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Automated Detection of Non-metallic Inclusion
Clusters in Aluminum-deoxidized Steel

MOHAMMAD ABDULSALAM, MICHAEL JACOBS, and BRYAN A. WEBLER

This study presents a method to automatically identify inclusion clusters within a sample.
Utilizing the output of scanning electron microscopy’s automated feature analysis along with
Density-based Spatial Clustering of Application with Noise, an unsupervised machine learning
algorithm, inclusion clusters are identified based on their spatial position. The analysis was
initially conducted on two samples known by manual analysis to be clustered and non-clustered
to evaluate the applicability of this technique. A serial-sectioning analysis was performed to
obtain a 3D representation of the inclusion distribution. The 2D and 3D results were consistent.
To evaluate the area effected by clusters, the convex hull area was utilized rather than the total
inclusion area in a cluster. The analysis was then applied to a series of samples from three
aluminum-alloyed heats to investigate cluster evolution throughout the secondary steelmaking
process. Several distinct types of clusters were identified. Agglomerated globular alumina
inclusion clusters were observed after tapping, which then evolved to non-globular inclusion
clusters. The same types of clusters were also observed for spinel inclusions, but they were not as
pervasive as alumina inclusions. In addition, clustering of small micro-inclusions around a large
macro-inclusion was occasionally observed.
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I. INTRODUCTION

THE agglomeration of non-metallic inclusions dur-
ing steel processing can lead to the formation of physical
inclusion clusters. Although these inclusion clusters can
promote flotation and removal of inclusions from liquid
steel,[1–3] they can have drastic effects on the properties
of steel if they are present after solidification. One of the
main concerns with inclusion clustering is their tendency
to cause nozzle clogging,[4–6] which can disrupt flow of
liquid steel and sometimes completely block the noz-
zle.[7] Large inclusion clusters can also cause stress
concentrations in solidified steel, which can lead to
cracks.[8,9] Several studies have been conducted to
understand the effect of inclusions clusters on steel
properties, in addition to investigating their formation
mechanisms and floatation behavior.[1,10–13]

Zhang and Thomas[14] studied the agglomeration of
alumina inclusions, and concluded that in bulk, liquid
steel agglomeration is controlled by Brownian, Stokes’,
and turbulent collisions. The collision regime is gov-
erned by inclusion size. After nucleation, diffusion and
Brownian collision lead to the formation of fine spher-
ical inclusions (around 1 to 2 lm radii), and turbulent
collisions contribute to the growth of inclusions larger
than 2 lm. Inclusion morphology is another important
aspect that needs to be considered, and how the
underlying type or shape of an inclusion defines the
shape of an inclusion cluster. The shape of alumina
clusters was examined in more detail by Tiekink,[15]

concluding that oxygen activity is the main factor that
determines the shape of alumina inclusions and conse-
quently their clusters.
Most of the previous research has focused on the

formation and growth of alumina clusters specifi-
cally,[1,14–16] since aluminum is a common deoxidizer
used in the industry. Yin[2,17] examined the formation of
clusters using confocal laser scanning microscopy
(CLSM), and concluded that there were strong long-
range capillary attraction forces between pairs of
alumina particles. This attractive force is weakest
between a pair of liquid particles and strongest for a
pair of solid particles; therefore, alumina inclusions
(solid at steelmaking temperatures) have a higher
tendency to agglomerate and form clusters.

MOHAMMAD ABDULSALAM and BRYAN A. WEBLER are
with the Materials Science and Engineering Department, Center for
Iron and Steelmaking Research, Carnegie Mellon University, 5000
Forbes Ave, Pittsburgh, PA, 15213. Contact e-mail:
mabdulsa@andrew.cmu.edu MICHAEL JACOBS is with the
Advanced Steel Processing and Products Research Center, Colorado
School of Mines, 1301 19th St, Golden, CO, 80401.

Manuscript submitted May 5, 2021; accepted August 27, 2021.
Article published online September 21, 2021.

3970—VOLUME 52B, DECEMBER 2021 METALLURGICAL AND MATERIALS TRANSACTIONS B

http://crossmark.crossref.org/dialog/?doi=10.1007/s11663-021-02312-5&amp;domain=pdf


More recent work by Du[18] conducted the same
CLSM experiments with the addition of magnesium.
The authors determined that the same attraction force
existed between spinel particles; however, it was not as
strong as the force between alumina particles. In
addition, densification and deformation of spinel clus-
ters were quicker compared to alumina clusters, and
alumina clusters tend to form more dendritic structures
which aid further agglomeration and growth. CLSM
experiments by Kumar[19] also concluded that alumina
inclusions readily agglomerate forming a cluster of
sintered inclusions. Kumar also noted the formation of
spinel clusters can form either by magnesium pick up on
alumina clusters or by collision of spinel inclusions;
however, no sintering was observed with spinel clusters.
Another CLSM study by Kimura et al.,[20] on the
behavior of magnesia and alumina-magnesia complex
inclusions concluded that the tendency of coagulation
for magnesium-containing inclusions is an order of
magnitude less than that of alumina inclusions. The
study attributed this effect due to the lower contact
angle of magnesium-containing inclusions on the surface
of molten steel, compared to that of alumina inclusions.
On the other hand, CLSM experiments by Kang[21]

suggested that spinel inclusions do not agglomerate. A
similar conclusion was reached by Dogan et al.[22] While
CLSM studies are very useful because they permit in-situ
visualization of agglomeration, the processes are occur-
ring at a liquid/gas interface and results may not be
always directly applicable to behavior of inclusions
surrounded by liquid steel.

