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Soft-Sensing Model for Submerged Arc Furnace
Electrode Current Based on Machine Learning

MI LI, JIANJUN HE, and WEIHUA GUI

Electrode current plays a significant role in control of submerged arc furnaces. However, it is
difficult to measure the values directly. Recent studies have expanded the available information
on current distribution of submerged arc furnaces, thus enabling the soft-sensing model for
submerged arc furnace electrode current to be constructed. The present study aimed to establish
a soft-sensing model for submerged arc furnace electrode current. The study consisted of the
establishment of the mechanism model, identification of the mechanism model parameters,
compensation of the mechanism model errors, and update of the soft-sensing model. The main
conditions considered in the mechanism model include operating resistance, short network
resistance and inductance, and electrode depth. The innovation of this study is that a dual
particle swarm optimization algorithm with information exchange is proposed to ensure the
speed and accuracy of mechanism model parameter identification. The experimental results
demonstrate that the soft-sensing model can predict the electrode current with high accuracy.
Compared with the traditional method using the transformation ratio of the transformer and
the primary current, the prediction accuracy of the electrode current is improved by about
12 pct. The model update strategy can improve the adaptability of the model.
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I. INTRODUCTION

SUBMERGED arc furnace is the key metallurgical
equipment for ferroalloy smelting. The ferroalloy pro-
duced by submerged arc furnace is more than 80 pct of
the total.[1] During the smelting process, the electrical
energy is delivered into the furnace through the elec-
trode. The ore is melted and reduced by arc heat of the
end of the electrode and resistance heat between the
material or slag.[2] The operator adjusts the power
delivered into the furnace and the temperature distribu-
tion of the molten pool by raising and lowering the
electrode to change the value of the operating resistance.
Therefore, the depth of the electrode inserted into the
charge directly affects the power consumption and the
melting temperature distribution of the furnace.[3] Uni-
form distribution of melting temperature is helpful in
keeping the melting rate of the charge consistent in the

furnace. At the same time, it is useful in reducing the
collapse of the furnace charge, the furnace gas detona-
tion, and the electric energy consumption.[4]

However, most of the key information about the
smelting process cannot be measured directly due to the
high temperature in the furnace. For example, the depth
of the electrode inserted into the charge.[5] The operator
has to raise and lower the electrodes based on their
experiences and electrode current.[6] However, it is
difficult to directly measure the electrode current
because the electrode current of the submerged arc
furnace is as high as tens of thousands of amperes. The
operator has to estimate the electrode current based on
the transformation ratio.[7] Affected by many reasons,
the electrode current estimation method based on
transformation ratio cannot satisfy the accuracy, such
as the voltage of each phase is not equal, the furnace
body is asymmetric, the ore composition is not uniform,
and the electrodes interact. Being in an unbalanced state
for a long time will cause the temperature of one of the
molten pools to be too high, and the deoxidized metal
will be lost due to overheating. The temperature of the
other phase molten pool is too low to reach the
temperature for ore oxidized, and too much molten
ore is converted into slag. Although Pan[8] has success-
fully measured the secondary side current of electrical
furnace transformers using the Rogowski coils. But in
his research, Rogowski coil is installed at the copper
tube on the secondary side of the transformer. The
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experimental measurement shows that the current mea-
sured by the Rogowski coil is basically the same as the
estimation using the primary side current and the
transformation ratio when it is installed at the copper
tube of the secondary side of the transformer.[9] In this
type of installation, the current measured by the
Rogowski coil is not the actual electrode current,
because there is energy transfer between short network,
and the compensation capacitor will affect the electrode
current. When the Rogowski coil is installed near the
electrode at the end of the short network, the harsh
environment (such as high temperature, dust, short-term
flashing, etc.) may easily cause damage to the Rogowski
coil. This will limit the application of Rogowski coils in
electrode current measurement of submerged arc fur-
naces. Furthermore, companies usually use multiple
submerged arc furnaces of the same model to produce
metals with the same raw materials. Therefore, it is
meaningful to guide the production of other same model
submerged arc furnaces that produce the same raw
materials, if only need to install Rogowski coil on a
certain submerged arc furnace and use the measured
current data to establish a soft-sensing model for
electrode current.

Due to the influence of many causes, it is difficult to
model the electrode current of the submerged arc
furnace.[10] For example, the electrode currents are
coupled to each other. Therefore, there is a relatively
small body of literature that is concerned with the
measurement or prediction of electrode current in
submerged arc furnaces. However, we have noticed that
there are some results published on current distribution
of submerged arc furnaces using computational fluid
dynamics and finite element methods. Diahnaut[11] is an
earlier researcher who used computational fluid dynam-
ics to compute the current distribution in submerged arc
furnaces. Diahnaut’s research focused on the effect of
contact resistance on current distribution in submerged
arc furnaces. Evidence suggests that contact resistance is
among the important factors for affecting current
distribution in submerged arc furnaces. Then Darmana
et al.[12] presented a model method for submerged arc
furnaces using computational fluid dynamics which is
considering various physical phenomena. This is helpful
to enhance understanding of critical process parameters
in the smelting process. On the basis of this method,
some research has been carried out on the effect of other
parameters on the current distribution, such as electrode
shape, pitch circle diameter of electrodes, frequency of
the power supply system, side arcs, and carbide config-
uration in the charge.[13–17] Although these results
cannot offer value information of electrode current, it
is fundamental to develop a soft-sensing model for
predicting electrode current. Therefore, the aim of this
thesis is to establish a soft-sensing model for submerged
arc furnace electrode current, based on these previous
works.

