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Predicting Temperature of Molten Steel in LF-
Refining Process Using IF–ZCA–DNN Model

ZI-CHENG XIN, JIANG-SHAN ZHANG, JUN-GUO ZHANG, JIN ZHENG, YU JIN,
and QING LIU

Controlling the temperature of molten steel in ladle furnace (LF)-refining process is one of the
main tasks to ensure that the steelmaking-continuous casting process runs smoothly. In this
work, a hybrid model based on metallurgical mechanism, isolation forest (IF), zero-phase
component analysis whitening (ZCA whitening), and a deep neural network (DNN) was
established to predict the temperature of molten steel in LF-refining process. The metallurgical
mechanism, Pearson correlation coefficient, ZCA whitening, IF, and t-distributed stochastic
neighbor embedding (t-SNE) were used to obtain the main factors affecting the temperature,
analyze the correlation between two random variables, eliminate the correlation among the
input variables, reduce the abnormal data of the original datasets, and visualize
high-dimensional data, respectively. The single-machine-learning (ML) models, ZCA–ML
models, and IF–ZCA–DNN model were comparatively examined by evaluating the coefficient
of determination (R2), root-mean-square error (RMSE), mean absolute error (MAE), and hit
ratio. The optimal structure of IF–ZCA–DNN model had 4 hidden layers, 45 hidden layer
neurons, a learning rate of 0.03, regularization coefficient of 2 9 10�4, batch size of 128,
leaky-rectified linear unit activation function, and an optimization algorithm of mini-batch
stochastic gradient descent with momentum. The R2, RMSE, and MAE of the IF–ZCA–DNN
model were 0.916, 2.827, and 2.048, respectively. Meanwhile, the prediction hit ratio for the
temperature of IF–ZCA–DNN model in the error ranges of [� 3, 3], [� 5, 5], and [� 10, 10]
were 77.9, 92.3, and 99.6 pct, respectively. This study will be beneficial to realize precise control
of temperature of molten steel in LF-refining process.
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I. INTRODUCTION

WITH the technological advancement of the steel
industry, greenization and intelligence have become the
main development direction of steelmaking plants.[1]

Establishing reasonable control over the molten steel
temperature in ladle furnace (LF) refining is key to
ensuring the smooth running of the continuous casting
process[2]. However, LF refining is a complicated met-
allurgical reaction process at high temperature. At
present, the temperature of molten steel is controlled
mainly by multiple temperature measurements and the

experience of the operators, which leads to low precision
for temperature control of molten steel and even affects
the smooth running of the continuous casting process.
Therefore, the establishment of a reasonable tempera-
ture prediction model in LF refining has become the
research focus for metallurgists to realize a ‘‘narrow
window’’ control of temperature of molten steel.
Among the research on the temperature prediction of

molten steel in LF-refining process, three strategies can be
developed to establish the temperature prediction model.
The first strategy establishes a mechanistic model using
the metallurgical mechanism. Camdali and Tunc[3] estab-
lished a mathematical mode of heat loss in the LF unit
based on a heat transfer analysis and suggested some
strategies to decrease heat losses. Volkova and Janke[4]

proposed a mathematical model of ladle heat transfer
based on the heat transfer mechanism and Fourier
differential equations, and the calculated results were in
good agreement with the measured results. Wu et al.[5]

derived a heating rate model of molten steel based on the
energy balance. However, such models are mostly used in
laboratory research, or many parameters of the mecha-
nism model are obtained through field experience due to
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complex field conditions, which leads to some limitations
in the practical application of these models. With the
rapid development of machine-learning (ML) technology,
its application in the field of metallurgy advances rapidly.
Hong et al.[6] developed an automatic detection system
based on a convolutional recurrent neural network model
to detect whether the exit hole of a basic oxygen furnace
was blocked during the tapping operation. Wang et al.[7]

established a calcium yield prediction model based on an
artificial neural network (ANN) during calcium treat-
ment process in steelmaking, which improved the calcium
yield and the stability of calcium content. Yang et al.[8]

developed a hydrogen content prediction model based on
thermodynamics, kinetics, and deep neural network
(DNN) for the vacuum oxygen decarburization process.
Myers and Nakagaki[9] proposed a DNN-based model to
predict the nucleation lag time for iron and steelmaking
slags; this model could rapidly design, analyze, and
optimize novel slag compositions. Thakur et al.[10] estab-
lished DNN-based integrated flow stress and roll force
models to accurately predict the plate-rolling of microal-
loyed steel. Kwon et al.[11] developed an ANN-based
model to predict the high-temperature ductility of steels,
which can guide the setting of steel-casting operating
conditions to ensure that steel maintains high ductility.
The second strategy involves the use of ML algorithms to
establish a data-driven model to predict the temperature
of molten steel. For example, Yang et al.[12] developed a
model for LF–VD–CC route using the neural network
method. In this case, the prediction hit ratio in the error
ranges of 0 �C to 7 �C was 85 pct. Li et al.[13] established
a model in LF-refining process based on a genetic
algorithm, particle swarm optimization, and a back
propagation (BP) neural network algorithm. Wang
et al.[14] used partial least squares and support vector
machines, obtaining prediction hit ratios of 85 and 95 pct
for the temperature in the error ranges of [� 7, 7] and
[� 10, 10], respectively. However, the data-driven model
relies excessively on data while ignoring the metallurgical
mechanism, which limits its practical application.