One source of information about inclusion behavior
in the bulk steel is automated scanning electron
microscopy (SEM) coupled with Energy Dispersive
X-ray Spectroscopy (EDS).[23–28] Inclusion analysis is
carried out using the automated feature analysis (AFA).
AFA generates an abundance of data for each particle
analyzed, though only one cross section is typically
analyzed so all data are 2D. The most widely utilized
information is the chemical composition produced by
EDS analysis. Inclusion areas or equivalent circle
diameters are also extracted to provide the inclusion
size distribution. However, the analysis outputs more
information that has not been as widely utilized,
including shape metrics and spatial position of inclu-
sions in the scanned area. This study presents an
automated tool that can identify physical inclusion
clusters from the spatial data produced from SEM
analysis using machine learning methods.

Application of machine learning methods in the steel
industry has gained a lot of interest over the past years.
Recent work by Zhao et al.[29] developed an automated
tool for steel defect detection using deep learning.
Cuartas et al.[30] utilized machine learning to classify
steel castings, and in another study[31] to predict
inclusion content of clean steels. All these studies
employed ‘‘supervised’’ learning methods, where models
are pre-trained on labeled data (inputs and outputs) to
make predictions on unlabeled data (inputs only). The
current work employs cluster analysis a form of ‘‘unsu-
pervised’’ learning, where relationships in the data are
inferred from inputs only.

‘‘Cluster analysis’’ is a common unsupervised
machine learning task in the field of data analytics. It
is an automated method of arranging data into groups
called clusters, where data points in one cluster are more
closely related to each other than points outside the
clusters. The physical agglomerations of inclusions are
clusters in this general sense—groupings of AFA-iden-
tified inclusions in x and y-coordinate data space. The
work presented here utilizes the inclusion spatial data,
generated from inclusion SEM analysis, along with a
clustering algorithm to identify physical clusters of
inclusions. The spatial data present a 2D perspective of
the inclusion distribution, and there has been concern
whether areal scans are sufficient to describe volumetric
inclusion distributions. Several studies have focused on
investigating the effectiveness of analyzing a planar
surface to describe a 3D distribution.[32,33] This issue is
also addressed in this study.
There are numerous clustering algorithms available,

each having its own advantages and relevant applica-
bility. The k-means[34] is a popular clustering algorithm
that has been widely used. It is an iterative cen-
troid-based clustering technique. Some of the draw
backs of k-means are that the number of clusters has to
be predefined and it assumes clusters have similar shapes
and densities. Other examples of clustering algorithms
include hierarchical clustering,[35] DBSCAN,[36] K-win-
dows,[37] or expectation-maximization algorithm.[38]

Each algorithm has its advantages and disadvantages.
Therefore, a good understanding of the algorithm itself
and the dataset being addressed is essential for selecting
the appropriate clustering algorithm.
Work by Seleznev[13] presented a similar approach of

automated inclusion cluster detection. The authors used
agglomerative hierarchical clustering, a classical bot-
tom-up approach of cluster analysis, to estimate the
effect of inclusion clusters on fatigue life. The work
presented here employs another clustering algorithm,
namely DBSCAN, an acronym for Density-based Spa-
tial Clustering of Applications with Noise, developed by
Ester et al.[36] As specified by the name of the algorithm,
DBSCAN is more suited for spatial pattern analysis
compared to other clustering algorithms.
The aim of this work is to provide an automated

method of inclusion cluster detection that can be
generalized to any sample. Initially, the automated
cluster detection technique was assessed on two samples
to determine its performance. One sample is that clusters
are expected to be present, and the other is free of
clusters. To assess the area affected by a cluster of
inclusions, the convex hull area was employed rather
than the total inclusion area in a cluster. Since inclusion
clusters can form concaved morphologies, the convex
hull area is more indicative of the area affected by the
cluster. In addition, the two samples were sectionally
scanned over the same area, to provide a 3D perspective
of the inclusion volumetric distribution. The cluster
analysis was carried out on all 2D sections and the
superimposed 3D distribution. The 2D and 3D analyses
were compared and the inclusion clusters found on the
2D sections were consistent with those observed in the
3D volume.[39] The work presented here utilized the tool
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to examine clusters from a series of samples from three
aluminum-alloyed heats, to investigate the evolution
and types of clusters formed.

II. MATERIALS AND METHODS

This section is broken down into five sub-sections.
The first section presents a summary of the steel samples
from which the inclusion data were obtained. The
following section illustrates the type of diagram utilized
for inclusion compositions. The third and fourth sec-
tions are brief overviews of the DBSCAN algorithm and
the computation of the convex hull area, respectively.
The final section describes analysis of the serial sections.