However, interference from the industrial field will
bring about a mismatch of model parameters and affect
the prediction accuracy of the soft-sensing model. Thus,
it is necessary to update the parameters of the soft-sens-
ing model online. Some studies have shown that it is an

appropriate method to update the model parameters
online by representing the estimation of model param-
eters as an optimization problem.[18] Ahmed[19] applied
this method to update the parameter of the NOx

emission prediction model. When all the historical data
are used to update the model parameters, the parameter
update speed will decrease. Therefore, Wang[20] only
used the historical transient fault samples to train the
early transient frequency prediction model for the power
system. And Lv[21] used the strategy to enhance the
speed of mechanism model parameters updated, which
is dividing process variations into irreversible and
reversible variations. In addition to reducing the sample
size of training data participating in model updating, the
optimization algorithm with low time complexity also
has the potential to improve the model updating speed.
Therefore, this study provides a model update strategy
for the soft-sensing model based on the relative error
between the soft-sensing model prediction value and the
measured value.
The overall structure of the study takes the form of six

sections. The first section of this paper will give a brief
overview of the previous studies of submerged arc
furnace electrode current. Section II will propose a
mechanism model for describing the electrode current
variation. Since the mechanical model can’t achieve the
expected accuracy, an integrated prediction model
framework will be proposed in the Section III. In the
integrated prediction model, an error compensation
model based on Elman dynamic neural network is used
to compensate for the errors of the mechanism model. In
addition, in order to ensure the speed and accuracy of
mechanism model parameter identification, a new coop-
erative dual particle swarms optimization algorithm
(CDPSO) will be proposed. Section IV is concerned with
the model update strategy for the soft-sensing model. In
the fifth section, we successfully applied the proposed
method to predict the electrode current of 12.5MV. A
silicon manganese alloy submerged arc furnace. The
final section will give some conclusions of the modeling
method and identify areas for further research.
The novelties and contributions of this paper are

listed as follows.

1) An integrated prediction model of electrode current
is established.

2) A dual particle swarm optimization algorithm is
proposed, to obtain the optimal parameter of the
mechanism model.

II. ELECTRICAL SYSTEM ANALYSIS
AND MECHANISM MODEL

A. Electrical System for Submerged Arc Furnace

Different from the electrical arc furnace, in the
smelting of submerged arc furnace, the electrode is
deeply inserted into the charge. The charge is continu-
ously or intermittently fed into the furnace by the
charging system. So, the deoxidize reaction of the ore is
mainly concentrated around the electrode. During the

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 53B, FEBRUARY 2022—419



smelting process, workers can move electrodes up and
down to control the temperature in the furnace. As
shown in Figure 1, it is the submerged arc furnace
electrical system. The electrical system mainly includes
four parts: electrical transformer, short network,
self-baking electrode, and load. The secondary circuit
between the furnace transformer and the electrodes are
called short network. To ensure the mobility of the
electrode, the short network and the electrode need to be
connected by a flexible copper cable. The flexible copper
cable and the transformer are connected by the copper
tube and the copper bar. There is cooling water in the
copper tube to control the temperature of the copper
tube. The power factor of the submerged arc furnace is
usually low, because the resistance of the molten pool is
small, and the reactance of the short network is large. In
order to compensate for the power factor, a capacitor
needs to be added to the electrical system for power
compensation.

The principle of the electrical system is as follows. The
electrical transformer converts the high voltage on the
bus bar into the low voltage and high current needed for
smelting. The converted electrical energy is conducted to
the self-baking electrode through the short network and
then delivered into the furnace by the electrode. Using
the heat generated by the arc at the end of the electrode
and the resistance between the charge to provide the
high temperature for the deoxidize reaction. Usually, the
transformers are arranged around the electrical furnace
in a regular triangle form. The primary side of the
transformer is connected in a delta form. The secondary
side completes the delta connection on the electrode
through the short network.

B. Mechanism Model

After proper transformation, the three-phase sub-
merged arc furnace electrical system can be transformed
into the form shown in Figure 2.

In Figure 2, RTi(i=1, 2, 3) and LTi(i=1, 2, 3) are the
resistance and inductance of three single-phase trans-
formers, which can be calculated from the transformer
parameters. RBi(i=1, 2, 3) and LBi(i=1, 2, 3) are the
resistance and inductance of the short network, which
are determined by the structural parameters of the short
network. RA, RB , and RC are operating resistances,
which are determined by the depth of the electrode

inserted into the furnace and the resistivity of the
material. Mab; MbcandMac are the mutual inductance
between short networks. O is the neutral point of the
transformer, and O0 is the neutral point of the molten
pool.
Set Ra ¼ RT1 þ RB1 þ RA, Rb ¼ RT2 þ RB2 þ RB,

Rc ¼ RT3 þ RB3 þ RC,La ¼ LT1 þ LB1, Lb ¼ LT2 þ LB2,
Lc ¼ LT3 þ LB3

According to Kirchhoff’s voltage law (KVL), the
voltage of each phase electrode relative to the neutral
point of the transformer is given as follows:

UA ¼ IARa þ IAjxLa þ IBjxMab þ ICjxMac þ u0

UB ¼ IBRb þ IBjxLb þ IAjxMab þ ICjxMbc þ u0

UC ¼ ICRc þ ICjxLc þ IAjxMac þ IBjxMbc þ u0

½1�

According to Kirchhoff’s current theorem (KLC), the
current equation at the neutral point O0 is given as
follows:

IA þ IB þ IC ¼ 0 ½2�
If the power supply is symmetrical, then

UB ¼ �0:5� j

ffiffiffi

3
p

2

 !

UA; UC ¼ �0:5þ j

ffiffiffi

3
p

2

 !