The third strategy establishes a hybrid model by
considering the metallurgical mechanism and ML algo-
rithms. This modeling strategy overcomes not only the
difficulty in determining the key parameters of the
mechanism model but also the deficiency of data-driven
model, so it has been widely used to predict the temper-
ature of molten steel in LF-refining process.[15–18] For
example, Fu et al.[19] established a temperature prediction
model based on the mechanism model and BP neural
network model to predict the temperature of molten steel
in LF-refining process, obtaining a prediction hit ratio
above 95 pct for the temperature in the error range of
[� 5, 5]. Lv et al.[20–22] established a series of temperature
prediction models of molten steel in LF based on the
combination of optimally pruned bagging and partial
linear extreme learningmachine (ELM), the partial linear
regularization networks combined with sparse represen-
tation technique, and the pruning bagging method,
respectively.He et al.[23] developeda case-based reasoning
(CBR) based on two-step retrieval approach and the
correlation-based feature weighting to predict the tem-
perature of molten steel in LF, indicating that the CBR

model was better than the BP neural network model. In
another study, Nath et al.[24] developed a model based on
physics,material and heat balance, and statistical analysis
to predict and control the temperature and composition
of molten steel in LF refining. Tian et al.[25–27] established
a series of temperature prediction models of molten steel
in LF based on the metallurgical mechanism combined
with the ELM and AdaBoost.RT algorithm, the combi-
nation of ELM, incremental learning and updating
method, and the combination of BP and AdaBoost.IR
algorithm, respectively. However, in the aforementioned
studies, the number of datasets varied between 200 and
2000, where themajority of the datasets were small. In the
case of small datasets, if appropriate measures (e.g., data
amplification, data enhancement, regularization) are not
taken, over-fitting and reduced generalization of the
established model may result. Meanwhile, the choice of
ML algorithms has an important influence on the
prediction accuracy of ML models. Therefore, taking a
comparative approach, we employed a large dataset and
several optimized ML algorithms to establish an optimal
temperature prediction model for molten steel.
Furthermore, most of the previous research focused on

the selection and optimization of the ML algorithms.
However, no matter which modeling strategy is used for
temperature prediction, the validity and accuracy of the
data are also crucial on the basis of sufficient volume of
data.[28] Therefore, data preprocessing, which mainly
includes data normalization (e.g., min–max normalization
andZ-score standardization), feature transformation,data
cleaning, is also essential to constructing the prediction
model.When a correlation between the input data exists, it
is redundant to directly use the data for training model,
which may lead to poor model convergence. Generally,
principal component analysis (PCA) is used for data
processing in the case of data redundance.[29–31] However,
when the PCA is used to eliminate the principal compo-
nents with a small contribution ratio, the integrity of the
dataset is easily damaged, even to the point of deleting
important information in the sample. As a solution,
zero-phase component analysis (ZCA) whitening has been
used. ZCA whitening not only reduces the redundancy of
the data and removes the correlation between two random
variables but also ensures data integrity and tries to make
the whitened data close to the original data.[32] In addition,
data cleaning (abnormal data detection) has also been the
focus of data-preprocessing research. In general, the
clustering algorithm is mainly used to distinguish abnor-
mal data through comparing similarity based on charac-
teristics of outlier data.[33] However, this algorithm has
advantages in identifying global abnormal data. When
there is a large amount of data, local abnormal data cannot
be effectively identified.[34] The isolated forest (IF) algo-
rithm[35] can filter out abnormal data by using a random
hyperplane to split the data space.Meanwhile, IF has both
high computational efficiency and accuracywith respect to
abnormal recognition.
ML algorithms are suitable for solving complex

nonlinear industrial problems.[12–14,20–22] Meanwhile,
the influence of metallurgical mechanism and data
quality on the prediction accuracy of temperature
prediction model cannot be ignored. In this study, an
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optimal hybrid model was established to predict the
temperature of molten steel in LF-refining process using
the metallurgical mechanism, Pearson correlation coef-
ficient, ZCA whitening, IF, and ML algorithms. Firstly,
the main factors influencing the temperature of molten
steel were obtained by analyzing the metallurgical
mechanism and LF-refining process. Then, temperature
prediction models of molten steel based on different ML
algorithms were proposed. Moreover, correlations
between input variables were analyzed by conducting a
correlation analysis, and the redundancy of data was
eliminated using the ZCA whitening. In addition,
ZCA–ML models were established, and their perfor-
mance was compared with the ML models. Finally, to
further improve the prediction accuracy of the
ZCA–DNN model, IF was carried out to filter out the
abnormal data. This proposed modeling method not
only serves as a good reference for the construction of
temperature prediction models of molten steel in LF-re-
fining process, but can also be applied to other metal-
lurgical processes, such as sintering, ironmaking,
steelmaking, and continuous casting.

II. ANALYSIS OF LF-REFINING PROCESS

LF refining is a complex metallurgical reaction
process that involves high-temperature conditions and
different operations. The LF-refining process includes
temperature measuring, sampling, slagging, adjusting
and homogenizing the temperature and composition of
molten steel, feeding calcium packed wire, and argon
blowing during the whole LF-refining process (different
operations corresponding to different argon blowing

intensity, i.e., various additions adding and after molten
steel heating corresponding to strong stirring; during
heating of molten steel corresponding to medium
stirring; soft blowing corresponding to weak stirring).
Figure 1 shows a flow chart depicting the entire LF-re-
fining process for a steelmaking plant in China.
Taking the LF, molten steel, and slag as a research

