation
amplitude of temperature in the solid decreases expo-
nentially as depth below the surface increases. To
precisely estimate the boundary heat flux, it must place
a temperature sensor at a depth where the temperature
oscillation amplitude significantly exceeds the measure-
ment error. Otherwise, it is impossible to distinguish if
the measured temperature oscillation is due to changes
in the boundary heat flux or due to measurement
errors.[15,21] Generally, sensor measurement errors (r)
are provided, or simulated temperature measurement
data obtained through the finite difference method
(FDM) might not be perfectly accurate. Consequently,
the information content (AT/r) of the temperature
measurement in the solid decreases as the depth of the
sensor below the surface increases. This factor con-
tributes to decreased accuracy in heat flux estimations as
the depth of the thermocouple beneath the mold surface
increases.
In general, first-order spatial regularization provides

higher accuracy for heat flux reconstruction than both
zeroth- and second-order spatial regularizations. For
instance, when zeroth-order spatial regularization is
utilized, the minimum epred is 6.61, 6.60, and 8.66 pct for

Table III. Parameters Variation of Inverse Problem for Test

Case

Parameter Variations

Number of Future
Time Steps (r)

1, 2, 4, 6, 8, 10

Regularization
Parameter (a)

10�9, 10�8, 10�7, 10�6, 10�5,
10�4, 5 9 10�4, 10�3, 5 9 10�3, 10�2,
5 9 10�2, 1 9 10�1, 1, 5, 10, 20, 30,
40, 50, 75, and 100

Order of Spatial
Regularization (d)

zeroth, first, and second
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thermocouples located 1, 3, and 5 mm beneath the mold
surface, respectively. Meanwhile, the corresponding
values for the first-order spatial regularization are
6.48, 6.58, and 8.47 pct, and those for the second-order
spatial regularization are 6.55, 6.65, and 8.44 pct.

Figure 5 shows heat fluxes at y = 10.5 mm (a) and at
t = 10 s (b) reconstructed using different depths of
thermocouples beneath the mold surface (w1). The
optimal values of r and a for these estimations corre-
spond to the location of minimum epred (represented by

a star) in Figure 3. As shown in Figure 5(a), the
predicted heat fluxes match the exact one, except for a
slight deviation at 10.5 seconds when the exact heat flux
exhibits a sharp spatial change, indicating that the
temporal accuracy of the inverse results is roughly
satisfactory. However, the recovered heat fluxes deviate
from the exact value when the exact heat flux undergoes
a sharp spatial change at locations where y* is 3, 10, and
17 mm, suggesting that the spatial accuracy of the
inversion results is inadequate, as seen in Figure 5(b).

Fig. 3—Effects of the depth of thermocouples beneath mold surface (w1) and the order of spatial regularization on the relative error (epred): (a),
(b), and (c) w1 is 1 mm; (d), (e), and (f) w1 is 3 mm; and (g), (h), and (i) w1 is 5 mm. w denotes the location of minimum epred.
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This could be attributed to the fact that a sharply
changing heat flux is not differentiable, especially
because the spatial regularization term in the inverse
problem (Eq. [2]) limits the sharp spatial changes of the
reconstructed heat flux.

In summary, it is observed that the accuracy of heat
flux estimations using 2DIHCP decreases as the depth of
thermocouples beneath mold surface increases, and it is
recommended that the depth should not exceed 3 mm.
The optimal number of future time steps (r) should also
be increased as the locations of temperature measure-
ments get further away from the mold surface, which
increases the required CPU time.

B. Effect of Temperature Sampling Rate

The simulated temperature data were acquired from
thermocouples with five different temperature sampling
frequencies (W3F005N00, W3F010N00, W3F030N00,
W3F060N00, and W3F100N00). In Figure 6, 1512 distinct
tests were conducted. The accuracy of the inverse
problem is characterized by the relative error (epred),
and the star w denotes the location of minimum epred
corresponding to the optimal values of r and a. The
absence of spatial regularization (a is 0) also leads to a
relative error (epred) exceeding 10.0 pct. The optimal r
increases from 1 to 10 as the temperature sampling
frequency increases from 0 to 100 Hz, while the optimal
range for a is 10�6 to 10�4.
The minimum epred and the respective CPU time of

heat flux estimations by the inverse analysis are pre-
sented in Figure 7. The accuracy of heat flux estimations
decreases as the temperature sampling rate (fs) increases
from 5 to 10 Hz, but then remains stable at around 6.80
pct when fs increased from 10 to 60 Hz, and finally
increases from 6.80 to 8.60 pct when fs increased from 60
to 100 Hz.
When zeroth-order spatial regularization is employed,