A. Materials

Inclusion data were compiled from a sequence of
samples from three heats. All heats were processed using
basic oxygen furnace (BOF) steelmaking. The heats
were aluminum deoxidized and alloyed; therefore,
alumina inclusions were expected to dominate the
inclusion population at the early stages, and they are
known to agglomerate and form inclusion clusters.[1,2]

The heats included one sample taken after BOF tapping
(L0), three or four samples from the ladle (L1 to L4),
and a tundish sample (T). Heats 1 and 2 had four ladle
samples, while heat 3 had three ladle samples. In total,
17 samples were compiled, six samples from Heats 1 and
2, and five samples from Heat 3.

Steel chemistries were measured by optical emission
spectroscopy (OES), except for Mg, which was mea-
sured by inductively coupled plasma (ICP) OES. LECO
analysis was used for Total O. A summary of the steel
and slag chemistries, for the ladle samples only, is
provided in Figures 1 and 2. The chemistries for the
tundish samples were similar to the last ladle sample.
The figures represent the change in steel and slag
chemistry with respect to sample number, not time.
The slag samples were taken 5 to 10 minutes before the
steel samples on average. Slag FeO and MnO contents
were less than 6 and 4 pct, respectively, for the L0
samples. They then decreased throughout ladle process-
ing, and by the last ladle sample, they were both less
than 0.5 pct.

B. Visualization of Inclusion Chemistry

Inclusion chemistry is commonly represented in the
form of ternary plots, with compositions represented by
anion or cation mass or mole fractions. In this study, the
inclusion compositional distribution is displayed using
ternary proportional symbol plots[40] (e.g., Figure 5).
The main advantage of the proportional symbol plots
over conventional ternary plots is that they enable the
visualization of the density of inclusions with a partic-
ular composition. The proportional symbol plot aggre-
gates points with similar coordinates into triangles,
where the size of each triangle is relative to the number
of inclusions with that chemical composition. The
inclusion phases are inferred from their compositions

by overlaying the ternary phase boundaries of the
system at steelmaking temperatures (1600 �C), assuming
minimal chemistry change during solidification.
The ternary proportional symbol plot can also be

extended to visualize the area fraction of inclusions. By
plotting the size of the triangles relative to the sum of
inclusion areas rather than the number of inclusions. It
is also common practice to plot the 50 pct liquid line, a
boundary line, for certain inclusion systems (e.g.,
Mg–Al–Ca, S–Al–Ca), to show the region where more
than 50 pct of the inclusions are in liquid phase.

C. DBSCAN Algorithm

The DBSCAN algorithm was developed in 1996,[36]

and since then, it has received wide attention in various
fields. The main advantages of DBSCAN over other
algorithms are as follows: (1) the number of clusters is
determined based on the input data and algorithm’s
parameters, (2) it can identify arbitrarily shaped clusters,
(3) it considers noise/outliers, and (4) it requires two
parameters which can be easily determined based on the
underlying data.[41,42] Its disadvantages are that it is not
entirely deterministic, meaning that reordering of points
may lead to slightly different results. In addition, it is
highly dependent on a distance measure. However, for
the purpose of spatial clustering of inclusions, these
issues are not of great concern. For spatial clustering on
a polished cross section, the distance between points is
the Euclidean distance, or length of the line that
separates them (i.e., a physical distance between inclu-
sions). The variation in results, if the data are reordered,
would also not be significant. If distinct inclusion
clusters do exist in the data, they will always be
identified by the algorithm. However, clusters may be
labeled differently (e.g., cluster 1 might be labeled as
cluster 3), depending on the initial point analyzed by the
algorithm. There may also be minor differences in the
number of individual inclusions assigned to a specific
cluster; however, the objective is to identify clusters of
inclusions and the assignment of a small number of
inclusions to one cluster or another will not substantially
affect the total number of clusters identified. This was
tested on one sample; three trials were conducted by
randomly reordering the data then preforming the
cluster analysis. The cluster assignment was the same
for all three trials.
DBSCAN identifies clusters as dense regions in a data

space, separated by areas of much lower density. In our
case, isolated inclusions are considered as noise (low
density regions) and physically clustered inclusions are
identified as ‘‘clusters’’ (dense regions) based on their
spatial position.
The DBSCAN algorithm is regulated by two param-

eters, epsilon (e) and minimum points (MinPts). The e
parameter is analogous to the ‘‘neighborhood’’ around a
data point, it defines the radius around a point (in
n-dimensions, where n is the input variable dimensions).
MinPts specifies the minimum number of points around
a data point that are within e, such that the main data
point is in a cluster. Each data point is defined as one of
the following:
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� Core point: if its neighborhood (e) contains ‡ MinPts,
� Border point: if its neighborhood (e) contains at least

one core point,
� Noise (or outlier): if it is not a core or border point.

Once all data points have been labeled, connected
core and border points are assigned to a specific cluster,
and all outliers are assigned as noise. Figure 3 presents
an illustrative example of how points are labeled based
on the parameters, e and MinPts.

Although there are various clustering algorithms
available, DBSCAN was applicable and relevant for
our purposes. Since it focuses on spatial clustering and
accounts for noise, and its main advantages over other
algorithms are that the number of clusters is automat-
ically generated, and any shape of cluster can be
identified. The spatial coordinates of inclusions are the

inputs to the algorithm. Therefore, cluster detection is
only dependent on the location of inclusions.

