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Polynomial representation of partial excess Gibbs energy (i.e., activity coefficient) in
multicomponent dilute solution has been widely used after Wagner. Although Wagner’s
Interaction Parameter Formalism has been known to be only strictly valid at infinite dilute
concentration, it has been used often, even at finite concentration, due to its mathematical
simplicity. Nevertheless, several attempts have been made to correct the formalism to be
thermodynamically consistent at finite concentration. Among those, Unified Interaction
Parameter Formalism proposed by Pelton and Bale, which may be considered as an
extension of Darken’s quadratic formalism, has obtained much attention. However, there
have been much confusion and debate about the way of the correction. Recently, a
thermodynamic analysis was reported that there are infinite numbers of ways to correct
Wagner’s formalism to be thermodynamically consistent, which may prevent one from using the
Unified Interaction Parameter Formalism with confidence. In the present article, the correction
to the Wagner’s formalism is discussed by revisiting Darken’s condition of the thermodynamic
consistency. It is shown that the correction to the Wagner’s formalism can be made uniquely. It
is pointed out that to ensure the thermodynamic consistency among the activity coefficients of
all components, Gibbs–Duhem relation and Maxwell relation among all components including
solvent–solute, must be obeyed. Derived expressions for activity coefficients of all components
by path-independent integration are also shown to be the same as those obtained by
differentiating a corresponding integral excess partial Gibbs energy.
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I. INTRODUCTION

THERMODYNAMIC properties of a multicompo-
nent dilute solution such as molten steel, copper,
manganese are most well practically characterized by
partial excess Gibbs energies of solutes: in other words,
activity coefficients of solutes. For practical applica-
tions, Wagner proposed a Taylor series expansion for
the partial excess Gibbs energy, and it has been most
widely used in the metallurgical community.[1] Although
this formalism is strictly valid only at infinite dilution,
thus thermodynamically inconsistent at a finite concen-
tration as discussed by Darken,[2,3] the formalism has
been still used at finite concentrations. Depending on the
system used, however, the formalism can cause signif-
icant errors.

Darken corrected the Wagner’s formalism to be
thermodynamically consistent at finite concentration,
but it has not been well appreciated. In 1986, Pelton and
Bale proposed a modified form of the Wagner’s formal-
ism,[4] which has been further discussed in their subse-
quent articles.[5,6] The basic idea of their modification is
a correction to the Wagner’s formalism by adding
activity coefficient of solvent to activity coefficients of all
solutes. This makes the Gibbs–Duhem relation for the
activity coefficients among the solvent and all the solutes
be obeyed, even at finite concentration. They also stated
that Maxwell’s relation for partial excess Gibbs energy
should also be respected.[4–6] Their proposed formalism
exactly reduces to Wagner’s formalism at infinite dilu-
tion, to Darken’s quadratic formalism at finite concen-
tration, and also could be reduced to Lupis and Elliott’s
formalism[7] as well as that of Margules.[8] They named
it as a Unified Interaction Parameter Formalism
(UIPF), and the formalism has been successfully applied
to multicomponent metallic solutions.[9–13]

Some other approaches also have been proposed to
make the Wagner’s formalism be thermodynamically
consistent.[14–18] Srikanth and Jacob[14] attempted to
keep the original expression of Wagner for the activity
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coefficient of solute, while the activity coefficient of
solvent can be obtained by path-dependent integration of
the Gibbs–Duhem equation. This is due to the thermo-
dynamic inconsistency of the original expression of
Wagner’s formalism. Hajra and coworkers suggested
using the activity coefficients of solutes derived from a
Maclaurin infinite series of integral excess Gibbs
energy.[15–17] While the approaches by Srikanth and
Jacob[14] and Hajra et al.[15–17] keep the original expres-
sion of Wagner for the activity coefficient of solute, the
proposal by Darken,[2,3] Pelton and Bale[4–6] uses cor-
rected forms of the activity coefficient of solutes. All
these approaches proposed one to consider the activity
coefficient of solvent to represent thermodynamic con-
sistency between all components through the Gibbs–
Duhem equation, which was not considered by Wagner.
There has also been a debate that the activity coefficient
of solvent satisfying the Gibbs–Duhem relation can be
obtained, not in a unique way, but in an infinite number
of ways.[18] This would make one to hesitate to have a
confidence in the value calculated by the UIPF.[19]