the minimum epred of predicting heat flux is 9.38, 6.60,
6.97, 7.03, and 8.69 pct for the sampling rate of 5, 10, 30,
60, and 100 Hz, respectively. Meanwhile, the corre-
sponding value for first-order spatial regularization are
9.38, 6.58, 6.56, 6.80, and 8.53 pct, and those for the
second-order spatial regularization are 9.42, 6.65, 6.62,
6.87, and 8.51 pct. It is indicated that first- and
second-order spatial regularizations appear to be more
accurate than zeroth-order spatial regularization when
the sampling rate is high.
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Fig. 4—Changes of the relative error (epred) and required CPU time
with the depth of thermocouples beneath mold surface (w1).
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The time step is a crucial factor in the inverse heat
conduction problem. Beck[15] and Blanc[16] et al.
observed that the sampling rate affects the magnitude
of the sensitivity coefficient (J) by influencing the time
step used to solve the sensitivity coefficient problem.
This, in turn, affects the stability of the algorithm
(Eq. [7]) for solving the inverse problem. Instability of
the inverse problem refers to the high sensitivity of the
solution to small changes in the input data’s noise,
which can lead to substantial errors in the output. A
semi-empirical criterion[15,16] ensuring stability in the
heat flux estimator, as expressed in Eq. [7], is that the
dimensionless time step should exceed a critical value.

Dt ¼ kDt�

qce2
>Dtcri; ½18�

where e is the maximum distance between the sensors
and the point where the heat flux is evaluated. The
critical value, denoted as Dtcri, ranges from 0.005 to
0.01, depends upon factors such as the number of

Fig. 6—Effects of temperature sampling rate (fs) and order of spatial regularization on the relative error (epred): (a), (b), and (c) fs is 5 Hz, (d),
(e), and (f) fs is 30 Hz, (g), (h), and (i) fs is 60 Hz, and (j), (k), and (l) fs is 100 Hz. w denotes the location of minimum epred.
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spatial dimensions in the heat transfer scenario, the
sensor’s depth, and the solid’s temperature diffusivity.
In this investigation, we adopt a value of 0.005 for
Dtcri.

The dimensionless time steps employed in the
2DIHCP are 0.0521, 0.0261, 0.0087, 0.0043, and
0.0026 for the sampling rates of 5, 10, 30, 60, and 100
Hz, respectively. As the temperature sampling frequency
increases, the dimensionless time step decreases, which
may lead to potential instability in the 2DIHCP. At a
sampling rate of 60 Hz, the minimal epred of predicting
heat flux ranges from 6.80 to 7.03 pct, which is slightly
higher than the values of 6.58 to 6.97 pct observed at a
30 Hz sampling rate. With dimensionless time steps of
0.0043 and 0.0026 for 60 Hz and 100 Hz sampling rates,
respectively, both fall below the critical value of 0.005,
indicating instability in the 2DIHCP. This instability
could lead to a reduction in accuracy for inverse
prediction.

Although the dimensionless time step of 0.0521 is
larger than the critical value of 0.005, indicating stability
in the 2DIHCP, its accuracy remains poor at a sampling
rate of 5 Hz. Then, a speculation would be made that if
the temperature is measured too slowly, the heat
transfer process may have already changed. Such
discrepancies between observed and true temperatures
can result in inaccuracies in measurements.

A noticeable improvement in the accuracy of the
inverse problem is observed at sampling frequencies (fs)
is 10, and 30 Hz. A sufficiently high sampling rate allows
for the thorough capture of temperature fluctuations,
thereby enhancing the accuracy of inverse problem.
Secondly, the dimensionless time steps utilized in the
2DIHCP, namely 0.0261 and 0.0087 for 10 Hz and 30
Hz sampling rates, respectively, exceed the critical value
of 0.005. These combined factors contribute to a
reasonably accurate solution for the inverse problem.

It could be observed that the required CPU time
increases significantly as the temperature sampling rate
increases due to the optimal r increases, but the effect of

the order of spatial regularization on the CPU time is
not significant. For example, when zeroth-order spatial
regularization is employed, the CPU time of predicting
heat flux is 1.19, 2.20, 16.53, 60.16, and 103.52 seconds
for the sampling rate of 5, 10, 30, 60, and 100 Hz,
respectively. While the corresponding values for first-
order and second-order spatial regularization are
similar.
Figure 8 displays heat fluxes at y = 10.5 mm (a) and

at t = 10 s (b) reconstructed using temperature
measurements with various sampling rates (fs). The
2DIHCP calculations utilized the optimal r and a that
corresponded to the location of minimum epred (w) in
Figure 6. As shown in Figure 8(a), the predicted heat
fluxes match the exact one, except for a slight deviation
at 10.5 seconds when the exact heat flux exhibits a sharp
spatial change. This suggests that the temporal accuracy
of the inversion results is roughly satisfactory. Con-
versely, the recovered heat fluxes may deviate from the
exact value when the exact heat flux exhibits a sharp
spatial change at certain locations, such as y* = 3, 10,
and 17 mm in Figure 8(b). This indicates that the spatial
accuracy of the inversion results is inadequate. The
inadequate accuracy may be due to the fact that a
sharply changing heat flux is not differentiable. In
particular, the spatial regularization term in the inverse
problem (Eq. [2]) limits the sharp spatial changes of the
reconstructed heat flux.
In brief, it is observed that the accuracy of the heat

flux initially increases when the temperature sampling
rate (fs) increases from 5 to 10 Hz, then remains at a
relatively stable values when fs increases from 10 to 60
Hz, and finally decreases when fs increases from 60 to
100 Hz. Additionally, both first- and second-order
spatial regularizations appear to be more accurate than
zeroth-order spatial regularization when using high-tem-
perature sampling rates. However, increasing the tem-
perature sampling rate significantly increases the
required CPU time. While the effect of the order of
spatial regularization on the CPU time is not apparent.
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Fig. 8—Comparison of the heat fluxes reconstructed with different orders of spatial regularization and temperature sampling rate (fs): (a) heat
fluxes at y=10.5 mm, and (b) heat fluxes at the time of 10 seconds.
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C. Effect of Measurement Noise