D. Convex Hull Area

To evaluate the area affected by a cluster within a
sample, the convexhull areawas employed rather than the
total inclusion area in the cluster. The convex hull is
basically the smallest convex polygon that encompasses
all points. It can be visualized as a rubber band confining
all points, as shown in Figure 4. Inclusion clusters can
form in various shapes and sizes. In some instances,
inclusion clusters can have concaved morphologies.
Therefore, the convex hull is more indicative of the area
effected by cluster than the total inclusion area. The work
by Seleznev[13] utilized the same metric in examining the
effect of inclusion clusters on fatigue life.
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Fig. 1—Steel chemistry of ladle samples for all heats investigated in this work.
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E. Serial Sectioning

To evaluate the 3D inclusion distribution, several
serial sections were analyzed from samples L1 and T of
heat 3. This was achieved by analyzing a specified area
on the sample in an SEM, then polishing the sample to
remove several micrometers off the surface and expose a
new section for analysis. This process was reiterated
until several serial sections were analyzed. To ensure the
same area that is scanned at every serial section, the four
corners of the area to be scanned were marked using a
Vickers hardness indenter. A 5 kg load was used to
produce indentations deep enough to allow for the
analysis of multiple serial sections that are a few microns
apart. Based on the length of the indent diagonals (d1
and d2), the height (h, effectively the depth of the indent)
is calculated using the following equation:

h ¼ d1 þ d2

4
ffiffiffi

2
p

tan h
2

; ½1�

where d1 and d2 are the lengths of the indent diagonals
and h ¼ 136 deg, a standard angle for the pyramidal
indenter. Equation [1] is derived from the geometry of
the Vickers hardness indenter.
After conducting the SEM analysis on a serial section,

the sample was polished as follows:

� 9 lm polish for 5 minutes.
� 3 lm polish for 5 minutes.
� 1 lm polish for 2 minutes.

The same procedure was carried out following the
SEM analysis of each serial section.
To allow the stacking of serial scans, one of the

indentations on the first section analyzed was set as the
reference point (i.e., having coordinates [0, 0, 0]) from
which the standardized coordinates of other points are
calculated. It was assumed that the first section was
level, such that all points on this section have a
z-coordinate of 0, and consecutive sections have nega-
tive z-coordinates.
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Fig. 2—Slag chemistry from all heats investigated in this work.
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III. RESULTS

The results are summarized in three sub-sections.
Initially, the SEM inclusion analysis results are
presented for all samples in the three heats, display-
ing the overall inclusion composition distribution in
each sample. The second section is focused on the
cluster analysis of two samples, namely L1 and T
from heat 3. This section provides a detailed exam-
ination of some of the inclusion clusters, to assess the
performance of the automated cluster detection
method. In addition, the results of the 2D and 3D
analyses were contrasted. The final section presents
the cluster analysis results for all samples to examine
the clusters detected and their evolution through ladle
processing.

A. Inclusion SEM Analysis

Inclusion analysis was carried out in FEI’s ASPEX
Explorer SEM, utilizing the AFA and EDS for compo-
sitional measurements. The accelerating voltage was set
to 10 kV to minimize effects of the surrounding steel
matrix.[43] The different X-ray absorption effects will
affect EDS composition measurements, not the spatial
position of inclusions or cluster detection. SEM analysis
was carried out on the inner cross section of the lollipop
samples. Once the data were obtained, a manual filter
was applied to the raw data to classify inclusions from
non-inclusions, such as dirt, pores, or contaminants.
The filter was based on the EDS measurements. Particles
having Si counts greater than 100 or Fe content greater
than 85 wt pct were identified as non-inclusions since the

Fig. 3—Illustration of assignment of core, border, and noise (outlier) points in DBSCAN. Reprinted with permission from Ref. [39].

Fig. 4—Example of the convex hull area compared to the total inclusion area.
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only source of Si would be from contaminants and high
Fe contents usually correspond to pores or erroneous
(e.g., false positives) readings.

Alumina inclusions are expected to dominate the
inclusion population early in the ladle, since these heats
were deoxidized and alloyed with Al. Thereafter, MgO
reduction from the slag (with high basicity and low
reducible oxide concentration) occurred in the ladle
furnace leading to higher Mg contents in the liquid steel
and subsequently the formation of magnesium alumi-
nate (spinel) inclusions.

The measured composition distribution of inclusions
is presented in Figure 5 in the form of ternary
proportional symbol plots. In Figure 5, each triangle
represents the area fraction of inclusions within the
respective chemistry, displayed as cation mole fractions.
The inclusion population was predominantly in the

Al2O3–MgO system with low CaO contents. As
expected, the inclusion population was predominantly
alumina after tapping from the BOF, and as the heats
progressed through the ladle to the tundish the inclusion
population evolves to spinel inclusions. This was also
reflected by the increase in the steel’s Al and Mg
contents, and the decrease of MgO content in the slag,
as shown in Figures 1 and 2.