system, the energy input is equal to the energy output in
LF-refining process according to the principle of energy
conservation. The input energy includes the heat gain of
electric arc and the heat effects of various additions. The
output energy includes the heat storage of the ladle shell,
the heat exchange between LF and the surroundings, the
heat loss of the bottom blowing argon and slag surface,
and the heat required to heat the molten steel. Based on
the analysis of the LF-refining process and energy
conservation, the heat gain of the electric arc was related
to the electric arc-heating time; the temperature change
caused by adding alloy and slag-making materials into
the molten steel can be calculated according to the
temperature effect coefficients of different additions
obtained by using statistical analysis. The heat storage
of the ladle shell was related to the turnover time of the
ladle; the heat exchange between the LF and the
surroundings and the heat loss from the slag surface
increased with the increase of refining time; and the heat
loss of the bottom blowing argon was reflected by the
argon consumption. In addition, the initial energy of the
molten steel was determined by its initial temperature
and weight. To sum up, the main factors affecting the
end point temperature of the molten steel in LF refining
are as follows: initial temperature of molten steel,
turnover time of ladle, refining time, weight of molten
steel, heating time, argon consumption, and addition

Fig. 1—The whole flow chart of LF-refining process (Adapted with permission from Ref. 36. Copyright 2021, copyright Taylor & Francis).
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amounts of various additions. Finally, taking the main
factors affecting the temperature of the molten steel as
input variables of the ML model, a hybrid prediction
model of molten steel temperature was established. The
temperature effect coefficients of the alloy and slag-mak-
ing materials to molten steel are listed in Table I. The
calculation formulas of the temperature change
(DTaddition) caused by additions and the T1 are shown
in Eqs. [1] and [2], respectively.

DTaddition¼
X

i

Giqi; ½1�

T1 ¼ Tmeasured � DTaddition; ½2�

where i expresses addition i (alloy or slag-making
materials); Gi represents the weight of addition i (kg);
qi represents the temperature effect coefficient of addi-
tion i (�C/kg); Tmeasured is the measured temperature of
molten steel (end point temperature of molten steel in
LF refining).

The production data, about 9764 heats, were collected
from an industrial LF-refining process for steel produc-
tion in China. Table II summarizes the statistical
analysis of all input and output variables for tempera-
ture prediction models, including minimum, maximum,
mean, and standard deviation. The turnover time of
ladle ranged from 22 to 90 minutes. The range of the
weight of molten steel was 127.42 t to 160.00 t. The
range of initial temperature of molten steel was from
1516 �C to 1615 �C. The value of refining time ranged
from 15 to 90 minutes. The heating time ranged from
155 to 1773 seconds. The argon consumption ranged
from 1.0 9 104 NL to 6.9 9 104 NL. The DTaddition

ranged from � 60.53 �C to 1.08 �C. The range of the
Tmeasured was 1545 �C to 1620 �C. The T1 ranged from
1576.01 �C to 1665.95 �C.

III. TEMPERATURE PREDICTION OF MOLTEN
STEEL USING ML MODELS

This section introduces the temperature prediction
model construction method (Section III–A), data-pro-
cessing methods (Section III–B), the various ML algo-
rithms (Section III–C), and the model evaluation
methods (Section III–D) in predicting the temperature
of molten steel in LF-refining process.

A. Modeling with ML Models

The temperature prediction models based on the
metallurgical mechanism, data-preprocessing methods,
and ML algorithms were developed by analyzing the
LF-refining process. This study consists of three main
parts. Figure 2 presents a schematic diagram illustrating
the design process for the prediction model, where each
part involves the follows:
Part 1 the temperature prediction models of molten

steel were established based on the production data and
different single ML algorithms (e.g., DNN; K-Nearest
Neighbor, KNN; Regularized ELM, RELM;
Bayesian–regularization BP neural network, BR–BP).
Then, 10-fold cross-validation[37] was used to optimize
the parameters of different ML models, and the optimal
parameters of different ML models were obtained.
Finally, the performance of the ML models was
evaluated in terms of the coefficient of determination
(R2), mean absolute error (MAE), root-mean-square
error (RMSE), and hit ratio.

Table I. Temperature Effect Coefficients When Charging 150 t LF with Various Additions

Addition
Temperature Effect Coefficient 9 10�2 (�C/

kg) Addition
Temperature Effect Coefficient 9 10�2 (�C/

kg)

C � 4.30 slag-making materials � 2.00
MCFeMn � 1.20 FeSi + 1.10
HCFeMn � 1.30 FeTi � 0.38
Al � 0.5 CaSi � 1.10

Note MCFeMn represents the medium carbon ferromanganese; HCFeMn represents the high carbon ferromanganese.

Table II. Descriptive Statistics of All Input and Output Variables for Temperature Prediction Models

Variables Description of Variables Units Minimum Maximum Mean Standard Deviation

X1 turnover time of ladle min 22 90 64.35 13.62
X2 weight of molten steel t 127.42 160.00 152.97 4.22
X3 initial temperature of molten steel �C 1516 1615 1561.05 19.52
X4 refining time min 15 90 38.48 9.86
X5 heating time s 155 1773 784.71 239.67
X6 argon consumption 9 104 NL 1.0 6.9 2.42 0.72
DTaddition temperature change caused by additions �C � 60.53 1.08 � 16.69 9.58
Tmeasured measured temperature of molten steel �C 1545 1620 1587.17 13.20
T1 Tmeasured � DTaddition �C 1576.01 1665.95 1603.86 10.70
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Part 2 when the input variables are correlated, it is
redundant to directly use the original data for the
training model. In this study, ZCA whitening was
applied to eliminate correlation and redundancy
between input variables. Then, the performance of the
ML models was compared with that of the ZCA–ML
models using the same test set.