The simulated temperature data used in 2DIHCP
were acquired from thermocouples with four different
noise levels of temperature measurement (W3F010N00,
W3F010N01, W3F010N05, and W3F010N10). As shown in
Figure 9, 1134 distinct tests were conducted, the
accuracy of the inverse problem is characterized by the
relative error (epred), and star w denotes the location of
minimum epred corresponding to the optimal values of r
and a. The absence of spatial regularization (a is 0) also
leads to a relative error (epred) exceeding 10.0 pct. The

optimal r increases from 4 to 10 as the noise level
increases from 0.1 pct Ymax to 0.5 pct Ymax, while the
optimal range for a is 10�4 to 0.5.
To ensure the accuracy, the optimal number of future

time steps (r) should be increased as the measurement
error increases. For example, the optimal r is 1, 4, 10,
and 10 for measurement errors of 0, 0.1 pct Ymax, 0.5 pct
Ymax, and 1.0 pct Ymax, respectively. As results of
increasing r, the required CPU time required for inverse
analysis also increases. The corresponding required
computing time (CPU time) is 2.01, 5.97, 15.85, and
20.17 seconds. When the temperature measurement is

Fig. 9—Effects of temperature measuring noise (r) and order of spatial regularization on the relative error (epred): (a), (b), and (c) r = 0.1 pct
Ymax, (d), (e), and (f) r = 0.5 pct Ymax, and (g), (h), and (i) r = 1.0 pct Ymax. w denotes the location of minimum epred.
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noise free, the minimum epred is 6.60, 6.58, and 6.65 pct
for the zeroth-, first-, and second-order spatial regular-
izations, respectively. Meanwhile, the corresponding
values are 19.65, 17.53, and 19.58 pct when the
measurement error is 0.5 pct Ymax. It suggests that
first-order spatial regularization is more accurate than
both zeroth- and second-order spatial regularizations
when the temperature measurement contains errors.

The minimum epred and the respective CPU time of
heat flux estimations by the inverse analysis are pre-
sented in Figure 10. It could be observed that the
accuracy of heat flux estimations decreases as the
temperature measurement error increases (Figure 10).
For example, when first-order spatial regularization is
used, the minimum epred of heat flux estimations is 6.58,

10.32, 17.53, and 20.82 pct for measurement errors of 0,
0.1 pct Ymax, 0.5 pct Ymax, and 1.0 pct Ymax, respec-
tively. It is easy to notice from Eq. [17] that at a specific
location with a certain depth beneath the mold surface,
the information content (AT/r) concerning temperature
variation decreases as the noise level in temperature
measurements rises. Consequently, the accuracy of the
2DIHCP decreases as the noise level in temperature
measurements increases.
Figure 11 presents heat fluxes at y = 10.5 mm (a) and

t = 10 s (b) reconstructed using temperatures with
varying levels of measurement error (r). The optimal r
and a for heat flux estimation correspond to the location
of minimum epred (w) in Figure 9. The recovered heat
flux deviates from the exact value at y* = 3, 10, and
17 mm (a) and at 10.5 seconds (b) when the exact heat
flux exhibits sharp spatial changes. Additionally,
increasing measurement error results in decreased tem-
poral accuracy of the heat fluxes, while spatial accuracy
decreases significantly. The inverse analysis accuracy
decreases with increasing temperature measurement
error, which is consistent with the findings from
Figure 10. This may be due to the fact that a sharply
changing heat flux is not differentiable, particularly
because the spatial regularization term in the inverse
problem (Eq. [2]) limits sharp spatial changes in the
reconstructed heat flux. This finding is consistent with
those from Figures 5 and 8.
To sum up, it is observed that the accuracy in inverse

analysis decreases with increasing temperature measure-
ment error. To improve the accuracy, increasing the
number of future time steps (r) is necessary but requires
longer computing time. First-order spatial regulariza-
tion is more accurate than both zeroth- and sec-
ond-order spatial regularizations when the temperature
measurement contains errors.

5%

10%

15%

20%

25%

2.20 s

8.49 s 16.77 s

19.22 s

2.01 s

5.97 s
15.85 s

20.17 s

1.96 s

5.80 s 15.18 s

19.36 s

m
in

.e
pr
ed

Noise level of temperature data (σ)

 0th-spatial-reg
1st-spatial-reg
2nd-spatial-reg

1.0%Ymax0.5%Ymax0.1%Ymax0

The number means 
the required CPU time

Fig. 10—Changes of the relative error (epred) and CPU time required
with noise level of temperature measurement.