B. Assessment of DBSCAN Algorithm on Inclusion
Cluster Detection

To evaluate the performance of DBSCAN, initially
two samples were analyzed—one sample where inclu-
sion clusters were expected to occur and the other where
no clusters were expected. The first sample selected for
analysis was from the ladle metallurgy furnace, sample

Fig. 5—Inclusion compositional distributions illustrated using ternary proportional symbol plots for (a) Heat 1, (b) Heat 2, and (c) Heat 3. The
dotted line represents the 50 pct liquid region in the Mg-Al-Ca system at steel making temperatures, 1600 �C.
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L1 from heat 3, taken approximately 40 minutes after
BOF tapping. The second sample was a tundish sample
(sample T from heat 3), taken approximately an hour
and a half after BOF tapping at steady state casting
conditions and where the tundish surface was well
covered and protected from reoxidation. Alumina clus-
ters were expected to occur in sample L1. While no
clusters were expected to be detected in sample T,
because all alloying additions have been made and
enough time has passed to allow for inclusion floatation
and removal. In addition, the sequential sectional scans
were made on these two samples to compare the 2D and
3D inclusion distributions.

The cluster detection method was applied to the
2D serial sections separately. To select the algo-
rithm’s parameters, a sequence of values for both
MinPts and epsilon were evaluated and plotted
against the number of clusters identified in a sample.
The ideal values would lie on the ‘‘plateau’’ region of
the plots (i.e., when the same clusters are identified
for a wide range of e and MinPts values). A more
detailed account on the parameter selection method-
ology is provided in the authors’ previous work.[39]

The selected values were 0.06 e and 14 MinPts. It
should be noted that the units for e pertain to the
units of the input variables (i.e., mm in this case).
The selected parameters were adopted to all serial
sections of the L1 and T samples.

Five serial sections were analyzed in sample L1, and
six in sample T. The material removal between serial
sections varied slightly, on average, 7 lm of material
was removed between sections. Sample L1 was com-
posed of mostly of spinel and alumina inclusions, and
sample T had mainly spinel inclusions (Figure 5(c)). In
each serial section of sample L1, seven or eight clusters
were detected, whereas no clusters were detected in any
section of sample T. The inclusion summary for each
section is given in Table I, along with a summary of the
clusters in the last three columns. In terms of inclusion
number and area density (area fraction), sample L1
displayed significantly higher densities and on average
larger inclusions. The ‘‘Pct Inclusions Clustered’’
column is the number inclusions that were assigned to
clusters as a percentage from the total inclusion count.
The ‘‘Convex Hull Density’’ column is a summation of
the convex hull areas of all clusters within the sample
divided by the scan area, given in parts per million,
analogous to the area density. As shown in the table, the
convex hull density is roughly an order of magnitude
larger than the inclusion area density. This implies that
these clusters are not compactly agglomerated inclu-
sions, and they essentially affect a larger area of the
steel.

The spatial distribution of inclusions for the first
section of both samples is presented in Figure 6. In the
figure, inclusions are colored by cluster. Inclusions
classified as noise are assigned to cluster 0, shown in
gray. The coordinate axes are given in mm, while the
inclusion size range is a few microns; therefore, size of
points on this figure is not to scale. The point size is
enlarged for visualization purposes only. A detailed

summary of each cluster from sample L1 is given in
Table II, along with their respective average inclusion
composition.
Figure 7 presents an example of the difference

between the total inclusion area and the convex hull
area in a cluster, for clusters 2 and 7 in sample L1. In
this figure, the size of each point corresponds to the
inclusion’s equivalent diameter, and the shaded region
to the cluster’s convex hull area (points lying outside this
region are ‘‘noise’’ inclusions).
To assess the extent to which the detected clusters on

a 2D plane corresponded to 3D clusters, the inclusion
distributions from each serial section were superim-
posed. Inclusion z-coordinates were calculated based on
the indentation depths at each serial section. The same
DBSCAN parameters were utilized to detect 3D inclu-
sion clusters. In the L1 sample, 13 clusters were detected,
most of which correspond to the same clusters identified
in 2D. No clusters were identified in the 3D inclusion
distribution of sample T. The clusters detected in both
2D and 3D, for sample L1, were compared to assess any
discrepancies.
A total of 8245 inclusions were analyzed in all five

sections of sample L1. The cluster assignment was
consistent between the 2D and 3D analysis for 97 pct of
the inclusions. In both analyses, 3202 (39 pct) were
classified as noise inclusions, and 4754 (58 pct) inclu-
sions were assigned to clusters. The remaining 289
inclusions (3 pct) were assigned to clusters in 3D only,
while there were no inclusions assigned to clusters in 2D
only. Figure 8 presents a visual comparison of these
results, where gray points represent inclusions assigned
to clusters in both 2D and 3D, and black points to
inclusions assigned to cluster in 3D only. It should be
noted the z-axis on this figure is not to scale and noise
inclusions are not included in the figure.