Part 3 abnormal value may affect the prediction
results of the ML models. The IF algorithm was used to
detect the abnormal value, and then the training dataset
with and without the abnormal value were used for
model training. Finally, the performance of the
ZCA–DNN model was compared with that of the
IF–ZCA–DNN model using the same test set.

B. Data-Processing Methods

Data analysis and data processing are the primary
tasks of modeling. This section mainly introduces the
visualization method for the high-dimensional data
(Section III–B-1), processing method for data redun-
dancy (Section III–B-2), and processing method for
abnormal data (Section III–B–3). The data were pro-
cessed using the above methods to obtain high-quality
data, which gave full play to the value of data.

1. t-Distributed stochastic neighbor embedding
(t-SNE)

It is difficult for us to directly observe the distribution
of high-dimensional data. In general, the method of
dimensionality reduction is used to visualize the high-di-
mensional data and then to analyze it. The t-SNE
algorithm, an advanced nonlinear dimensionality reduc-
tion and visualization algorithm, was proposed by
Maaten and Hinton.[38,39] The t-SNE was mainly used
to visualize the high-dimensional data in two- and
three-dimensional space, so as to reveal hidden infor-
mation in the data.

The process of t-SNE was shown as follows:[40]

Step 1 calculating the conditional probability density
(pj|i) between any two data points xi and xj in high-di-
mensional dataset, as shown in Eq. [3].

pj ij ¼
expð� xi � xj

�� ��2=2r2i ÞP
k 6¼i

expð� xi � xkk k2=2r2i Þ
; ½3�

where xk refers to other data points except xi in the
high-dimensional dataset; ri represents the variance of
the Gaussian distribution of data point xi.
Step 2 calculating the joint probability density (pij) of

the high-dimensional sample, as shown in Eq. [4].

pij ¼ ðpj ij þ pi jj Þ=2n; ½4�

where n is the number of data points.
Step 3 initializing low-dimensional data (Y(0)) ran-

domly, as shown in Eq. [5].

Yð0Þ ¼ y1; y2; . . . ; ynf g: ½5�

Step 4 the joint density (qij) and gradient @C
@yi

� �
of

sample points in low-dimensional space were calculated
by t distribution with degrees of freedom 1, as shown in
Eqs. [6] and [7].

qij ¼
ð1þ yi � yj

�� ��2Þ�1

P
k6¼l ð1þ yk � ylk k2Þ�1

; ½6�

@C

@yi
¼ 4

X

j

ðpij � qijÞðyi � yjÞð1þ yi � yj
�� ��2Þ�1; ½7�

where C is the cost function defined by Kull-
back–Leibler distance

Step 5 calculating the low-dimensional data (YðtÞ), as
shown in Eq. [8].

Fig. 2—Schematic diagram of the design method and model validation.
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YðtÞ ¼ Yðt�1Þ þ g
@C

@Y
þ lðtÞðYðt�1Þ � Yðt�2ÞÞ; ½8�

where t is iterations; g is learning rate; lðtÞ is momen-
tum factor.

Step 6 repeating steps 4–5 until the number of
iterations met the requirements.

2. Zero-phase component analysis whitening (ZCA
whitening)

When a correlation exists between the input data, it is
redundant to directly use the data for the training
model, as it will lead to poor model convergence.
Pearson correlation analysis[41] was used to analyze the
correlation between two random variables, and the
formula is shown in Eq. [9]. ZCA whitening was used to
eliminate the data redundance of the input variables.
Meanwhile, the features were less correlated with each
other, and the features all had the same variance after
whitening.[32]

r¼
Pn

i¼1 ðxi�xÞðyi�yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ðxi�xÞ2

Pn
i¼1 ðyi�yÞ2

q ; ½9�

where x is the mean of variable x; y is the mean of
variable y; xi is the ith value of variable x; yi is the ith
value of variable y.

The process of ZCA whitening was shown as follows:
Step 1 calculating the covariance matrix (R) of the

dataset, as shown in Eq. [10].

X
¼ 1

m

Xm

i¼1

ðxðiÞÞðxðiÞÞT; ½10�

where m is the number of samples; x(i) is the vector
composed by physical layer parameter.

Step 2 after calculating the covariance matrix of the
dataset, the vector (U) is obtained by singular value
decomposition (SVD). Then, UTx is used to obtain xrot,
as shown in Eq. [11].

xrot ¼ UTx ¼

uT1 x
uT2 x

..

.

uTn x

2
6664

3
7775; ½11�

where uTn x is the projection amplitude of sample point
x on feature un.

Step 3 the dataset was whitened using PCA, as shown
in Eq. [12].

xPCA;i ¼
xrot;iffiffiffiffiffiffiffiffiffiffiffiffi
ki þ e

p ; ½12�

where ki is the value of the diagonal element in the
covariance matrix (xrot). During the ZCA whitening
process, some eigenvalues may be close to zero, so the
scaling process was divided by the values close to 0.
Therefore, the regularization (e) was used to achieve
the scaling process in practical application. Generally,
the value of e is 1 9 10�5.

Step 4 the vector (U) was multiplied by PCA
whitening matrix to obtain the ZCA whitening matrix,
as shown in Eq. [13].

xZCA;i ¼ UxPCA;i: ½13�

3. Isolation forest (IF)
The IF algorithm[35,42] was used to detect the outlier

in the dataset. The data space was continuously split
using a random hyperplane until every data in the data
space became a data node and formed an isolated Tree
(iTree). Then, the path length h(i) between the root node
and the ith data node was used to determine whether the
data node (i) was an outlier.
The process of IF algorithm was shown as follows:
Step 1 samples (n) were randomly selected from the

dataset (X) as training sub-dataset (X¢) and put into the
root node of iTree.
Step 2 a variable dimension was randomly selected

from the variables, and a break point K was randomly
generated on this dimension. Meanwhile, the break
point K was between the maximum and minimum value
of the selected dimension.
Step 3 the break point K was extended into hyper-

plane, and the space of dataset was divided into two
spaces. And then, dividing values less than K to the left
branch and greater than K to the right branch.
Step 4 repeating steps 2 and 3 to continuously split

data space using hyperplane until every data in the data
space became a data node (iTree) or iTree reached a
height limit.
Step 5 the iForest training iteration stopped to

obtained t iTrees. Then the generated iForest was used
to calculate the outlier score of the data, so as to detect
whether the data were outliers.