0.0

0.5

1.0

Exact
 0th spatial reg., W3F010N00

 1st spatial reg., W3F010N00

 2nd spatial reg., W3F010N00

 0th spatial reg., W3F010N01

 1st spatial reg., W3F010N01

 2nd spatial reg., W3F010N01

 0th spatial reg., W3F010N05

 1st spatial reg., W3F010N05

 2nd spatial reg., W3F010N05

 0th spatial reg., W3F010N10

 1st spatial reg., W3F010N10

 2nd spatial reg., W3F010N10

(a)

y*= 10.5 mm

H
ea

t F
lu

x 
(M

W
/m

2 )

Time (s)
0 5 10 15 20 0 5 10 15 20 25

-0.5

0.0

0.5

1.0

Exact
 0th spatial reg., W3F010N00

 1st spatial reg., W3F010N00

 2nd spatial reg., W3F010N00

 0th spatial reg., W3F010N01

 1st spatial reg., W3F010N01

 2nd spatial reg., W3F010N01

 0th spatial reg., W3F010N05

 1st spatial reg., W3F010N05

 2nd spatial reg., W3F010N05

 0th spatial reg., W3F010N10

 1st spatial reg., W3F010N10

 2nd spatial reg., W3F010N10

t*= 10 s

(b)

H
ea

t F
lu

x 
(M

W
/m

2 )

y* (mm)

y*

D

C

A

BC
om

pu
ta

tio
na

l a
re

a

AB

Fig. 11—Comparison of the heat fluxes reconstructed using the temperatures with different noise levels (0, 0.1 pct Ymax, 0.5 pct Ymax, and 1.0
pct Ymax): (a) heat fluxes at y=10.5 mm, and (b) heat fluxes at the time of 10 seconds.

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 54B, DECEMBER 2023—3475



IV. APPLICATION TO A CASTING
EXPERIMENT

The casting experiment was carried out using a mold
simulator apparatus. During the casting experiments,
the mold oscillation frequency was 1.67 Hz, the oscil-
lation stroke was 6.0 mm, the pouring temperature was
1782 K, the casting speed was 0.6 m/min, the flow rate
of the mold cooling water was 7.5 L/min, mold
temperatures sampling rate was 60 Hz, and a standard
deviation of thermocouple measurements r is 0.5 K.

Figure 12 shows the temperature history of the
thermocouples located inside the mold (as listed in
Figure 1) during the experiment. The first column of
thermocouples (3 mm away from the mold’s hot sur-
face) had temperatures that were 11.3 K to 26.6 K
higher than the second column of thermocouples (8 mm
away from the mold’s hot surface) during the casting.
The measured mold temperatures can be divided into
four stages based on the casting process. At stage I (0 to
7.1 seconds), the responding temperatures rapidly rise
the mold and extractor, initially at room temperature,
were submerged into the molten steel. At stage II (7.1 to
11.8 seconds), temperatures continued to rise before
stepping into a relative steady state as the mold and
extractor were held for a few seconds, allowing for the
solidification of a shell normal to the mold external
surface. The thermal resistance between the mold and
the liquid steel increased due to the growth of the initial
solidifying steel shell and the infiltration and crystal-
lization of the slag film between the mold and shell, as
well as the formation of interfacial thermal resistance
between the mold and slag film.[12,30,59,60] Stage III (11.8
to 16.6 seconds) corresponds to continuous casting,
where the liquid steel level was at 16.5 mm in the y-axis.
In this stage, temperatures increased as the solidified
shell was withdrawn downward by the extractor and the
fresh liquid melt continuously heated the mold. During
stage IV, the mold and extractor, along with the
attached steel shell, were removed from the melt and

cooled to room temperature. The responding tempera-
tures continued to increase and then decrease as the
mold was drawn out of the bath.

A. Choice of Sequential Regularization Method
parameters

In this section, a methodology that combines the
L-curve technique with Morozov’s criterion is used to
determine the regularization parameter (a). This
approach is motivated by the unexpected results
observed in inverse problems involving first- and sec-
ond-order spatial regularizations and the L-curve
method. When the optimal a is determined using the
L-curve method, the reconstructed heat flux shows
limited spatial variation for the first-order spatial
regularization method. In contrast, the reconstructed
heat flux appears messy for the second-order spatial
regularization method.
To explore this phenomenon, Figure 13 shows

L-curve plots of inverse calculations with different
orders of spatial regularization and numbers of future
time steps (r). Increasing a leads to greater filtering of
the heat flux, resulting in a smoother heat flux with
minimal changes. Conversely, smaller values of a lead to
an unstable heat flux that exhibits oscillatory behavior.
For the L-curve criterion, the optimal value of a is
located at the left corner of the curve, where heat flux
fluctuations are suppressed, and lg(||hd(q

1, q2, q3…)||
begins to stabilize as a increases. The intermediate
horizontal segment of the L-curve corresponds to a
relatively stable value of lg(||hd(q