C. Cluster Analysis of all Samples

The cluster detection method was applied to samples
from all other heats. Again, the same parameters were
utilized (e = 0.06 and MinPts = 14). Parameter plots
were assessed for each sample, to verify that the selected
parameters were within the suitable range. A summary
of the inclusion analysis and the clustering results is
presented in Table III. The inclusion density represents
the number of inclusions per mm2, and the area density
(area fraction) is the total inclusion area (lm2) divided
by the scanned area on the sample (mm2), given in parts
per million (ppm). The last three columns of Table III
display the clustering results. A total of 116 clusters were
identified in all samples. A better illustration of the
evolution of clusters from tap to tundish is presented in
Figure 9, displaying the variation of the convex hull
density along the samples for each heat.
It should be noted that the tap sample (L0) in heat 1

had a conspicuously large number, area, and convex
hull density. In contrast to the other tap samples, in
heats 2 and 3, they had relatively low inclusion densities.
This might be due to sampling time and/or location. All
tap samples had predominantly alumina inclusions.
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Table I. Summary of Inclusion and Cluster Analysis, for all Serial Sections of Samples L1 and T from Heat 3

Sample Section
Total
Inclusions

Inclusion
Density (/mm2)

Area
Density (ppm)

Avg. Inclusion
Area (lm2)

Cluster Summary

No. of
Clusters

Pct Inclusions
Clustered

Convex Hull
Density (ppm)

L1 (Heat 3) 1 994 57 339 6 7 60 6176
2 1857 99 624 6.3 7 50 7937
3 1701 92 454 5 7 51 7370
4 1717 96 505 5.3 8 59 10,733
5 1976 114 505 4.4 8 68 12,129

T (Heat 3) 1 202 12 27 2.3 0 0 —
2 699 39 48 1.2 0 0 —
3 339 19 36 1.9 0 0 —
4 867 48 109 2.3 0 0 —
5 448 25 37 1.5 0 0 —
6 710 36 51 1.4 0 0 —

Fig. 6—Clustering (2D) results for the first section of samples L1 (left) and T2 (right) from heat 3. Reprinted with permission from Ref. [39].

Table II. Inclusion Cluster Summary, for Section 1 of Sample L1—Heat 3

Cluster
Total

Inclusions
Avg. Inclusion
Area (lm2)

Total Inclusion
Area (lm2)

Convex Hull
Area (lm2)

Al
(Pct)

Mg
(Pct)

Ca
(Pct)

S
(Pct)

Mn
(Pct)

0 400 3.4 1369 — 62 23 3 6 7
1 43 2.6 112 8816 84 14 0 1 1
2 235 12.8 3017 43,576 95 3 2 0 0
3 17 2.6 45 1335 88 12 0 0 0
4 76 4.5 345 8269 93 4 0 0 2
5 43 2.9 123 3501 93 7 0 0 1
6 34 2.1 70 5013 90 7 0 0 3
7 146 5.7 838 37,178 94 3 1 1 2
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To illustrate the difference in compositions of clus-
tered and noise inclusions in each sample, Figure 10
displays the average composition of clustered inclusions
(top row) and noise inclusions (bottom row), for each
sample. The columns of plots correspond to the different
heats. Samples are represented by circles colored with
different shades of gray, starting with white for L0 and
gradually darker shades of gray for consecutive samples.
It should be noted that the ternary plots are magnified
on the Al corner for all plots in Figure 10. Both spinel
and alumina clusters were observed. Alumina clusters

were more prominent earlier in the ladle (sample L0).
No spinel clusters were observed in heat 2. The average
magnesium content was higher for noise inclusions.

IV. DISCUSSION

Identification of inclusion clusters is critical for the
assessment of steel cleanliness. Although relatively large
clusters can be detected visually, it can be difficult to
identify smaller ones. Such clusters can be detected by
examining the spatial distribution of inclusions, gener-
ated by SEM AFA. However, manual inspection of steel
samples and their corresponding spatial distribution can
be arduous, time consuming, and prone to human error.
The method presented here provides an automated
method of cluster detection.
Initially the analysis was carried out on two samples,

L1 and T from Heat 3, to assess the performance of the
automated cluster detection technique. In addition,
several cross sections were analyzed from both samples,
to obtain the volumetric inclusion distribution. Several
clusters were detected in the L1 sample, while no clusters
were detected in sample T. In sample L1, the same
clusters were identified in several serial sections. The
largest two clusters in this sample are displayed in
Figure 11, clusters 2 and 7 as per Figure 6 and Table II.
The images are stitched BSE images taken during the
AFA at low magnification.

Fig. 7—Zoomed in spatial positioning plots for clusters 2 (left) and 7 (right), for section 1 of sample L1—heat 3. Reprinted with permission
from Ref. [39].

Fig. 8—2D vs 3D clustering, sample L1—Heat 3. Reprinted with
permission from Ref. [39].
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The results from the 2D and 3D analyses were
consistent, for both the clustered (L1) and un-clus-
tered (T) samples. The clusters detected in 2D were
compared with clusters detected from the 3D distri-
bution. The same clusters were identified from both
distributions. The only discrepancy was the additional
small clusters detected in 3D and not in 2D, for
sample L1—heat 3. Such variation is expected when
a new dimension (z-coordinate) is introduced. Never-
theless, these inclusions are only 3 pct of the entire
inclusion population. Therefore, it can be safely
assumed that 2D areal scans provide a sufficient
representation of the 3D volume.