UA ½3�

From Eqs. [1], [2], and [3], we can get the A-phase
electrode current as Eq. [4]:

IA ¼ UA
ar þ jax
Aþ jB

¼ UA
Aar þ Bax
A2 þ B2

þ j
Aax þ Bar
A2 þ B2

� �

½4�

In Eq. [4], where

A ¼ RaRb þRaRc þRbRc �X1X3 þX2
2

B ¼ X1 Rb þRcð Þ þX3 Ra þRcð Þ � 2X2Rc

�

½5�

ar ¼ 1:5 Rb þRcð Þ �
ffiffiffi

3
p

X2 � 0:5X3ð Þ
ax ¼ 1:5X3 �

ffiffiffi

3
p

0.5Rb � 0:5Rcð Þ

�

½6�

X1 ¼ x La þ Lc � 2Macð Þ
X2 ¼ x Lc þMab �Mac �Mbcð Þ
X3 ¼ x Lb þ Lc � 2Mbcð Þ

8

<

:

½7�

Fig. 1—Submerged arc furnace electrical system.
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Fig. 2—Circuit diagram of submerged arc furnace electrical system.
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In the same way, the two-phase electrode currents of
B and C can be written using the following equation:

IB ¼ UB
br þ jbx
Aþ jB

¼ UB
Abr þ Bbx
A2 þ B2

þ j
Abx þ Bbr
A2 þ B2

� �

½8�

IC ¼ UC
cr þ jcx
Aþ jB

¼ UC
Acr þ Bcx
A2 þ B2

þ j
Acx þ Bcr
A2 þ B2

� �

½9�

where

br ¼ 1:5 Ra þRcð Þ �
ffiffiffi

3
p

0.5X1 �X2ð Þ;

bx ¼ 1:5X1 �
ffiffiffi

3
p

0:5Rc � 0:5Rað Þ:

cr ¼ 1:5 Ra þRbð Þ �
ffiffiffi

3
p

0.5X3 � 0:5X1ð Þ;

cx ¼ 1:5 X1 þX3 � 2X2ð Þ �
ffiffiffi

3
p

0.5Ra � 0:5Rbð Þ:
In Eqs. [4], [8], and [9], the resistance and inductance

of each circuit in the mechanism model are unknown.
Therefore, we take the A-phase circuit as a case to study
the calculation method of unknown parameters in the
model.

C. Operating Resistance

Operating resistance is an important electrical parame-
ter of submerged arc furnace. It reflects the external
impedance characteristics of the submerged arc furnace
load. The size of the operating resistance is affected by
multiple variables, such as electrode size, electrode inser-
tion depth, charge properties, furnace structure parame-
ters, and smelting conditions. Researchers have explored
the calculation method of operating resistance based on
different assumptions.[22] Based on the hemispherical
grounding device resistance calculation method, Down-
ing[23] proposed two different forms of operating resistance
estimation formulas. According to the relationship
between the operating resistance and the electrode size,
the position of the electrodeworking end, the nature of the
charge and other parameters, the experimental calculation
formula of the operating resistance is given.

RA ¼ 1:275caha0ðha0 þ 2haÞ
d2½ha0ðka2 � ka1Þ2 þ k2a1ðha0 þ 2haÞ�

� 10�4 ½10�

where ca is the average resistivity of ore in the furnace
of the A-phase electrode, ha is the electrode insertion
depth, ha0 is the distance from the electrode end to the
molten pool bottom, d is the electrode diameter, k1
and k2 are electrode equivalent section coefficient.

Set ha ¼ 1:5m,ha0 ¼ 1:2m, d ¼ 1:4m,

k1 ¼ 1:75 h0=0:8dð Þ0:4,k2 ¼ 1:67 ha þ ha0ð Þ=0:884dð Þ0:75.

In Eq. [10] ca is a parameter that need to be identified,
and its values will vary with the smelting conditions and
the properties of the material.

D. Short Network Resistance and Inductance

The short network resistance includes copper bar
resistance and self-baking electrode resistance. Consid-
ering the skin effect and proximity effect of the conduc-
tor, the equivalent resistance of the short network can be
expressed as following equation[23]:

RB1 ¼
1

n
q20ð1þ aaDtÞ

l

s
Ka

� �

þ qalh
pr20

½11�

where Ka is coefficient of short network resistance
related to skinning effect and proximity effect, which
needs to be identified. q20 is the resistivity of copper at
20 �C, aa is the temperature coefficient of short net-
work resistance, Dt is the temperature rise of the short
network, l is the short network length, s is the copper
tube cross sectional area, and n is the number of short
network copper tubes. qa is resistivity of self-baking
electrode, which needs to be identified. lh is the length
from the copper tile to the self-baking electrode end,
r0 is diameter of electrode.
Set q20 ¼ 1:75 � 10�8X �m, a = 0.0043 X �C,

Dt ¼ 55 �C, l ¼ 13m, s ¼ 1:65� 10�3m2, n ¼ 4,
lh ¼ 4:5m, r0 ¼ 1:2m.
According to the self-inductance formula of a hollow

tube, the self-inductance of the short network can be
written using the following equation:

LB1 ¼ ga �
l0l
2p

ln
2l

r
þ e� 1

� �

½12�

where ga is the correction coefficient of the short
network self-induction of the A-phase electrode,
which needs to be identified. l is the short network
length, r is the outer radius of copper tube,l0
is the vacuum permeability, and e is the structural
parameter of short network, which is related to the
ratio of the outer diameter to the inner diameter of
the tube. Set l ¼ 13m, e ¼ 0:188,r ¼ 0:05m, and
l0 ¼ 2p� 10�7H=m.
When the submerged arc furnace is powered by three

single-phase transformers, and the transformers are
arranged in a triangle around the furnace, the mutual
induction between the short networks can be estimated
by the following formula.