C. ML Algorithms

After obtaining a dataset, it is necessary to select
appropriate ML algorithms. This study, which has both
input and output values, corresponds to supervised
learning, and needs regression algorithms to predict the
temperature of molten steel in LF-refining process. To
predict the temperature of molten steel, five ML
algorithms were compared in this study, including (i)
Bayesian–regularization BP neural network (BR–BP),
(ii) RELM, (iii) KNN, and (iv) DNN. The descriptions
of these algorithms were shown as follows.

1. Bayesian–regularization BP neural network
(BR–BP)
The BP neural network is a multilayer feedforward

network with error BP and has strong nonlinear
mapping ability.[43] The traditional BP neural network
is prone to over-fitting, which reduces the generalization
ability of the network. However, Bayesian regulariza-
tion, which imparts high generalization ability to the
network by improving the objective function, can solve
these problems. The mean-square error was used as the
objective function in the traditional BP neural net-
work,[44] as shown in Eq. [14]. The penalty function was
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introduced in the objective function of the traditional
BP neural network to construct the modified objective
function of the BR–BP neural network,[45] as shown in
Eqs. [15] and [16]. In order to ensure the rationality of
parameters a and b, the Bayesian regularization algo-
rithm can adaptively adjust the values of a and b to
achieve optimal results and improve the generalization
ability of the network according to the training results of
the network.

Ed ¼
1

n

Xn

i¼1

ðti � yiÞ2; ½14�

where n is the number of samples; ti is the actual
value; yi is the output value of the neural network.

Jw ¼ aEw þ bEd; ½15�

Ew ¼ 1

m

Xm

j¼1

w2
j ; ½16�

where a and b are regularization coefficients; Ew is the
mean-square error of all network weights; m is the
total number of network weights; wj is the network
weight.

2. Regularized extreme learning machine (RELM)
Huang et al.[46] proposed a single-hidden layer feed-

forward neural network algorithm called ELM, which
has fast computation speed and does not require any
iterative adjustment for parameter determination. In the
traditional ELM model,[47] based on the principle of
empirical risk minimization, the minimum training error
is taken as the criterion, which does not consider the
structural risk. It is easy to overfit when there are too
many nodes in hidden layer.[48] In order to solve the

deficiencies of the ELM model, the structural risk and
regularization coefficient were introduced to construct
the RELM model. The regularization coefficient was
applied to adjust the proportion of empirical risk and
structural risk to improve the generalization ability of
the traditional ELM model.[49–51]

3. K-nearest neighbor (KNN)
KNN is a typical supervised learning algorithm[52]

based on the core idea that if a sample has the smallest
distance from K samples in the feature space, the sample
value is the arithmetic mean of K samples. The only
hyperparameter of the KNN algorithm is K. If the K
value is too small, it is easy to lead to over-fitting of the
KNN model; if the K value is too large, it is easy to lead
to under-fitting of the KNN model. In general, the value
of K is an integer not greater than 20.[53]

The process of KNN algorithm[53] was shown as
follows:
Step 1 inputting the test data after the feature and

label values of the training dataset were given.
Step 2 calculating the distance (European distance or

Manhattan distance) between the feature value of the
test data and the corresponding feature value of the
training set,
Step 3 the data were sorted according to the distance,

and the first K data for the feature values of the training
set closest to the feature values of the test set were
selected.
Step 4 the average value of the label values corre-

sponding to the first K data was the predicted value
corresponding to the test data.

4. Deep neural network (DNN)
With the advent of the era of big data and ML, DNN

has been developed rapidly and has become a key
technology in the field of artificial intelligence.[54] The
DNN consists of three layers: input layer, hidden layer

Fig. 3—Visualization of original data in (a) two-dimensional space, and (b) three-dimensional space. Higher than average temperature is
represented in red, while lower than average temperature is represented in blue (Color figure online).
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(‡ 3), and output layer.[55] Meanwhile, the adjustment of
hyperparameters for DNN is essential, where the main
hyperparameters include the activation function, learn-
ing rate, number of hidden layers, number of nodes in
the hidden layer, batch size, and the optimization
algorithms. The activation function is applied to
increase the nonlinearity of DNN model. The learning
rate is used to determine how fast parameters are
updated.[56] The number of hidden layers and nodes are
used to determine the complexity of the network
structure and the learning ability of the DNN.[15] The
batch size influences the generalization ability and
training time of the DNN model. In our previous
paper,[15] we described the DNN model and the roles of
different hyperparameters in detail, which will not be
repeated here.