The formation of large inclusion clusters can promote
further agglomeration which can lead to nozzle con-
striction or blockage.[4–6] As displayed by the results
here, such large clusters envelope large areas compared
to their total inclusion area. Therefore, the examination
of the convex hull area of a cluster rather than its total
inclusion area provides a better estimate of the area in
the steel effected by the cluster. Another point worth
noting is that large clusters (clusters with a convex hull
area in tens of thousands lm2) were predominantly Al
rich. The non-clustered inclusions and some of the
smaller clusters (e.g., clusters 1 and 3 in Figure 6 and
Table II) had on average higher Mg contents, closer to

Table III. Summary of Inclusion Analysis and Clustering Results

Heat Sample Inclusions
Inclusion Density

(/mm2)
Area

Density (ppm) Clusters
Pct Inclusions
Clustered

Convex Hull
Density (ppm)

1 L0 9931 2288 5335 16 100 323,368
L1 2654 63 83 5 17 2145
L2 3436 118 89 2 6 418
L3 1159 37 81 4 8 303
L4 1638 39 63 4 32 1735
T 423 8 44 1 4 39

2 L0 321 10 24 4 70 764
L1 3833 151 350 15 44 10,272
L2 5892 87 221 16 19 2336
L3 775 26 490 9 68 12,768
L4 2757 68 178 7 49 5301
T 3322 104 62 0 0 0

3 L0 298 7 10 8 62 353
L1 975 53 306 7 61 5920
L2 2151 67 59 2 3 271
L3 2874 81 341 16 63 10,145
T 202 12 27 0 0 0

Fig. 9—The convex hull density of clusters in each sample, displaying the evolution of clusters in each heat from tap to tundish. There is no L4
sample for Heat 3.
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spinel inclusion chemistry. In these samples, alumina
inclusions formed larger clusters, whereas spinel clusters
were relatively smaller.

With respect to cluster evolution, heats 2 and 3
displayed a similar trend (Figure 9) in terms of cluster
size (quantified by the convex hull densities). The density
was low in the L0 sample, increased in L1, decreased in
L2, then a greater increase in L3, until the cluster density
reduced to nearly zero in the tundish sample (T). The
fluctuations in cluster densities are attributed to

reoxidation events in the ladle, since a distinct peak in
inclusion Al content was observed for the L3 samples of
heats 2 and 3. However, the samples employed here were
taken to track the general evolution of inclusions during
ladle processing and were not matched to the timing of
additions. With regards to heat 1, its L0 sample was
densely clustered, much more so than the L0 samples of
the other two heats, whereas other ladle samples from
heat 1 (L1 to L4) displayed significantly lower cluster
densities, compared to samples in heats 2 and 3,

Fig. 10—Average chemical composition of clustered (top row) and noise (bottom row) inclusions. Each sample is represented by a circle with a
different shade of gray, L0 displayed in white and consecutive samples in gradually darker shades of gray. Each heat is presented in a single
column. Noise inclusions were generally richer in magnesium, compared to clustered inclusions.

Fig. 11—Reconstructed field images of inclusion clusters in sample L1—Heat 3, from all serial sections. Top row of images is cluster 2 and
bottom row is cluster 7, as per the designation given in Fig. 6 and Table II. Scale bar applies to all images (magnification 333x). Reprinted with
permission from Ref. [39].
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although clusters were still observed in these samples. A
possible explanation for this variation in cluster density
between heats could be due to stirring practice. Heat 1
had bottom plug stirring, while heats 2 and 3 were
stirred using a top lance. Tundish samples in all heats
were free of clusters, except for heat 1, where only one
small cluster was identified.

Two distinct cluster morphologies were identified. In
all three heats, all clusters in the tap samples were
composed of agglomerated and sintered globular alu-
mina inclusions, as shown in Figure 12(a). Clusters of
non-globular alumina inclusions were detected in all
other ladle samples (L1 to L4), with an example is given
in Figure 12(b). This type of cluster was the most
prominent in all samples. Although the AFA classifies
inclusions in this cluster as tens or hundreds of small
inclusions, BSE images of these clusters indicate that
they are composed of several elongated non-globular
inclusions, that stretch over a large range but are
relatively small in area.

The same types of clusters were also identified for
spinel inclusions. However, spinel inclusion clusters
were less frequent. In contrast to previous CLSM
studies of spinel clustering,[19,21,22] BSE images of spinel
clusters indicated sintering of spinel inclusions. In
addition, agglomeration of a spinel cluster and an
alumina cluster was also found in some of the samples.
Figure 13 presents an example of such a cluster. The
non-globular inclusions in this cluster are alumina
inclusions, while the globular inclusions are all spinels
with some evidence of sintering between them. The
algorithm identified these inclusions as a single cluster, it
was from sample L1—heat 3.

Clusters of globular spinel inclusions were detected
earlier in the ladle (L1 samples). Further ladle samples
(L2 to L4) displayed clusters of non-globular spinel
inclusions; an example is given in Figure 14. It should be
noted that no Ca was detected in this cluster on this
cross section.