1, q2, q3…)|| as a varies,
indicating that the heat flux reaches a state of stability.
Figure 13(a) shows L-curve for zeroth-order spatial
regularization, an a exists that satisfies Morozov’s
criterion within the intermediate horizontal segment of
the L-curve. This indicates that the heat flux stability
can be reconstructed using zeroth-order spatial regular-
ization, and meanwhile the a value can be accepted.
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Fig. 12—Measured mold wall temperatures during the experiment: (a) Temperature of first column of thermocouples, and (b) Temperature of
second column of thermocouples.
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Figure 13(b) shows L-curve for first-order spatial
regularization, an a exists that satisfies Morozov’s
criterion within the ‘‘more filtering’’ segment of the
L-curve. This indicates that the reconstructed heat flux
has limited spatial variation and undergoes more filter-
ing. In Figure 13(c), the L-curve is located to the left of
Morozov’s criterion, indicating that the second-order
spatial regularization method may result in overfitting of
observed temperatures. This can cause perturbations in
the heat flux. Therefore, first- and second-order spatial
regularizations are not suitable for mold heat flux
estimation.

As a result, zeroth-order spatial regularization is
employed to estimate the heat flux for the mold
simulator runs. According to Figure 13(a), the optimal
value of a is 7.32 9 10�5, which corresponds to the
intersection of the intermediate horizontal segment of
the L-curve and Morozov’s criterion. According to the
studies by Beck[15] and Blanc,[16] the number of future
time steps (r) is set to 6. The heat flux reconstruction
process for a mold simulator experiment takes 2.56 ±
0.05 seconds of CPU time, which is only 8.84 pct of the

experiment’s total duration of 29 seconds. This indicates
that the proposed 2DIHCP method is suitable for online
monitoring of mold heat flux.

B. Heat Fluxes Near the Meniscus Area

1. The reconstructed mold heat flux
In Figure 14(a), the mold surface heat fluxes recon-

structed by 2DIHCP using the measured temperatures
during mold simulator experiment are presented. The
heat fluxes selected from the mold hot surface (Line AB
in Figure 1) can be divided into four stages based on the
casting process. During Stage I (0 to 7.1 seconds), as the
assembly of the mold and the extractor submerge into
the molten steel, the heat fluxes rapidly increase,
reaching their peak value when the liquid contacts the
mold. As it enters Stage II (7.1 to 11.8 seconds), the
oscillating mold and extractor are held for a few seconds
to allow the shell to solidify normal to the external
surface of the mold. This results in a reduction of the
mold heat fluxes due to the increased thermal resistance
between the mold and melt, caused by the growth of the
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initial solidifying steel shell, infiltration and crystalliza-
tion of the slag film between the mold and shell, and the
formation of interfacial thermal resistance between the
mold and slag film.[12,30,59–61] In Stage III (11.8 to 16.6
seconds), the liquid steel level corresponds to 16.5 mm
in the y-axis. When the solidifying shell is withdrawn,
the heat fluxes begin to rise as fresh liquid melt comes in
contact with the mold, heating it up. The heat flux
reaches a quasi-steady state (Figure 14(b)) as the
meniscus area of the molten steel is continuously cast
downward and fresh molten steel is continuously filling
the meniscus. The variation of the heat fluxes during
continuous casting can be clearly observed in the region
of the liquid steel level, and this is due to the oscillation
of the mold in and out of the bath, as explained in the
previous studies.[12,30,59–61] Finally, during Stage IV, the

cast is completed, and the mold and extractor along with
the attached steel shell are removed from the melt and
cooled to room temperature. As a result, the heat fluxes
of the mold hot surface decrease.
Figure 15(a) shows a contour map of the recon-

structed heat fluxes on the surface of the mold (line AB
in Figure 1). The heat flux is approximately 1.1 MW m2

around the steel level (y is 16.5 mm). The maximum
mold heat flux recorded was 2.1 MW m2 at a location
3.5 to 8.0 mm below the steel level. These values are
consistent with many of the reported values in
literature.[1–6,49,62]

The Power Spectral Density (PSD) of the heat flux
was analyzed to examine the fluctuations in heat fluxes
near the steel level. The frequency-mold surface posi-
tion-PSD contour map in Figure 15(b) revealed a range
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Fig. 14—Heat fluxes of the selected positions calculated by 2DIHCP: (a) heat flux during experiment, and (b) heat flux during the period of
continuous casting at stage III.

Fig. 15—(a) Recovered mold heat flux the period of continuous casting at stage III: Heat flux, and (b) PSD analysis for the heat flux at stage
III.
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of heat flux signals with different frequencies and
intensities. As previously studies by Badri and Wang
et al.,[11,12,59,60] the mold heat transfer signal consists of
both low- and high-frequency components. Low-fre-
quency heat flux is associated with phenomena like the
development of shell surface depression, unevenness
growth, and level fluctuation, while high-frequency heat
flux is linked to the formation of oscillation marks and
partial meniscus solidification. A threshold frequency
can be used to discern between low- and high-frequency
heat fluxes, with fluxes of frequencies higher than the
threshold being categorized as high-frequency fluxes. As
the width of the shell surface depression is at least twice
larger the oscillation mark pitch, the threshold fre-
quency could be set at half the mold oscillation
frequency to ensure the low-frequency temperature
variations have a period at least twice as long as that
of the mold oscillation period. Then, the threshold
frequency is set to 0.83 Hz, which is half the mold
oscillation frequency (fm) of 1.67 Hz. A strong high-fre-
quency signal of mold heat flux with a frequency of 1.67
Hz was discovered around the liquid steel level (at a
depth of 16.5 mm), with a PSD peak value of -8.30 dB/
Hz. This suggests that the heat flux around the steel level
has a component that oscillates at the same frequency as
the mold oscillation. This is likely due to the oscilla-
tion-induced heat transfer phenomena caused by the
mold oscillation between the slag and the liquid
steel.[10–12]