D. Model Evaluation

In order to compare the generalization ability of
different ML models, the performances of the ML
models were evaluated in terms of the R2, MAE, RMSE,
and hit ratio, respectively. The ‘‘hit ratio’’ is the
proportion of test heats within the error range of
temperature to the total test heats. The high R2 and hit
ratio values and the lower MAE and RMSE values
indicate better precision of the ML models. The R2,
MAE, RMSE, and hit ratio values were calculated using
the following equations:

R2 ¼
PNp

i¼1 ðyacti � ymÞ2 �
PNp

i¼1 ðycali � yacti Þ2
PNp

i¼1 ðyacti � ymÞ2
; ½17�

MAE ¼
XNp

i¼1

ycali � yacti

�� ��=Np; ½18�

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNp

i¼1

ðycali � yacti Þ2=Np

vuut ; ½19�

Hit ratio ¼
Nð Calculated Value�Actual Valuej j�eÞ

NðTotal test heatsÞ
� 100 pct;

½20�

where Np is the number of the data; yact represents the
actual value of the temperature; ycal represents the cal-
culated value of the temperature; ym represents the
average value of the temperature;
Nð Calculated Value�Actual Valuej j�eÞ is the number of the test
heats within the error range of temperature; e = 3 �C,
5 �C, and 10 �C in temperature prediction;
NðTotal test heatsÞ is the number of the total test heats.

IV. RESULTS AND DISCUSSION

A. High-Dimensional Data Visualization

The purpose of LF refining is to produce molten steel
that satisfies the temperature, composition, and cleanli-
ness requirements to ensure the smooth running of the
continuous casting process within a specified time. LF
refining is a complex metallurgical reaction process under
high-temperature condition. Based on the analysis of the
LF-refining process and energy conservation, seven
factors affect the end point temperature of molten steel
in LF refining. The original data belong to the high-di-
mensional data which are difficult to intuitively display
the data distribution. Therefore, the original data were
visualized in two and three dimensions using the t-SNE
algorithm, as shown in Figure 3. The red and blue dots in
the figure are intertwined, indicating the complexity of
these data structures. This motivates the application of
ML algorithms to explore relationships between complex
data. Therefore, a variety of ML algorithms were applied
to predict the temperature of molten steel.

B. Correlation Analysis and ZCA whitening

Figure 4 displays a heat map of the Pearson correla-
tion coefficients. In Figure 4(a), the Pearson correlation
coefficients between the refining time and the argon
consumption was 0.417, indicating that the argon
consumption increased with increasing the refining time.
The Pearson correlation coefficients between the initial
temperature of molten steel and the heating time
were � 0.505, indicating that the heating time increased
with decreasing the initial temperature of molten steel.
The Pearson correlation coefficients between the refining
time and the heating time was 0.753, indicating that the
heating time increased with increasing the refining time.
According to the correlation analysis, there are out-
standing linear relationships between input variables,
which may lead to data redundancy and even result in
poor convergence of the prediction models in this study.
ZCA whitening not only reduces the data redundancy
but also tries to make the whitened data close to the
original data. Therefore, the data were processed using
ZCA whitening, as shown in Figure 4(b). It can be seen
that the correlation coefficients between any two input
variables were zero, i.e., the correlation between input
variables was eliminated.

C. Comparison of Prediction Performance of Single ML
Models

In order to obtain the best parameters for various ML
algorithms (DNN, BR–BP, RELM, and KNN), a
10-fold cross-validation[37] was applied based on the
training dataset (8264 heats) and testing dataset (1500
heats). Note that the testing dataset was not included in
the learning of the ML model. Table III lists the best
parameters for various ML algorithms within the
parameter boundaries. In Section III–C, the various
ML algorithms were introduced and were mainly
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constructed using the scikit-learn module of Python. For
the DNN model, the leaky-rectified linear unit (LReLU)
was selected as the activation function. The mini-batch
stochastic gradient descent (SGD) with momentum and
the L2 regularization coefficient of 2 9 10�4 were
integrated and utilized to improve the convergence
speed and prevent getting into local optimum and
over-fitting for the traditional DNN. The integrated
optimization algorithm utilized to modify the traditional
DNN can be found in our previous work.[15] Meanwhile,
the other optimal hyperparameters are given in
Table III. The DNN was configured with four hidden
layers, and the number of hidden layer neurons was 45.
The learning rate and the batch size were 0.03 and 128,
respectively.

In addition, the statistical evaluation indexes (e.g., R2,
r, RMSE, MAE) and hit ratio were used to evaluate the
generalization performance of the ML models. In
Figure 5(a), the R2 and r values of DNN model were
0.026 and 0.014 higher than those of the KNN model,
respectively; 0.027 and 0.015 higher than those of the
RELM model, respectively; 0.042 and 0.023 higher than
those of the BR–BP model, respectively; and 0.137 and
0.078 higher than those of the MLR model, respectively.
The RMSE and MAE values of the DNN model were
0.427 and 0.372 lower than those of the KNN model,
respectively; 0.370 and 0.337 lower than those of the
RELM model, respectively; 0.563 and 0.564 lower than
those of the BR–BP model, respectively; and 1.618 and
1.456 lower than those of the MLR model, respectively.

Fig. 4—Heat map of Pearson correlation coefficient of (a) original data, and (b) data of ZCA whitening.