Somewhat different approaches are also available in
which the activity coefficient of non-metallic solute was
formulated as a function of the composition of a
metallic solvent of two-component.[20–23]

In the present article, it will be shown that the activity
coefficient of solvent can be obtained uniquely, for a
given polynomial expression for the activity coefficient
of solute, in a thermodynamically consistent manner. To
make this discussion more clear, the corrections made
previously are briefly reviewed and it will be pointed out
what should be explicitly considered to have the
thermodynamic consistency. Two approaches will be
shown to obtain expression of the activity coefficient of
the solvent in a ternary solution: (1) integrating differ-
ential equations containing activity coefficients of
solutes and (2) differentiating an integral excess Gibbs
energy. Similar approaches are expanded for a multi-
component solution, and it will be shown that the same
conclusion is valid in general. This discussion will
provide a solid background for the use of such formal-
ism with a confidence. As long as the expression of the
activity coefficient of solute has a sound theoretical
foundation, and the activity coefficient of solvent can be
obtained in a unique and thermodynamically consistent
way based on the activity coefficients of solutes, the
obtained activity coefficient of solvent should have its
own physical meaning.

The present analysis has been carried out under
constant temperature and constant pressure condition in
most cases. Temperature dependence of the activity
coefficient is briefly discussed in Section IV

II. THERMODYNAMIC CONSISTENCY
OF INTERACTION PARAMETER FORMALISM

Let us consider an N-component solution
1–2–3–� � �–N where 1 is a solvent and the others are
solutes. According to Wagner’s formalism, the activity
coefficient of any solute i (ci) is expressed as:

lnðci=c�i Þ ¼
XN

j¼2

�ijXj ði ¼ 2; 3; . . . ;NÞ ½1�

where c�i , �ij, and Xj are the Henrian activity coefficient of
solute i, a first-order interaction parameter between solutes
i and j (following the notation after Pelton and Bale[4]),
and mole fraction of solute j, respectively. In addition, the
following reciprocity relation was proposed:

�ij ¼ �ji ½2�

when X1 approaches to 1.[1] This has been extended to
include second-order terms by Lupis and Elliott[7]:

lnðci=c�i Þ ¼
XN

j¼2

�ijXj þ
XN

j¼2

qjiX
2
j þ

XN

j;k¼2

qj;ki XjXk ½3�

where qji, qj;ki are the second-order interaction
parameters.

A. Darken: Quadratic Formalism

For a ternary 1–2–3 solution, Darken pointed out
that application of Eq. [1] is only valid at infinite
dilution (X1 !1), and generally, it is not thermodynam-
ically consistent at finite concentration.[3] He proposed
that any formalism should satisfy the following condi-
tion of thermodynamic consistency between the solutes
2 and 3:

ð1� X3Þ
@ ln c2
@X3

þ X3
@ ln c3
@X3

¼ X2
@ ln c2
@X2

þ ð1� X2Þ
@ ln c3
@X2

½4�

In addition, Raoult’s law and Henry’s law must be
obeyed by the solvent and the solutes, respectively, as
limiting conditions at infinite dilution. Then, by ana-
lyzing several binary and ternary systems, he proposed
a quadratic formalism to represent activity coefficients
of solutes:

lnðc2=c�2Þ ¼�22X2 þ �23X3 �
1

2
�22X

2
2 �

1

2
�33X

2
3 � �23X2X3

½5�

lnðc3=c�3Þ ¼�32X2 þ �33X3 �
1

2
�22X

2
2 �

1

2
�33X

2
3 � �23X2X3

½6�

Mathematical forms of the Eqs. [5] and [6] are very
similar to the Eq. [3], and it reduces to Eq. [1] at infi-
nite dilution. He had shown that �23 ¼ �32. He also
considered the activity coefficient of the solvent to be[3]:

ln c1 ¼ � 1

2
�22X

2
2 �

1

2
�33X

2
3 � �23X2X3 ½7�

The formalism eliminates the thermodynamic incon-
sistency of Wagner’s formalism even at finite concen-
tration via Gibbs–Duhem equation at constant T and P:
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X1d ln c1 þ X2d ln c2 þ X3d ln c3 ¼ 0 ½8�

Therefore, it was considered that the Eqs. [4] and [8]
are to be obeyed in the development of an activity
coefficient equation in a ternary solution.