Mab ¼ da �
l0lh
2p

ðln 2lh
gm

� 1Þ ½13�

where da is the correction coefficient of the short net-
work mutual induction, which needs to be identified. lh
is the length from the copper tile to the self-baking
electrode end, l0 is the vacuum permeability, and gm is
the mutual geometric mean distance. Set lh ¼ 4:5m,
l0 ¼ 2p� 10�7H=m, gm ¼ 2:45m.
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E. Transformer Resistance and Inductance

Transformer energy loss includes no-load loss and
short-circuit loss. The no-load loss includes hysteresis
loss and eddy current loss. Hysteresis loss is the energy
loss caused by hysteresis during the magnetization of the
iron core. Eddy current loss is the energy loss caused by
the swirling current in the transformer core. The
transformer short-circuit loss is the energy loss caused
by the transformer coil resistance. It is related to the size
of the current through the coil and the temperature of
the transformer. Transformer resistance and inductance
can be calculated according to the transformer name-
plate parameters. The transformer parameters are
shown in Table I.

Substitute operating resistance, short network resis-
tance, short network inductance, transformer resistance,
and transformer inductance into Eqs. [4], [8], and [9], we
can obtain a simplified form of the electrode current
mechanism model as follows:

ŷ ¼ xhT ½14�

where ŷ is the output vector, h ¼ ½ca;Ka; qa; ga;
da; cb;Kb; qb; gb; db; cc;Kc; qc; gc; dc� are the parameters
that need to be identified in the model.

III. SOFT-SENSING MODEL OF SUBMERGED
ARC FURNACE ELECTRODE CURRENT

A. Framework Design of the Soft-Sensing Model

Because certain conditions are assumed and simplified
in the mechanical model, the mechanical model cannot
achieve the expected accuracy. With the development of
basic automation in the industry, massive production
data are available by using sensors. If the production
data are exploited appropriately, it is helpful to describe
the nature of the actual process. The data-driven model
established with production data has been successfully
applied in many industrial processes. However, when
using data-driven models to deal with uncertain or
heterogeneously distributed data, unexplainable results
are often obtained. The reason is that the data-driven
model ignores the basic mechanism of industrial pro-
cesses. Therefore, the integrated predictive model is
more suitable for modeling complex industrial pro-
cesses.[24] It can take advantage of both the mechanism
model and the data-driven model. Using error compen-
sation models to modify mechanical models is a more
promising modeling method for complex industrial
processes.

The framework of the submerged arc furnace elec-
trode current soft-sensing model is presented in Figure 3.
It mainly includes the mechanism model, error compen-
sation model, parameter identification method, and
model update strategy. The parameter identification
method based on CDPSO algorithm can find suit-
able parameters for the mechanism model. The model
update strategy based on current accuracy analysis can
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modify the integrated prediction model by retraining the
Elman neural network error compensation model or the
calibration mechanism model parameters.

In Figure 3, w1 is the input vector of the mechanism
model, w2 is the input vector of the error compensation
model, y0 is the prediction value by the mechanism model,
y is the measured value of electrode current by the
Rogowski coils, E is the prediction error of the mecha-
nism model, e is the output of the error compensation
model, h is the parameter of the mechanism model.

B. Model Parameter Identification Algorithm

For model parameter identification, it can be regarded
as an optimization problem. The parameter identifica-
tion fitness function of the submerged arc furnace
electrode current mechanism model is given as Eq. [15]:

fðhÞ ¼ 1=
X

N

i¼1

ðIai � ÎaiÞ2 þ ðIbi � ÎbiÞ2 þ ðIci � ÎciÞ2
h i

 !

½15�
The objective of parameter identification is to max-

imize the fitness function. In Eq. [15] Iai, Ibi, and Ici are

the measured values of the ith test sample, Îai, Îbi, and Îci
are the predicted values of the mechanism model of the
ith test sample as described in Eqs. [4], [8], and [9], N is
the number of samples.

h ¼ ½ca;Ka; qa; ga; da; cb;Kb; qb; gb; db; cc;Kc; qc; gc; dc�
are the decision variables. The boundaries of decision
variables are shown in Table II.

Particle swarm optimization (PSO) algorithm, as a
global optimization algorithm, has been successfully
applied in parameter identification.[25] Its excellent
solution speed has been recognized by researchers. It
should be noted that although the global search ability
of genetic algorithm is powerful, its local search ability
needs to be further enhanced. The parameter setting of
the ant colony algorithm has been criticized. Thus, the
PSO algorithm is adopted to identify model parameters
in this paper.

By updating the moving velocity and position of the
particles, the particles move to the best particles in the
group, to obtain the optimal solution of the problem.[26]

Obviously, the update method of particle velocity and
position directly affects the performance of the

algorithm. Based on the standard PSO algorithm, Shi
and Eberhart introduced inertial weights to balance
global and local search.[27] The velocity and position of
the particle are updated as Eqs. [16] and [17].

viðkþ 1Þ ¼ xviðkÞ þ c1randðÞðpbesti � xiðkÞÞ
þc2randðÞðgbest� xiðkÞÞ

½16�

xiðkþ 1Þ ¼ xiðkÞ þ viðkþ 1Þ ½17�

where i is the number of particles, vi(k) is the ith parti-
cle’s velocity in the kth iteration, xi(k) is the position
of the ith particle in the kth iteration, pbest is the his-
torical personal best position, gbest is the historical glo-
bal best position, x is the inertial weight,c1 and c2 are
positive accelerating constants, and rand() is a random
functions with the range [0,1].