The effect of mold oscillation on the mold heat flux
decreases along the casting direction. The intensities of
high-frequency heat flux signals (>0.83 Hz) decrease,
while the intensities of low-frequency heat flux signals
(<0.83 Hz) increase as the lower part of the mold is
immersed deeper into the molten steel. This phe-
nomenon is attributed to the attenuation of the oscil-
lation-introduced high-frequency effect and the
enhancement of the low-frequency effect associated with
long-term solidification.[9,11,12]

2. Change of mold heat flux at the steel level
The mold surface heat flux at the liquid steel level

(y = 16.5mm) during casting is reconstructed through
2DIHCP (Figure 16(a), and its PSD analyses are
illustrated in Figure 16(b). The peak signal shown in
Figure 16(b) is around 1.67 Hz in the high-frequency
heat flux zone (>0.83 Hz) that is identical to the mold
oscillation frequency, which is believed to be introduced
by mold oscillation that related to the formation of
oscillation mark.[11,12,59] Furthermore, there appear two
other peaks around 2.8 and 5.0 Hz, which might
correspond to the liquid flow at melt-free surface.[9,30]

The heat flux at steel level (y = 16.5mm) is divided
into low- and high-frequency components using the
FFT low pass filter with a threshold frequency of 0.83
Hz, as shown in Figure 17. It is noticeable that the
low-frequency heat flux (<0.83 Hz) displays minor
fluctuations around a baseline of 1.1 MW/m2, which
reflects to long time-scale solidification phenomena
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during casting, including the formation of shell surface
depressions, solidification shrinkage, and irregular solid-
ification of the initial shell.

Figure 18 shows the high-frequency heat fluxes (> 0.8
Hz) during casting. Negative Strip Time (NST) is the
period when the mold wall descends faster than the
solidified shell, and the remaining period in the cycle is
the Positive Strip Time (PST). The heat fluxes for
specific positions above/around the steel level (e.g., y =
21 and 16.5 mm) were observed to initially decrease and
then increase with the downward motion of the mold.
Subsequently, they peak around the early-PST within
one cycle of the mold oscillation (NST+PST), and
eventually decrease as the mold moves upward. Con-
versely, the mold surface heat flux for the location below
the shell tip (e.g., y = 9 mm) exhibits an opposite
variation pattern compared to those above the liquid
steel level. Additionally, the mold surface heat flux for

the position below and away from the liquid steel level
presents the smallest variation amplitude (0.0158 MW/
m2, y = 0 mm), while the heat flux close to the slag level
(e.g., y = 16.5 mm) displays the largest variation
amplitude0.1196 MW/m2).
To further analyze the fluctuation of high-frequency

heat flux, three typical positions at y = 21 mm (repre-
senting the one above the liquid steel level), y = 16.5 mm
(representing the liquid steel level), and y = 9 mm
(representing the one below the liquid level) during one
oscillation cycle are selected from Figure 18, and they are
combined and shown with the mold displacement (Dm)
and velocity (Vm) in Figure 19. Our focus is on a single
oscillation cycle, spanning from 13.7 to 14.3 seconds, as
depicted in Figures 18. The choice of this cycle is because
the variations of the heat fluxes during the selected cycle
could reflect the variation tendency of most other cycles.
At the position above the liquid steel level (y = 21 mm),
as the mold descends from the crest T2 to the midway T3,
where the mold surface is closing to the liquid steel level,
the heat flux experiences an initial decrease to its
minimum value, followed by a subsequent increase. This
phenomenon can be attributed to the proximity of this
part of the mold to the surrounding air at the crest,
resulting in cooling effects. As the mold progresses
downward and nears the liquid steel, the heat flux
experiences a subsequent rise owing to the influence of
the liquid steel bath. As mold moves downward from the
midway T3 to the trough T4, this part of the mold is
entering into the melt, the mold surface heat flux
continues to increase as it approaches closer to the liquid
steel. When the mold moves upward from the trough T4
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Fig. 18—Variations of high-frequency heat fluxes at different
positions of the mold surface during continuous casting.
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Fig. 20—Relation between the shell surface profile, heat flux, and
heat flux variation rate: (a) velocity and displacement of mold, (b)
change rate of mold flux, and (c) high-frequency mold heat flux.
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to midway T1 where the mold is moving up and moving
away from the liquid steel, the mold surface heat flux is
observed to increase to themaximumand then decrease in
early-PST, as the mold surface location of y=21 mm
remains heated by the liquid steel until it moves away
from the liquid steel and undergoes cooling from the
ambient air. As mold moves ascends from the midway T1
to crest T2, where the mold keeps moving away from the
liquid steel, the mold surface heat flux continues to
decrease. This decrease canbe attributed to this part of the
mold being even closer to the surrounding air, resulting in
cooling effects from the ambient air. This finding is
consistent with the previous studies[2,4,6,59,60] as the
variation of the heat flux is due to the motion of the mold
in/out of liquid slag.