Table III. The Best Parameters for Various ML Algorithms Within the Parameter Boundaries

Method Parameters Name Parameters Boundaries Best Parameters

DNN num_hidden layer [3, 6] 4
num_hidden layer neurons [20, 60] 45
learning_rate (0, 1) 0.03
L2 regularization coefficient [1 9 10�4, 1 9 10�2] 2 9 10�4

batch_size 64, 128, 256, 512 128
activation function — LReLU
optimization algorithms — mini-batch SGD with momentum (momentum parameter

defaults to 0.9)
KNN n_neighbors [3, 20] 10
RELM num_hidden layer neurons [10, 500] 300

regularization coefficient (0, 1) 0.3
Activation function sin, sig, hardlim sin

BR–BP num_hidden layer neurons [3, 13] 10
learning_rate (0, 1) 0.2
training function — trainbr
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In Figure 5(b), the prediction hit ratio of the DNN
model for the temperature in the error ranges of [� 3, 3],
[� 5, 5], and [� 10, 10] were 65.8, 85.3, and 97.7 pct,
respectively. The prediction accuracies of the DNN
model were 5.9, 4.6, and 1.4 pct higher than those of the
KNN model; 6.0, 4.4, and 1.0 pct higher than those of
the RELMmodel; 9.9, 6.6, and 1.4 pct higher than those
of the BR–BP model; and 20.8, 18.6, and 4.6 pct higher
than those of the MLR model in the ranges of [� 3, 3],
[� 5, 5], and [� 10, 10], respectively. In summary, the
DNN model was superior to the other models in
predicting the temperature of molten steel, achieving
the highest R2 value of 0.850, highest r value of 0.922,
lowest RMSE of 4.198, and lowest MAE of 2.841. The
goodness of fit decreased in the following order: DNN
model, KNN model, RELM model, BR–BP model, and
MLR model.

D. Comparison of Prediction Performance of ZCA–ML
Models

The original industrial data contain amount of
redundant, and thus, using the original industrial data
to establish the model would lead to poor convergence
and low accuracy. In order to further improve the
prediction accuracy of the ML models, ZCA whitening
was employed for data processing. To evaluate the

impact of ZCA whitening on the ML models, the
INIT–ML models (i.e., the ML models without ZCA
whitening) and ZCA–ML models (i.e., the ML models
with ZCA whitening) were compared according to their
statistical evaluation indexes and hit ratios. Table IV
lists the performance of the various models. It can be
seen that the R2 and r values of the ZCA–ML models
were better than those of the INIT–ML models. The
ZCA–DNN model achieved the highest R2 value of
0.875, highest r value of 0.935, lowest RMSE of 3.895,
and lowest MAE of 2.650.
In addition, the R2, RMSE, MAE, and hit ration in

different error ranges of the INIT–ML models and
ZCA–ML models (the ML models included the DNN,
KNN, and RELMmodels) are illustrated in Figure 6. In
Figure 6(a), the R2 value of the ZCA–DNN model was
0.025 higher than that of the INIT–DNN, and the
RMSE and MAE values of the ZCA–DNN model were
0.303 and 0.191 lower than those of the INIT–DNN.
The R2 value of the ZCA–KNN model was 0.028 higher
than that of the INIT–KNN, and the RMSE and MAE
values of the ZCA–KNN model were 0.367 and 0.321
lower than those of the INIT–KNN. The R2 value of the
ZCA–RELM model was 0.004 higher than that of the
INIT–RELM, and the RMSE and MAE values of the
ZCA–RELM model were 0.051 and 0.042 lower than
those of the INIT–RELM. In Figure 6(b), the

Fig. 5—(a) The statistical evaluation indexes and (b) hit ratio of the various prediction models.

Table IV. Comparison of Various Models

Indices

Various Models

DNN KNN RELM BR–BP MLR

INIT ZCA INIT ZCA INIT ZCA INIT ZCA INIT ZCA

R2 0.850 0.875 0.824 0.852 0.823 0.827 0.808 0.825 0.713 0.713
r 0.922 0.935 0.908 0.923 0.907 0.909 0.899 0.908 0.844 0.844
RMSE 4.198 3.895 4.625 4.258 4.568 4.517 4.761 4.537 5.816 5.816
MAE 2.841 2.650 3.213 2.892 3.178 3.136 3.405 3.227 4.297 4.297

Note INIT and ZCA denote the ML models without and with ZCA whitening, respectively.
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ZCA–DNN model achieved the highest hit ratios of
69.0, 88.1, and 97.9 pct in the ranges of [� 3, 3], [� 5, 5],
and [� 10, 10], respectively. Meanwhile, the prediction
accuracies of the ZCA–DNN model were 3.2, 2.8, and
0.2 pct higher than those of the INIT–DNN model in
the ranges of [� 3, 3], [� 5, 5], and [� 10, 10],
respectively. The prediction accuracies of the
ZCA–KNN model were 5.6, 3.8, and 1.0 pct higher
than those of the INIT–KNN model in the ranges of
[� 3, 3], [� 5, 5], and [� 10, 10], respectively. The
prediction accuracies of the ZCA–RELM model were
0.5 pct, 0.6 pct, and 0 higher than those of the INIT–
RELM model in the ranges of [� 3, 3], [� 5, 5], and
[� 10, 10], respectively. In summary, the ZCA–DNN

model exhibits the optimal performance. Meanwhile, for
most of the ML models (e.g., DNN, KNN, RELM,
BR–BP), the effectiveness of ZCA whitening was
reflected in the temperature prediction in LF-refining
process.

E. Comparison of Prediction Performance
of IF–ZCA–DNN Model

In order to further improve the prediction accuracy of
the ZCA–DNN model, the IF algorithm was applied to
discover the abnormal values in the dataset, and 802
groups of abnormal values were discovered in the
original dataset. The t-SNE algorithm was used to

Fig. 6—(a) The statistical evaluation indexes and (b) hit ratios of the best-three models.

Fig. 7—Visualization of abnormal data and normal data in (a) two-dimensional space, and (b) three-dimensional space (Color figure online).
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visualize the distribution of abnormal data and normal
data, as shown in Figure 7. Abnormal data are repre-
sented in red, and normal data are represented in blue.
In the next section, the training datasets with and
without the abnormal values were constructed to train
the model, and the ZCA–DNN model was evaluated
using the same test dataset.