Shi[25] pointed out that the inertia weight is very
important to the performance of the algorithm. A larger
inertia weight is conducive to the global search, and a
smaller inertia weight can improve the local optimiza-
tion ability. Compared with fixed inertial weights,
dynamic inertial weights can obtain better optimization
results. However, PSO is easily trapped into the local
optima when applied to complex multimodal problems.
To balance the global search and local search capabil-
ities of the algorithm, researchers have made some
beneficial improvements.[27] Among them, the improved
scheme using multiple groups of particles has attracted
researcher’s attention. Mohammed proposed a discrete
cooperative particle swarm optimization algorithm for
the routing of integrated circuits. Although two groups
of particles are used to search, there is no information
interaction between the two groups of particles.[28] He
used damping factor and cooperation mechanism to
improve the performance of particle swarm optimiza-
tion algorithm.[29] Hajer proposed a modified
scheme that uses two groups of particles to search. In
his proposal, the first one performs exploration, while
the second one is responsible for exploitation.[30] This is
beneficial to restrain the premature convergence of the
algorithm. Based on these previous works, we proposed
a CDPSO algorithm in this paper.
The detailed description of the CDPSO algorithm

strategy is as follows:
In searching process, we use two groups of particles

with different inertia weights to search at the same time.
The first group particles are designed for global search
by setting a larger inertia weight. And the second group
particles are designed for accurately searching by setting
a smaller inertia weight. A selection pool with a capacity
of L is set up. In searching process, the position,
velocity, and inertial weight of the second group with
better fitness function values are stored in the selection
pool. If the best fitness function value of the first group
particles is better than the second group particles,
replace the position, velocity, and inertial weight of
the second group particle with the first group particle. It
means that the second group particles fly to the optimal
position of the first group for accurate searches. The

Fig. 3—Framework of the soft-sensing model.
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position, velocity, and inertial weight of the first group
particles are selected from the selection pool using
roulette selection mechanism. The two groups of parti-
cles update the position, velocity, and inertia weights
under the above method, and continue to search until
one of the final conditions is met. In the iterative
process, if the optimal position of the two groups of
particles exceeds the edge of the feasible region, the
boundary value is taken. Through the leap between the
two groups of particles and the roulette selection
mechanism, the algorithm can avoid premature conver-
gence and improve the search precision.

The selection pool of the algorithm is a queue
structure. When the elements in the selection pool
exceed the capacity of the selection pool, the element
that enters the selection pool first is deleted. The
position, velocity, and inertial weight of the first group
of particles can be generated by the following selection
methods:

Let the ith element in the selection pool be Ei. So, f(Ei)
is the fitness function value of the ith element, then the
selection probability of the ith element in the selection
pool can be represented by Eq. [18]:

pi ¼ fðEiÞ
,

X

L

j¼1

fðEjÞ ½18�

The cumulative probability of the ith element is
written as Eq. [19]:

qi ¼
X

i

j¼1

pj ½19�

Use the function rand( ) to generate a uniformly
distributed pseudo-random number r in the interval
[0,1]; If r<q1, select element 1, otherwise, select individ-
ual k such that: qk�1<r £ qk holds.
Since a larger inertia weight can improve the global

search ability, the inertia weight update strategy of the
first group can be set to the following equation.

x1 ¼ xmax � xmax � xminð Þ k
2

T2
½20�

where x1 denote the inertial weight in the first group;
xmax and xmin are the maximum and minimum values
of the inertial weight; k is the current iteration num-
ber; T is the maximum iteration. In Eq. [20], the iner-
tia weight is a quadratic function of iteration number.
The inertia weights change slowly during the initial
iteration, which is useful for global search. Near the
maximum number of iterations, the inertia weights
vary similarly to the linear decreasing strategy, which
is conducive to convergence to the global optimum.
The second group is designed for accurate search.

Thus, the inertia weight of the second group is described
as Eq. [21].

x2 ¼ xmin þ ðxmax � xminÞ 1� logsigðak
T

� bÞ
� �

½21�

where x2 denote the inertial weight in the second
group. logsigð Þ is sigmoid function. a and b are the
feature parameters.
The variations of inertia weights with iterations for

different a and b is shown in the Figure 4. Where,
xmax=0.9, xmin=0.4, T=200.
From Figure 4, we know that the values of a and b

determine the changing trend of the inertia weights.
When a and b are set to larger values, the inertia weight
can decrease at a slower speed in the beginning and the
end. When the values of a and b are small, the
decreasing speed of the inertial weight will increase.
When a is twice b, the inertia weight is centrosymmetric.
In order to keep the inertia weight of the second group
of particles at a larger value during the initial iteration,
and keep a smaller value when the iteration is halfway
through, we set a ¼ 12 and b ¼ 6.
The particle’s maximum velocity Vmax determines the

accuracy between the particle search position and the
best position,[31] so the maximum velocity Vmax need to
be limited. To make the two groups of particles search
according to different trajectories in space, the maxi-
mum velocity of the first group particles is set to 1 and
used for global search. The maximum velocity of the

Table II. Boundaries of Decision Variables

Parameter ca,cb,cc Ka,Kb,Kc qa,qb,qc ga,gb,gc da,db,dc

Lower Boundary 50 0.1 1 1 0.1
Upper Boundary 250 1 100 10 2

Fig. 4—Variations of inertia weights with iterations for different a
and b.
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second group particles decreases linearly with the
number of iterations, used for accurately search, as
shown in Eq. [22].

vmax ¼ maxðvmaxÞ þ ½minðvmaxÞ �maxðvmaxÞ�
k

T
½22�

The steps of the CDPSO algorithm applied to
parameter identification are as follows:
Step 1. Set the initial population number, initial

velocity, and position of the two groups of
particles. Initialize selection pool, including the
selection pool capacity, the fitness function
value of each element, the position and velocity
of particles, the inertia weight. Set the
termination conditions.

Step 2. For each group, calculate the fitness value
according to (15), save the historical personal
best position, the historical global best
position.

Step 3. Calculate the inertia weights of the two groups
of particles according to (20) and (21).

Step 4. Update the positions and velocities of the two
groups of particles according to (16) and (17).