Around the level of the liquid steel (y = 16.5 mm), the
mold surface heat flux experiences a rapid increase at
mid-NST. This phenomenon arises due to this part of the
moldhavingbeen immersed in the liquidmelt, causing it to be
heated by the molten steel when the mold submerges into the
bath. The increase of heat flux during this period is also
associated with the enhancement of liquid flux infiltration
in-between mold/shell gap during NST period[2,4,6] and the
deformation of the meniscus,[11,63] which makes the meniscus
further close to the mold.[10–12] Therefore, the thermal
resistance between the mold and shell gets reduced and the
mold is further heated by the meniscus that leads to the
increase of the heat flux. Consequently, the growth of the
initial shell would be accelerated. During the time between
early-PSTand themid-PST (T4 toT1), this part of themold is
moving up from the trough to the midway. During this time,
theheat fluxattains its peakbefore subsequently commencing
adecline atmid-PST.This is because themold is continuously
heatedby the steelmelt till itmovesoutof liquid steel bathand
enters the liquidmold flux.During the time betweenmid-PST
and the end-PST (T1 to T2), as the mold (y=16.5 mm) is
moving away from themeniscus and enter into the liquid flux
layer, the heat flux continues its decline. This decrease persists
until it reaches itsminimumvalue, coincidingwith themold is
farthest away from the liquid steel bath at the end-PST. This
finding is also consistent with the previous experimental
studies,[10–12,60] due to the partial meniscus solidification
during the NST, and the simulation observation.[2,4,6,62]

Below the liquid steel level (y = 9 mm), as the mold
descends from the crest T2down to the troughT4, this part of
the mold further immerses into the liquid steel. The mold
surface heat flux first initially experiences a slight increase to
reach its maximum value, followed by a subsequent decrease.
Thispattern is contrary to the trendsobservedat theother two
positions. This phenomenon occurs due to the mold’s
downward motion (originating from the meniscus area)
toward a position located deeper within the liquid bath.
Throughout this process, the thermal resistance between the
moldandtheshell tendsto increasewiththegrowthof theshell
thickness and further crystallization of mold flux
layer.[12,59,64,65] As the mold ascends from the trough T4 to
the crest T2, the heat flux first decreases to the minimum at
mid-PST after which it subsequently rises. This phenomenon
emerges because the mold is ascending toward the steel level,
leading toa reduction in thecorresponding thermal resistance.
This finding is consistent with the previous simulation
results.[2,4,6,12,62]

Figure 20 illustrates the correlation among the dis-
placement and velocity of the mold oscillation, the
high-frequency heat flux (q2) at the steel level (y =
16.5 mm), and its rate of heat flux variation (¶q2/¶t).
The oscillation marks produced within the oscillation
cycle manifest as periodic transverse depressions on the
surface of the shell. Theoretical considerations indicate
that each mold oscillation corresponds to the generation
of a single oscillation mark. Consequently, the spacing
or pitch of these oscillation marks is denoted as Vc/fm.
The measured pitch of these oscillation marks is 5.98 ±
0.13 mm, exhibiting a close alignment with the theoret-
ical value of 6 mm. It is clearly shown that the heat flux
increases rapidly when mold downstroke during NST
period. Additionally, the maximum value of the heat
flux variation rate occurs during NST period. Notably,
the occurrence of each oscillation mark on the shell
surface corresponds to a peak in the variation rate. This
observation implies that the sudden rise in heat flux is
directly linked to the formation of oscillation marks.
This robustly suggests that the formation of oscillation
marks is tied to a release of energy at the steel level that
can be measured thermocouple measurements within the
mold. The oscillation mark is formed by one of the two
different formation mechanisms.[6,11] One mechanism
involves the solidified shell with a partially solidified
meniscus being bent backward toward the mold wall
due to the ferrostatic pressure of the liquid steel. This
results in the formation of a depression-type oscillation
mark. The second mechanism involves the liquid steel
overflowing to the shell tip, creating a hook-type mark.
This occurs if the initial shell is strong enough to
withstand the ferrostatic pressure. Furthermore, it is
noteworthy that the heat flux peak is observed either
during end-NST or early-PST. This observation implies
that at these times during the experiment, the partial
solidified meniscus is bent back toward the mold or the
liquid steel overflows to the shell tip, leading to the
formation of an oscillation mark.[6]

Fig. 21—Recovered thermal field at mold surface during continuous
casting: (a) Heat flux and (b) Temperature.
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3. Charge of mold heat flux along the casting direction
Figure 21 shows how mold heat flux fluctuates along

the casting direction during a mold oscillation cycle at
different times, namely 15.55, 15.70, 15.85, 16.00, and
16.15 seconds, as represented by the blue lines in
Figure 15(a). These times correspond to the midway,
peak, midway, valley, and midway of the mold oscilla-
tion, respectively. The maximum mold heat flux of 2.1
MW m2 is located 4.5 mm below the steel level along the
casting direction. On the other hand, the maximum
mold temperature of 394 K can be found 9.3 mm below
the steel level. It is observed that the mold heat flux
fluctuates more significantly near the steel level, which is
consistent with the variation pattern of high-frequency
heat flux shown in Figure 15(b).