Figure 8 presents the prediction results of ZCA–DNN
and IF–ZCA–DNN models. The abscissa represents the
heat number, and the ordinate represents the tempera-
ture. Each heat number corresponds to the actual
temperature value and the predicted temperature value
represented by different colors and symbols. It can be
seen from Figure 8 that the calculated temperature
values of the ZCA–DNN and IF–ZCA–DNN models fit

Fig. 8—Comparison between actual and predicted values obtained by (a) ZCA–DNN model and (b) IF–ZCA–DNN model.

Fig. 9—Comparison between T1 and Tpredicted obtained by (a) ZCA–DNN model and (b) IF–ZCA–DNN model.
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well with the actual temperature values. In the next
section, other statistical evaluation indexes were used to
evaluate the ZCA–DNN and IF–ZCA–DNN models.

To evaluate the prediction accuracy and generaliza-
tion performance of the ZCA–DNN and IF–Z-
CA–DNN models more intuitively, scatterplots were
drawn, and the R2, RMSE, MAE, and hit ratio in
different error ranges were calculated, as shown in
Figure 9. It can be seen that the RMSE and MAE of the
IF–ZCA–DNN model decreased from 3.157 and 2.384
of the ZCA–DNN model to 2.827 and 2.048. The R2 of
the IF–ZCA–DNN model increased to 0.916. In Fig-
ure 9, the 45 deg diagonal line was used to express that
Tactual was equal to Tpredicted. A color scale was applied
to express the different absolute errors (AE) between the
actual values and predicted values, and a histogram was
used to express the distribution of the error scope, as
shown in the graphs in the upper left corner and lower
right corner, respectively. The overall scatter plot of the
IF–ZCA–DNN model was closer to the 45 deg diagonal
line than that of the ZCA–DNN model, which indicated
that the error between the actual and predicted values of
IF–ZCA–DNN model was smaller than that of the
ZCA–DNN model. The prediction hit ratio of the
ZCA–DNN model for the temperature in the error
ranges of [� 3, 3], [� 5, 5], and [� 10, 10] were 71.7,
90.3, and 99.0 pct, respectively. The prediction hit ratio
of the IF–ZCA–DNN model for the temperature in the
error ranges of [� 3, 3], [� 5, 5], and [� 10, 10] were
77.9, 92.3, and 99.6 pct, respectively. The prediction
accuracies of the IF–ZCA–DNN model were 6.2, 2.0,
and 0.6 pct higher than those of the ZCA–DNN model
in the ranges of [� 3, 3], [� 5, 5], and [� 10, 10],
respectively. Based on these prediction results, the
temperature prediction model established using the
IF–ZCA–DNN algorithm was more accurate than that
established using the ZCA–DNN algorithm. Therefore,
owning to its high accuracy and strong generalization
performance, the IF–ZCA–DNN algorithm was the
most recommended method for the end-temperature
prediction of molten steel in LF-refining process.

This study indicates that the DNN algorithm is
superior to KNN, RELM, BR–BP, and MLR in
predicting the temperature of molten steel in LF-refining
process. Moreover, ZCA whitening is good for improv-
ing the prediction performance of most ML models
(e.g., DNN, KNN, RELM, BR–BP). Furthermore, the
data processing based on the IF algorithm can also
improve the prediction accuracy of the ZCA–DNN
model. Based on current research results, there is room
for further improving the performance of IF–Z-
CA–DNN model, which is mainly expounded from the
following two aspects: (1) in recent years, the explain-
able ML has become an important research direction of
ML. SHapley Additive exPlanation (SHAP),[57–59]

which can explain the output of any ML model, is a
model interpretation module developed by Python.
Therefore, the SHAP can be applied to improve the
interpretability of the DNN model in the next step,
further improving the prediction accuracy of the DNN
model and realizing a ‘‘narrow window’’ control of
molten steel temperature. (2) With the increase of data

volume, the improvement of computational efficiency of
the DNN model will be considered on the basis of
ensuring the prediction accuracy of the model.[60] With
the rapid development of parallel computing, the
calculation speed of the DNN model can be accelerated
using a high-performance graphic processing unit
(GPU)[61,62] to meet the current high-efficiency develop-
ment requirements of steel plants.

V. CONCLUSIONS

In this study, prediction models based on the metal-
lurgical mechanism, large production dataset, data
analysis methods, and different ML algorithms were
established to predict the temperature of molten steel in
LF. The main conclusions are as follows:

(1) Through the analysis of the LF-refining process and
energy conservation, the main factors affecting the
end point temperature of molten steel were the ini-
tial temperature of molten steel, turnover time of
ladle, refining time, weight of molten steel, heating
time, argon consumption, and addition amounts of
various additions.

(2) The optimal structures of the temperature prediction
model (DNN model) possessed 4 hidden layers, 45
hidden layer neurons, a learning rate of 0.03, L2
regularization coefficient of 2 9 10�4, batch size of
128, an LReLU activation function, and the opti-
mization algorithms of mini-batch SGD with
momentum. For most of the ML models (e.g.,
DNN, KNN, RELM, BR–BP), the effectiveness of
the ZCA whitening was reflected on the temperature
prediction in LF-refining process.

(3) By comparing the performances of the temperature
prediction models, it was found that IF–ZCA–DNN
had a higher prediction accuracy than both the
single ML algorithms and ZCA–ML algorithms. In
conclusion, both the selection of ML algorithms and
the data processing significantly influence the per-
formance of the prediction model. The modeling
method and workflow presented in this study are
also applicable to other fields.
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