Step 5. Recalculate the particle fitness function value
according to the updated particle position, and
update the historical global best position and
historical individual best position.

Step 6. Compare the best fitness function value of the
two groups. If the first group’s best fitness
function value better than that of the second
group, replace the second group particle’s
position, velocity, and inertial weight with
that of the first group. Save the position,
velocity, and inertial weight of the second
group in the selection pool.

Step 7. Use the selection mechanism of roulette to
select positions, velocity, and inertial weight
from the selection pool for the first group.

Step 8. If the termination conditions are met, stop the
search, and output the optimization result,
otherwise go to step 2. The termination
condition is that the number of iterations
exceeds allowed iterations or the reduction of
the objective function is less than the allowed
accuracy.

C. Elman Dynamic Neural Network Error Compensation
Model

Affected by a variety of reasons, the mechanism
model cannot achieve the required prediction accuracy.
Firstly, the information taken into the mechanism
model is limited. A significant case is the capacitance
compensation system. To meet the power factor require-
ments of the power system, there is a capacitance
compensation system in the power supply system.
Undoubtedly, the capacitance compensation system will
affect the electrode current. However, in the mechanism
model, the influence of the capacitance compensation
system is ignored. Secondly, some parameters in the

mechanism model are difficult to directly measure. It has
to be calculated based on the measurable parameters. As
a result, the accuracy of some parameters in the
mechanism model is insufficient. The most important
factor is the voltage on the secondary side of the
transformer. In addition, several assumed conditions are
introduced when discussing and establishing the mech-
anism model. In the actual smelting process, these
assumptions will cause model to mismatch.
The data-driven model can reflect the influence of

capacitance compensation system, transformer voltage
error, model assumptions, etc. on electrode current.
Therefore, the transformer primary side voltage, pri-
mary side current, primary side power, primary side
power factor, secondary side voltage, secondary side
capacitance compensation current and electrode inser-
tion depth are used as the input of the error compen-
sation model of the Elman neural network. The error
between the predicted value and the measured value of
the electrode current mechanism model after parameter
identification is used as a training sample. The error
compensation model is described as:

e ¼ fElmanðXnÞ ½23�

where Xn is the input of the Elman neural network
and e is the output of the error compensation model.
For industrial applications, a shorter model training

time is beneficial. Although a larger learning rate can
accelerate the learning process in the early stage of
training. But a larger learning rate will cause larger
fluctuations in the later stage of training. Therefore, the
learning rate of Elman neural network is taken as the
exponential gradient decay, as shown in Eq. [24].

g ¼ ginit � Sd ^ int
ST

STd

� �

½24�

where g is the current learning rate, ginit is the initial
value of the learning rate, ST is the current iteration
steps, STd is the decay step length, means how many
rounds to adjust the learning rate, Sd is the exponen-
tial decay coefficient, and intð Þ is the rounding func-
tion. Set ginit ¼ 0:1,STd ¼ 200,Sd ¼ 0:8.
The error between the measured value and the

predicted value of the mechanism model is used as the
input of the error compensation model. Then, the errors
in the mechanism model are predicted and compensated
online. Therefore, the electrode current integrated pre-
diction model is established by combining the mecha-
nism model and the error compensation model. The
integrated prediction model is described as Eq. [25].

Y ¼ ŷþ e ¼ f1ðŷjw1Þ þ fElmanðejw2Þ ½25�

where Y is the comprehensive predicted output of the
electrode current, f1ðŷjw1Þ represents the mechanism
model with w1 as the input vector and ŷ as the output,
fElmanðejw2Þ is the error compensation model with w2
as the input vector and e as the output error compen-
sation model. w1 and w2 are the voltage on the sec-
ondary side of the transformer and the electrode
insertion depth.
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IV. MODEL UPDATING STRATEGY

A. Model Updating Strategy

In industrial applications, the prediction accuracy of
the integrated prediction model may decrease with
changes in production conditions or time. To improve
the adaptability of the prediction model, it is necessary
to update the model online. According to production
requirements, when the relative error between the
integrated model prediction value and measured value
is within 1 pct, the accuracy of the model is acceptable.
Therefore, the model update strategy of the integrated
model is determined as follows.

(1) In a smelting cycle (the smelting cycle of silico
manganese alloy is 200 minutes), if the relative error
is between 1 and 1.5 pct, and the duration exceeds 5
minutes, we believe that the parameters of the
mechanism model are correct. The error is caused by
insufficient accuracy of the error compensation
model. Therefore, the Elman neural network error
compensation model is retrained by using new his-
torical error data.

(2) In a smelting cycle, if the relative error is greater
than 1.5 pct and the duration exceeds 10 minutes,
we believe that the mechanism model parameters are
not matched. The parameters of the mechanism
model need to be calibrated. If the model still cannot
achieve the required prediction accuracy after
parameter calibration, it needs to use the parameter
identification method proposed in Section III–B.

(3) In a smelting cycle, if the relative error is between 1
and 1.5 pct, and the duration does not exceed 5
minutes, we believe that this is an error caused by
accidental factors or interference. It is not necessary
to update the integrated prediction model.

B. Parameters Calibration of Mechanism Model

With the environment changes, the integrated predic-
tion model will fail to meet expected accuracy due to the
mismatch of mechanism model parameters. Therefore, it
is necessary to recognize changes in the system and
environment in real time, and automatically modify the
model parameters accordingly. In the mechanism model
shown as Eq. [16], the estimation of the parameters that
need to be calibrated can be expressed in the following
form.

Yn ¼
ŷ1

..

.

ŷn

2

6

4

3

7

5

¼
/T
1

..

.

/T
n

2

6

4

3

7

5

h1
..
.

hn

2

6

4

3

7

5

¼ UnHn ½26�

where n is the number of groups of observed data.
According to the recursive least square’s estimation

method, the parameters can be updated in the following
form.