Figure 22 shows the temperature evolution of the mold
wall (the rectangle area ABCD in Figure 1) during the
casting process (stage III in Figure 12). As the initial shell is
withdrawn downward, the temperature of the mold hot
surface below the liquid steel (y<16.5 mm) increases and
reaches a maximum of 394 K at the end of the casting
process, which corresponds to a depth of 9.3 mmbelow the
steel level. The heat flux direction within the mold wall is
also illustrated in Figure 22, where the arrows indicate the
direction of the heat flow. The predominant mode of heat
transfer is along the x-axis for the mold wall below the
location of themaximummold surface temperature (394K,
y is 9.3 mm). A significant amount of heat is transferred
upward for the mold wall above the location of the
maximummold surface temperature, while a small fraction
of the heat flowing downward to the location below the
maximum mold surface temperature. This is due to the

upper part of the mold being exposed to air, resulting in a
lower temperature and a temperature gradient inside the
mold, leading to vertical heat transfer along the y-axis.[12,30]

In conclusion, amethodology that combines the L-curve
technique withMorosov’s criterion is utilized to determine
the appropriate number of future steps (r) and the
regularization parameter (a). The oscillation of the mold
has a discernible impact on themold heat flux. This effect is
more pronounced in the proximity of the steel level and
diminishes gradually along the direction of the casting.

V. CONCLUSIONS

This study examines the effects of the depth of
thermocouples beneath mold surface (w1), the temper-
ature sampling rate (fs), and the noise level of temper-
ature data (r), on the accuracy of 2DIHCP for heat flux
estimations. To optimize the selection of the number of
future steps (r) and the regularization parameter (a), a
method combining the L-curve method and Morosov’s
criterion is proposed. The 2DIHCP is then utilized to
estimate the heat flux in a mold simulator experiment.
The main conclusions are made as follows:

1. The accuracy of heat flux estimations utilizing tem-
peratures from thermocouples positioned 1 to 3 mm
away from the mold surface exceeds that of estima-
tions relying on temperatures from thermocouples
situated 5 mm away from the mold surface. It is
advisable to ensure the distance does not exceed
3 mm.

Fig. 22—Thermal evolution of the mold wall during the casting.
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2. The accuracy of heat flux estimations initially in-
creases with the temperature sampling rate (fs) from 5
to 10 Hz, then remains relatively stable when fs in-
creases from 10 to 60 Hz, and finally decreases when
fs increases from 60 to 100 Hz. Both first- and sec-
ond-order spatial regularizations are more accurate
than zeroth-order spatial regularization when a
high-temperature sampling rate is used.

3. The accuracy in heat flux estimations decreases with
increasing temperature measurement error. First-
order spatial regularization is more precise than both
zeroth- and second-order spatial regularizations
when the temperature measurement contains errors.

4. The 2DIHCP is successfully applied to reconstruct
the heat flux across an oscillating mold surface for a
mold simulator experiment. The mold heat flux at the
meniscus level during the time lapse of a mold
oscillation cycle is reconstructed.
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APPENDIX A: SENSITIVITY COEFFICIENT
MATRIX

Jj is called as the M 9 N sensitivity coefficient matrix
at time tj and is defined as follows:

Jj ¼
@TðqjÞ
@qj

� 	T

¼

Jj1;1 Jj1;2 � � � Jj1;N
Jj2;1 Jj2;2 � � � Jj2;N

..

. ..
. . .

. ..
.

JjM;1 JjM;2 � � � JjM;N

0

B
B
B
B
@

1

C
C
C
C
A

; where Jjm;n ¼
@Tj

m

@qjn

½A1�

Jjm;n represents the temperature rise at the sensor

location (xm, ym) in response to a unit step change in the
heat flux at point (xn, yn) on boundaries C1, C2, and C3,
at time tj. To obtain the sensitivity coefficient problem,
the partial derivative of Eqs. [2b] through [2e] is taken

with respect to a heat flux component qjn, (Eq. [A1]),
which yields the governing sensitivity coefficient
problem.

@J

@t
¼ @2J

@x2
þ @2J

@y2
; 0<t � tr inX ¼ ½0;W� � ½0;H�: ½A2a�

� @J

@n

�
�
�
�
C1;[C2[C3

¼
1; (x; yÞ ¼ ðxn; yn)

0; others

(

½A2b�

Jj
C4
¼ 0 ½A2c�

Jðx; y; 0Þ ¼ 0 ½A2d�
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