The evolution of clusters from agglomerated globular
to non-globular inclusion clusters was clearly observed
for alumina inclusions, and to a lower extent with spinel
inclusions. Previous studies by Braun[1] and Tiekink[15]

on the morphology of alumina inclusions, suggest that
the main factor controlling morphology is the oxygen
activity. At relatively high oxygen activities (~ 100 of
ppm), alumina inclusions tend to form globular inclu-
sions, which are known to agglomerate and sinter. The
work presented here encountered the same type of
inclusions in the L0 samples. The oxygen contents at tap
were 621, 717, and 492 ppm for heats 1, 2, and 3,
respectively. Similar agglomeration of globular spinel
inclusions was also observed; however, the oxygen
concentration for these samples was relatively low (10
ppm or less). In addition, some of these globular spinel
inclusions seemed to agglomerate and sinter (Fig-
ure 13—bottom right EDS map), countering some of
the arguments made by earlier CLSM studies[19,21,44]

regarding the agglomeration and sintering of spinel
inclusion.
Another type of cluster was also observed as shown in

Figure 15. This cluster consisted of a central complex
inclusion (calcium magnesium aluminate) surrounded
by non-globular alumina. Other clusters like this were
observed, but the large central feature was sometimes an
alumina or spinel inclusion.
Such clusters, where micro-inclusions agglomerate

around a single large inclusion, were common in the
samples analyzed in this study. Figure 16 illustrates the
extent of these clusters. The figure is a histogram of the
largest inclusion size in each of the identified 116
clusters. Although most clusters were composed of
relatively smaller inclusions (maximum inclusion area<
20 lm2), 17 pct (20 clusters) had a maximum inclusion
size greater than 100 lm2. There was no observed
relationship between this type of cluster and sampling,
since they were identified in all sample types except
tundish samples, where only one small cluster was
detected. This further corroborates the suggestion that
macro-inclusions, in addition to being deleterious to the

Fig. 12—BSE images of types of alumina clusters identified. (a) Agglomerated sintered globular alumina inclusions. (b) Non-globular alumina
inclusions. Both images were taken at 20kV accelerating voltage.
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mechanical properties of steel,[24,45] can promote the
agglomeration of additional smaller inclusions to form a
larger inclusion cluster.[5]

V. CONCLUSIONS

A density-based spatial clustering algorithm (DBSCAN)
was applied to identify physical inclusion clusters from the
output of inclusion SEM analysis. Initially, this approach
was evaluated on two samples, a ladle and a tundish sample.
Multiple serial sections were also analyzed from both
samples to provide a 3D perspective on the distribution of
inclusions. Once this tool was developed, it was applied to a
series of samples from three aluminum-alloyed heats to
investigate the evolution of clusters. The following obser-
vations were noted:

1. The work presented here can be readily applied to
analyze the output generated from SEM AFA, pro-
viding an autonomous tool for inclusion cluster
detection.

2. The stacking of serial sections enabled the analysis of
clusters from a 3D perspective. Several clusters were
identified in each 2D section of the ladle sample and
none in the tundish sample. The results for the 3D
analysis corroborated the findings in 2D with slight
differences. The same clusters were identified in both
2D and 3D, with a few additional, but small, clusters
identified in 3D only.

3. The cluster convex hull area was more indicative of
the area in a sample affected by clustering, as op-
posed to the total inclusion area in a cluster.

4. Tap samples from all three heats displayed clus-
tering of agglomerated globular alumina inclu-
sions. Further in the ladle, alumina clusters were
detected as elongated, non-globular inclusions.
Spinel inclusions displayed a similar trend in clus-
ter morphology, but fewer spinel clusters were ob-
served. Agglomeration of globular spinel inclusions
was observed in early ladle samples (L1), and BSE
images suggested they sintered to form larger
inclusions.

Fig. 13—BSE image of an inclusion cluster with clustered alumina (non-globular inclusions) and spinel (globular inclusions) inclusions (top).
Magnified images and EDS maps of locations ‘‘a’’ (bottom left) and ‘‘b’’ (bottom right) of the BSE image on top.
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Fig. 14—BSE image and EDS map of a non-globular spinel inclusion cluster.

Fig. 15—(a) BSE image of agglomeration of small alumina inclusions around a large Mg-containing calcium alumina inclusion. (b) Magnified
BSE image of the large inclusion in (a). (c) EDS mapping of BSE image in (b).
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5. Approximately 20 pct of the clusters observed had
the appearance of smaller micro-inclusions agglom-
erated around one large macro-inclusion.
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Fig. 16—Histogram of maximum inclusion area in each cluster.

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 52B, DECEMBER 2021—3985

https://doi.org/10.1155/2021/5592878
https://doi.org/10.3390/met11060914

	Automated Detection of Non-metallic Inclusion Clusters in Aluminum-deoxidized Steel
	Abstract
	Introduction
	Materials and Methods
	Materials
	Visualization of Inclusion Chemistry
	DBSCAN Algorithm
	Convex Hull Area
	Serial Sectioning

	Results
	Inclusion SEM Analysis
	Assessment of DBSCAN Algorithm on Inclusion Cluster Detection
	Cluster Analysis of all Samples

	Discussion
	Conclusions
	Acknowledgments
	References