Ĥnþ1 ¼ Ĥn þ Knen
Kn ¼ Pn/n

en ¼ yn � /T
n Ĥn�1

Pn ¼ Pn�1 �
Pn�1/n/

T
n Pn�1

1þ /T
n Pn�1/n

½27�

V. AN INDUSTRIAL APPLICATION CASE

To evaluate the prediction accuracy of the established
integrated model, we will give an industrial application
case in a silico manganese alloy smelting plant. We
installed Rogowski coil near the electrode at the end of
the short network to measure the electrode current.
With a sampling interval of 1 minute, the industrial data
of the #6 submerged arc furnace in Ningxia from July 8
to July 31 was continuously collected.
There are totally 12236 valid samples, which con-

structs the dataset in this experiment. The dataset was
split into training dataset, validation dataset and test
dataset by the ratios 60, 20, and 20 pct, respectively. The
training dataset was used to train the model, the
validation dataset was used to select the hyperparame-
ters, and the test dataset was used to evaluate the model
performance.[32,33] In the training process, the early stop
was selected to avoid overfitting.[34] In addition to the
methods we used, the researchers also provided some
other ideas.[35] Meanwhile, in the proposed model, the
number of hidden neurons is the key hyperparameter.
Therefore, the trial-and-error method was used to select
the optimal hyperparameter on the validation dataset.
When the number of hidden neurons equals to 13, the
validation loss archives the minimum. Therefore, the
optimal number of hidden neurons is 13. Although we
choose the trial-and-error method to find the parameters
of the model, it is a good choice to find the optimal
values of network hyper parameters by solving a
multi-objective optimization problem.[36] To validate
the effectiveness of the proposed correction model, we
have compared it with the ARIMA and wavelet model.
The results are shown in Table III. As can be seen, the
proposed model has less maximum absolute error
(MAE), average relative error (MRE), and root mean
square error (RMSE) than the ARIMA and Wavelet
models. This shows that the proposed model has better
accuracy than others.

Table III. Performance Comparison of Different Correction Models

Models Phase MAE MRE (Pct) RMSE

ARIMA A-phase 35 1.57 132
Wavelet A-phase 42 1.63 217
Proposed RNN-Based Model A-phase 31 1.46 115
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Linear decreasing particle swarm optimization algo-
rithm (LDPSO) and CDPSO algorithm are used to
identify mechanism model parameters. The two algo-
rithms are set with the same parameters. The population
sizes of both groups of the particles are 50, c1 and c2 are
1.49445, xmax=1.0, xmin= 0.1, and max(Vmax)=1. The
maximum iteration number is 800. Since PSO is a
stochastic algorithm, we have tested the PSO algorithms
randomly by 100 times. The average of the fitness
function value (AFV), the variance of the fitness
function value (VFV), and the average number of
iterations required to obtain the optimal solution (AI)
are used as the evaluation index of the algorithm
performance, and the results are shown in Table IV.

From Table IV, it is concluded that the AFV of the
CDPSO algorithm is smaller than the LDPSO algo-
rithm, and the VFV is smaller than the LDPSO
algorithm. Therefore, the CDPSO algorithm has better
stability in the identification of mechanism model
parameters than the LDPSO algorithm. And, the AI
of the CDPSO algorithm is less than that of the LDPSO
algorithm. In summary, the CDPSO algorithm is more
suitable than the LDPSO algorithm in the identification
of mechanism model parameters. The results of param-
eter identification are shown in Table V.

Set the transformer primary side voltage, primary side
current, primary side power, primary side power factor,
secondary side voltage, secondary side capacitance
compensation current, and electrode insertion depth as
the input vectors of the error compensation model. The
error data between the mechanism model prediction
value and the measured value are used as the target
value. The number of neurons in the Elman neural
network is 120, the hidden sizes is 4, the layer delays is 1,
the maximum number of iterations is 5000, and the error
tolerance is 1e-5. The weights are updated by Eq. [24].
The simulation results of the mechanism model and the
integrated model are shown in Figure 5. The MAE,
MRE, and RMSE of the mechanism model and the
integrated model are shown in Table VI.

From Figure 5, the mechanism model reflects the
changing trend of the current. However, the accuracy of
the mechanism model is insufficient. There is a large
error between the predicted value and the measured
value. The performance of the integrated model is

significantly better than the mechanism model. Espe-
cially when the current has a large change, such as the 1
to 7 sample points in Figure 5, the predicted value of the
integrated model matches well with the measured value.
From Table VI, the MRE, RMSE, and MAE of the
A-phase electrode current integration model decreased
from 1.3 pct, 1761, and 5387 of the mechanism models
to 0.51 pct, 627, and 454. The MRE, RMSE, and MAE

Table IV. The Comparison of Two Identification Algorithm

Identification Algorithm AFV VFV AI

LDPSO 16.35 81.76 465
CDPSO 13.24 62.31 387

Table V. Identification Result of the Model Parameters

Parameter ca Ka qa ga da

Value 176.3 0.548 47.8 2.3 1.17
Parameter cb Kb qb gb db
Value 127.7 0.388 50.8 1.7 0.14
Parameter cc Kc qc gc dc
Value 154.2 0.418 51.2 2.03 0.09

panel A The integrated model and mechanism
model prediction of the A-phase electrode current.

panel B The integrated model and mechanism 
model prediction of the B-phaseelectrode current.

panel C The integrated model and mechanism  
model prediction of the C-phaseelectrode current.

Fig. 5—(A) The integrated model and mechanism model prediction
of the A-phase electrode current. (B) The integrated model and
mechanism model prediction of the B-phase electrode current. (C)
The integrated model and mechanism model prediction of the
C-phase electrode current.
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of the B-phase electrode current integration model
decreased to 0.39 pct, 1460, and 526. The MRE, RMSE,
and MAE of the C-phase electrode current integration
model decreased to 0.69 pct, 1382, and 776. Therefore,
the integrated model has higher prediction accuracy
than the mechanism model.

The integrated model is applied to the practical
production for predicting the electrode current without
model updating strategy. The application results of the
integrated model are shown in Figure 6, using the data
from 11:30 to 14:50 on July 20. As shown in Figure 6(A),
the predicted value of the A-phase electrode current can
match well the measured value. But in the 31th to 40th
and the 160th to 167th sample points in Figure 6(A), the
panel 123th to 131th and the 190th to 198th sample
points in Figure 6(C), the relative error is between 1 and
1.5 pct, and the duration exceeded 5 minutes. Therefore,
the Elman neural network error compensation model
must be retrained. It should be noted that in Figure 6(B),
although the relative error of the 123th to 127th sample
points exceeded 1 pct, the duration did not exceed 5
minutes. It can be considered that it is caused by
accidental factors or interference. The predicted value
after updating the model is shown in Figure 7. In
Figure 7, the prediction errors are reduced. Shown in
Figure 8 is the application results of the integrated
model, using the data from 17:25 to 20:45 on July 29.
The relative error of the three-phase electrode current
exceeds 1.5 pct and the duration exceeds 10 minutes.
Therefore, the mechanism model parameters need to be
calibrated according to the model update strategy. On
the other hand, the precision of the integrated model has
decreased slightly over time. The main reason is the
fluctuation of raw materials and uncertain interference.
However, using the model update strategy can effec-
tively reduce the error of the predicted value and
improve the stability of the integrated model. Most of
all, industrial application results prove that the pro-
posed integrated prediction model can predict electrode
current with high accuracy and reliability.

VI. CONCLUSION

In this paper, an integrated prediction model of
electrode current is proposed and verified. Based on the
analysis of the main circuit of the submerged arc
furnace, the mechanism model of the electrode current
of the submerged arc furnace is established. A cooper-
ative dual particle swarms optimization algorithm was
developed to identify the mechanism model parameters.

To improve the prediction accuracy of the mechanism
model, an error compensation model was established
using the Elman dynamic neural network. An integrated
prediction model of electrode current is established, by
combining the mechanism model with error compensa-
tion. To improve the reliability of the integrated
prediction model, an online update strategy of the
model was developed. Industrial verification shows that

Table VI. Performance Comparison of Prediction Results

Models Phase MAE MRE (Pct) RMSE

Mechanism Model A-phase 5387 1.3 1761
B-phase 4332 0.9 1229
C-phase 5315 1.1 1555

Integrated Model A-phase 454 0.51 627
B-phase 1460 0.39 526
C-phase 1382 0.69 776
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 panel A Results without model updating strategy of the 
A-phase electrode current.

panel B Results without model updating strategy of the 
B-phase electrode current.

panel C Results without model updating strategy of the 
C-phaseelectrode current.

Fig. 6—(A) Results without model updating strategy of the A-phase
electrode current. (B) Results without model updating strategy of the
B-phase electrode current. (C) Results without model updating
strategy of the C-phase electrode current.
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the integrated model can effectively predict the electrode
current. Compared with the traditional method using
the transformation ratio of the transformer and the
primary current, the prediction accuracy of the electrode
current is improved by about 12 pct. So it is helpful to
realize automatic control of submerged arc furnace. In
the following research, we will focus on the control
strategy of the electrode regulation system based on the

integrated prediction model of electrode current estab-
lished in this paper.
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LIST OF SYMBOLS

RTi(i=1, 2, 3) Resistance and inductance of three
single-phase transformers, X

LTi(i=1, 2, 3) Inductance of three single-phase
transformers, H

RBi(i=1, 2, 3) Resistance of the short network, X
LBi(i=1, 2, 3) Inductance of the short network, H
RA, RB, RC Operating resistances, X
Mab;Mbc;Mac Mutual inductance between short

networks, H
IA; IB; IC Electrode current, A
UA;UB; UC Phase voltage on the secondary side

of the transformer, V
u0 voltage between the neutral point of

the transformer and the neutral
point of the molten pool, V

ca; cb; cc Average resistivity of ore in the
furnace, Xm

ha; hb; hc Electrode insertion depth, m
ha0; hb0; hc0 Distance from the electrode end to

the molten pool bottom, m
d Electrode diameter, m
k1; k2 Electrode equivalent section

coefficient, dimensionless
RB1RB1;RB2;RB3 Short network resistance, X
Ka;Kb;Kc Coefficient of short network

resistance related to skinning effect
and proximity effect, dimensionless

q20 Resistivity of copper at 20 �C, Xm
aa Temperature coefficient of short

network resistance, dimensionless
Dt Temperature rise of the short

network, �C
l Short network length, m
s Copper tube cross sectional area, m2

n Number of short network copper
tubes, dimensionless

qa; qb; qc Resistivity of self-baking electrode,
Xm

lh Length from the copper tile to the
self-baking electrode end, m

r0 Diameter of electrode, m
ga; gb; gc Correction coefficient of the short

network self-induction,
dimensionless

r Outer radius of copper tube, m
l0 Vacuum permeability, H/m
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 panel A The B-phase electrode current
predicted value after updating the model. 

 panel B The C-phase electrode current
predicted value after updating the model. 

Fig. 7—(A) The B-phase electrode current predicted value after
updating the model. (B) The C-phase electrode current predicted
value after updating the model.

Fig. 8—The A-phase electrode current predicted value from 17:25 to
20:45 on July 29.
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e Structural parameter of short
network, dimensionless

da; db; dc Correction coefficient of the short
network mutual induction,
dimensionless

gm Mutual geometric mean distance, m
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