In this approach, as seen in the name of the
formalism, the quadratic term of composition is
considered.

B. Pelton and Bale: Unified Interaction Parameter
Formalism

The Darken’s formalism applied for several ternary
solutions has been generalized and extended into a
multicomponent solution by Pelton and Bale.[4–6] They
proposed the following form of ci for solutes and c1 for
solvent:

lnðci=c�i Þ ¼ ln c1 þ
XN

j¼2

�ijXj

þ
XN

j;k¼2

�ijkXjXk þ
XN

j;k;l
¼2

�ijklXjXkXl þ . . .

½9�

ln c1 ¼� 1

2

XN

j;k¼2

�jkXjXk �
2

3

XN

j;k;l
¼2

�jklXjXkXl

� 3

4

XN

j;k;l;m
¼2

�jklmXjXkXlXm þ . . .

½10�

where they found that �ij ¼ �ji, �ijk ¼ �jik ¼ �kij ¼ . . .,
and so on. If only first-order interaction parameters
are considered by setting all higher-order parameters
�ijk, �ijkl, etc. zero, the above equations are reduced to:

lnðci=c�i Þ ¼ ln c1 þ
XN

j¼2

�ijXj ði ¼ 2; 3; . . . ;NÞ ½11�

ln c1 ¼� 1

2

XN

j;k¼2

�jkXjXk ½12�

Equations [11] and [12] are identical to Darken’s for-
malism for a ternary case (Eqs. [5] to [7]). Pelton and
Bale noticed that the last three terms of the Eqs. [5]

and [6] are identical to those in Eq. [7]. They added
the ln c1 to the original form of ln ci for all solutes
(Eq. [1]) as a corrective function. This results in an obe-
dience of the Gibbs–Duhem relation in the multicom-
ponent solution at constant T and P:

XN

i¼1

Xid ln ci ¼ X1d ln c1 þ X2d ln c2 þ � � � þ XNd ln cN ¼ 0

½13�

and of the following thermodynamic relationship
which is equivalent to Darken’s condition of thermo-
dynamic consistency (See Appendix A):

@ ln cj
@ni

¼ @ ln ci
@nj

½14�

where ni is the number of moles of component i. The
formalism has been successfully applied several metal
solutions.[9–12] The formalism keeps the simple form of
Wagner’s formalism, and it should be stressed that the
formalism can utilize already well-tabulated interaction
parameters for the Wagner’s formalism.[24]

C. Srikanth and Jacob: Path-Dependent Integration

Srikanth and Jacob considered the Eqs. [1] and [3] as
truncations of the Maclaurin infinite series (Taylor series
at zero concentration).[14] Upon the truncation, the
activity coefficients of solutes are thermodynamically
inconsistent, except at infinite dilution. Therefore, they

pointed out that the interaction parameters (�ij; q
j;k
i )

should satisfy special relationships to be thermodynam-
ically consistent through the Eq. [4]. Moreover, as the
ln ci’s are inexact due to the truncation, the ln c1, which
may be obtained by the integration of the Gibbs–Du-
hem equation (Eq. [13]), does depend upon the path of
integration. In this way, they obtained expressions of the
ln c1 per chosen integration paths, while they kept the
original expression for the ln ci to be Eq. [1] for the
first-order case.
Their approach keeps the original mathematical form

of Wagner’s formalism for solutes without adding any
corrective function, although they are thermodynami-
cally inconsistent except at infinite dilution. However, it
was possible to obtain ln c1 to be consistent with the
Gibbs–Duhem equation (Eq. [13]) because of the
path-dependent integration. For example, if first-order
interaction parameters are considered for solute 2 and 3
in a 1–2–3 solution from the Eq. [1]:
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lnðc2=c�2Þ ¼ �22X2 þ �23X3 ½15�

lnðc3=c�3Þ ¼ �23X2 þ �33X3 ½16�

along the path X2=X3 ¼ K23, where K23 is a constant,
they obtained:

ln c1 ¼
�22X

2
2 þ 2�23X2X3 þ �33X

2
3

ðX2 þ X3Þ2

" #
ðX2 þ X3Þ½

þ lnð1� ðX2 þ X3ÞÞ�
½17�

through the integration of Eq. [8].
Upon the paths taken for the integration, there could

be many numbers of the expression for the ln c1. This is
due to the thermodynamic inconsistency of the Eqs. [15]
and [16]. Although the Gibbs–Duhem relation is satis-
fied, the thermodynamic consistency equation (Eq. [4]) is
not obeyed except at infinite dilute concentration. It is
noted that regardless of the way of integration to get the
ln c1, it is a prerequisite to have the thermodynamically
consistent expression of ln ci for all solutes i.

D. Malakhov: Corrective Function

Malakhov raised an issue regarding a uniqueness of
the expression for ln c1, even though ln c2 and ln c3 obey
the condition of thermodynamic consistency (Eq. [4]).[18]

In his analysis for a ternary 1–2–3 solution, he defined a
corrective function uðX2;X3Þ to be added to inexact
forms of ln c2 and ln c3 (Eqs. [15] and [16]), so the
following revised forms are considered:

lnðc2=c�2Þ ¼ �22X2 þ �23X3 þ u2 ½18�

lnðc3=c�3Þ ¼ �23X2 þ �33X3 þ u3 ½19�

to satisfy the Eq. [4] for the thermodynamic consis-
tency:

ð1� X3Þ�23 þ X3�33 þ
@u2

@X3
¼ X2�22 þ ð1� X2Þ�23 þ

@u3

@X2

½20�

As long as the final form of activity coefficients of
components are to be expressed as a polynomial func-
tion, the corrective functions u2 and u3 must be a
form of the quadratic polynomial: u2 ¼ a22X2

2 þ
a23X2X3 þ a33X2

3 and u3 ¼ b22X
2
2 þ b23X2X3 þ b33X

2
3,

where all aij’s and bij’s are constant according to the

form of the Eq. [20]. Inserting u2 and u3 into the
Eq. [20] and setting all coefficients of terms involving
the independent variables X2 and X3 to be zero, the
following conditions are obtained:

aij ¼ bij ði; j ¼ 2; 3Þ ½21�

yielding u2 ¼ u3. Therefore, the corrective function
must be identical for the two solutes (u2 ¼ u3 ¼ u),
and hereafter it is denoted as u*. Furthermore, it is

also obtained:

2a22 � a23 ¼ �23 � �22 ½22�

2a33 � a23 ¼ �23 � �33 ½23�

Malakhov pointed out that three variables
(a22; a23; a33) with two equations Eqs. [22] and [23]
result in an infinite number of sets for the a22; a23, and
a33, so does for the corrective function u. If one
chooses

a22 ¼ � 1

2
�22; a33 ¼ � 1

2
�33; a23 ¼ ��23 ½24�

thus,

u ¼ � 1

2
�22X

2
2 � �23X2X3 �

1

2
�33X

2
3

½25�

then the form of u becomes identical to the ln c1 in
Eq. [7], and the Eqs. [18] and [19] become identical to
the Eqs. [5] and [6]. Via the Gibbs–Duhem integration,
the obtained ln c1 will be the same as the Eq. [7], as
well as the u shown in the Eq. [25].
On the other hand, other choices for the a22; a23, and

a33 satisfying the Eqs. [22] and [23] (thus satisfying the
thermodynamic consistency through the Eq. [20]) may
be considered. The other form of u than the Eq. [25]
may have the following form[18]:

u ¼ �23 � �22
2

X2
2 þ

�23 � �33
2

X2
3 ½26�

This alternative form of u is inserted into Eqs. [18]
and [19], then carrying out the Gibbs–Duhem integra-
tion, at least numerically or through a special path as
was done by Srikanth and Jacob,[14] will result in a
different form of ln c1. Nevertheless, this other choice
still satisfies the thermodynamic consistency of Eq. [20]
and the Gibbs–Duhem relation (Eq. [13]), both. Based
on this reasoning, Malakhov claimed that limitless
numbers of such corrective functions can be generated,
thus any correction may not be used with high confi-
dence.[18] Instead of using this formalism with non-
unique correction, he suggested using a modern
CALPHAD-type approach where the activity coefficient
(partial excess Gibbs energy) can be derived from an
integral excess Gibbs energy by differentiating it.
This analysis is in line with the correction to Wagner’s

formalism previously done by Darken,[2,3] and Pelton
and Bale.[4–6] However, in the following section, it will
be shown that there is one and only one expression for

*Although Malakhov added the same u to Eqs. [18] and [19] in his
analysis without clear reasoning,[18] it is shown in the present article
that u2 and u3 must be the same.
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the activity coefficient of solvent for given polynomial
expressions of activity coefficients of solutes by revisiting
the condition for the thermodynamic consistency pro-
posed by Darken.[3] Examples will be shown by a
ternary case, but it will be further shown to be valid in a
multicomponent solution.

III. CORRECTION TO MAKE INTERACTION
PARAMETER FORMALISM BE THERMODY-

NAMICALLY CONSISTENT

In the discussions and debate made in previous
publications regarding thermodynamic consistency of
polynomial representations for the activity coefficient of
components,[2–6,14,18] two criteria have been employed:
Gibbs–Duhem relationship (Eq. [8]) and Darken’s
condition of thermodynamic consistency (Eq. [4]) for
solutes in a ternary solution (1–2–3 where 1 is a solvent).
Although

1. both corrective functions u in Eq. [25] and in Eq. [26]
make the ln c2 (Eq. [18]) and ln c3 (Eq. [19]) satisfy the
condition of thermodynamic consistency (Eq. [4]),
and

2. ln c1 is subsequently obtained in such a way that the
Gibbs–Duhem relation is obeyed through integra-
tion,

it is not clear whether the condition of thermodynamic
consistency is also obeyed between solute (2 and 3) and
solvent (1). As the Gibbs–Duhem relation concerns all
components including the solvent, the condition of
thermodynamic consistency must also concern the
relation between solutes and the solvent, not just
between a solute and the other solute.

A. Thermodynamic Consistency in a Ternary System:
From Partial Excess Gibbs Energy

Applying Eq. [14] for solvent 1 and solute 2 in the
ternary 1–2–3 solution, the following relationship is
obtained:

@ ln c1
@n2

¼ @ ln c2
@n1

½27�

Taking X2 and X3 as independent variables, and using
the following derivatives,

@X2

@n1
¼ @ðn2=nÞ

@n1
¼ �n2

n2
¼ �X2

n

@X2

@n2
¼ � � � ¼ 1� X2

n
;

@X3

@n1
¼ �X3

n
;

@X3

@n2
¼ �X3

n

½28�

where n is the total number of moles of all compo-
nents in the solution, so n ¼ n1 þ n2 þ n3 in this exam-
ple. Using the above equations, it is obtained:

@ ln c1
@n2

¼ @ ln c1
@X2

@X2

@n2

� �
þ @ ln c1

@X3

@X3

@n2

� �

¼ 1

n

@ ln c1
@X2

ð1� X2Þ þ
@ ln c1
@X3

ð�X3Þ
� � ½29�

Similarly,

@ ln c2
@n1

¼ 1

n

@ ln c2
@X2

ð�X2Þ þ
@ ln c2
@X3

ð�X3Þ
� �

½30�

Therefore, according to the Eq. [27], the following
equation is obtained which represents the conditions
of thermodynamic consistency between two compo-
nents (solvent 1 and solute 2) in the 1–2–3 solution:

@ ln c1
@X2

� X2
@ ln c1
@X2

� X3
@ ln c1
@X3

¼ �X2
@ ln c2
@X2

� X3
@ ln c2
@X3

½31�
Following a similar procedure, the thermodynamic

consistency condition for solvent 1 and the other solute
3 is obtained as:

@ ln c1
@X3

� X2
@ ln c1
@X2

� X3
@ ln c1
@X3

¼ �X2
@ ln c3
@X2

� X3
@ ln c3
@X3

½32�

Any polynomial representation for activity coeffi-
cients of solvent and solutes must obey the above
conditions (Eqs. [31] and [32]), apart from the Eq. [4].
To correct the original Wagner’s formalism to be
thermodynamically consistent, a corrective function u
is added to the ln c2 and ln c3 as seen in Eqs. [18] and
[19]. Inserting these equations into Eqs. [31] and [32]
gives:

ð1� X2Þ
@ ln c1
@X2

� X3
@ ln c1
@X3

¼ �X2 �22 þ
@u
@X2

� �
� X3 �23 þ

@u
@X3

� � ½33�

ð1� X3Þ
@ ln c1
@X3

� X2
@ ln c1
@X2

¼ �X2 �23 þ
@u
@X2

� �
� X3 �33 þ

@u
@X3

� � ½34�

From Eqs. [33] and [34], it is obtained:

@ ln c1
@X2

� @ ln c1
@X3

¼ ð�23 � �22ÞX2 þ ð�33 � �23ÞX3 ½35�

Then, it can be easily shown that:

ln c1 ¼ � 1

2
�22X

2
2 � �23X2X3 �

1

2
�33X

2
3

½36�
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which satisfies the above condition and Raoult’s law at
infinite dilution. Therefore, the ln c1 has been obtained,
no matter what the corrective function u is.

Inserting the ln c1 and u ¼ a22X2
2 þ a23X2X3 þ a33X2

3

into Eqs. [33] or [34] yields:

u ¼ � 1

2
�22X

2
2 � �23X2X3 �

1

2
�33X

2
3

½37�

Therefore, the derived ln c1 is indeed identical to the
corrective function u, and to the expression proposed
by Darken (Eq. [7]) and by Pelton and Bale (Eq. [12])
for the ternary case. It is evident that the expression
for the ln c1 in the Eq. [36] also obeys the Gibbs–Du-
hem relation along with ln c2 and ln c3 corrected by u
(Eq. [37]). Therefore, the ln c1 and the corrective func-
tion u have been obtained as:

� the corrective function u is identical to the ln c1
� ln c1, ln c2, and ln c3 obey the Gibbs–Duhem relation

(Eq. [8])
� ln c1, ln c2, and ln c3 obey the thermodynamic con-

sistency Eqs. [4], [31], and [32].

The Eqs. [31] and [32] are additional requirements to
fulfill the thermodynamic consistency, which have not
been explicitly described previously. Regardless of the
choice of u, the ln c1 is determined from the form of ln c2
and ln c3 before the correction, through the condition of
thermodynamic consistency. Other choices are thermo-
dynamically inconsistent at finite concentration.

B. Alternative Proof in the Ternary System: From
Integral Excess Gibbs Energy

Following the approach proposed by Bale and Pel-
ton,[5,6] the above proof can be made more clearly and
simply by deriving all partial excess Gibbs energies from
a corresponding integral excess Gibbs energy. Suppose
an integral molar excess Gibbs energy of the ternary
solution is given as a general quadratic polynomial
function of composition:

gex ¼ X1X2x12 þ X2X3x23 þ X1X3x13 þ C2X2 þ C3X3

½38�

where x12, x23, x13, C2, and C3 are constants and C2

and C3 may not be zero because the equation is valid
in the solvent-rich region.[2,6] This expression may be
rationalized by a regular solution theory.[6] By replac-
ing X1 ¼ 1� X2 � X3, partial excess Gibbs energies
can be obtained by the following relationship:

gexi ¼ @ðn�gexÞ
@ni

�

nj 6¼ni
¼ RT ln ci ½39�

where n� gex is the total excess Gibbs energy in J.
Differentiating the integral excess Gibbs energy gives

ln c1 ¼½x12X
2
2 þ x13X

2
3 þ ðx12 þ x13 � x23ÞX2X3�=RT

½40�

ln c2 ¼½x12X
2
2 þ x13X

2
3 þ ðx12 þ x13 � x23ÞX2X3 � 2x12X2

þ ðx23 � x12 � x13ÞX3 þ x12 þ C2�=RT

½41�

ln c3 ¼½x12X
2
2 þ x13X

2
3 þ ðx12 þ x13 � x23ÞX2X3 � 2x13X3

þ ðx23 � x12 � x13ÞX2 þ x13 þ C3�=RT

½42�

By setting:

½x12 þ C2�=RT ¼ ln c�2 ½43�

½x13 þ C3�=RT ¼ ln c�3 ½44�

½ � 2x12�=RT ¼�22 ½45�

½ � 2x13�=RT ¼�33 ½46�

½x23 � x12 � x13�=RT ¼�23 ½47�

the above Eqs. [40] to [42] change to:

ln c1 ¼� 1

2
�22X

2
2 �

1

2
�33X

2
3 � �23X2X3 ½48�

ln c2 ¼ ln c�2 þ �22X2 þ �23X3 �
1

2
�22X

2
2 �

1

2
�33X

2
3 � �23X2X3

¼ ln c�2 þ �22X2 þ �23X3 þ u

½49�

ln c3 ¼ ln c�3 þ �33X3 þ �23X2 �
1

2
�22X

2
2 �

1

2
�33X

2
3 � �23X2X3

¼ ln c�3 þ �33X3 þ �23X2 þ u

½50�

It is seen that:

� the corrective function u is identical for both ln c2 and
ln c3

� the corrective function u in the above example is the
same as the ln c1

� ln c1 obtained in the Eq. [48] is the same as the
Eq. [36]

Therefore, it can be concluded that the ln c1 can be
obtained in a unique form per given polynomial form of
an integral excess Gibbs energy or partial excess Gibbs
energies of solutes (activity coefficients of solutes), no
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matter how it has been obtained (differentiation or
integration), as long as the activity coefficient of solute
is thermodynamically consistent. The ln c1 does not
depend on the form of corrective function nor path of
integration. Moreover, the corrective function to the
activity coefficient of solutes should be the same as the
activity coefficient of the solvent. This ensures all
mandatory requirements of thermodynamic principles:
Maxwell relations (Eqs. [4], [31], and [32]), and
Gibbs–Duhem equation (Eq. [8]).

C. Multicomponent System

Darken’s condition of thermodynamic consistency
between two solutes was shown by himself for a
ternary case (Eq. [4]),[3] and it has been extended to a
multicomponent solution by Srikanth and Jacob for a
relation of activity coefficients between two solutes.[14]

As was shown in Sections. III–A and III–B for the
ternary case, to examine the condition between
solvent and solute in a multicomponent solution
1–2–� � �–N where 1 is a solvent, the equation for the
condition of thermodynamic consistency is revised in
the present study in more general form (See
Appendix A):

XN

k¼2

ðdik � XkÞ
@ ln cj
@Xk

¼
XN

k¼2

ðdjk � XkÞ
@ ln ci
@Xk

½51�

where i and j are 1 (solvent), 2, . . ., N. If N ¼ 3, i ¼ 2
and j ¼ 3, then the above equation reduces to the orig-
inal Darken’s equation (Eq. [4]). If i 6¼ 1 and j 6¼ 1,
then the above equation reduces to the equation
derived by Srikanth and Jacob.[14] For the present
analysis, if i ¼ 1 and j 6¼ 1, then

�
XN

k¼2

Xk

@ ln cj
@Xk

¼ @ ln c1
@Xj

�
XN

k¼2

Xk
@ ln c1
@Xk

½52�

showing the condition of thermodynamic consistency
between the solvent 1 and a solute j.

A corrective function uðX2;X3; . . . ;XNÞ is defined,
and added to incorrect ln cj of first-order formalism that:

lnðcj=c�j Þ ¼
XN

k¼2

�jkXk þ u ½53�

@ ln cj
@Xi

¼ �ji þ
@u
@Xi

½54�

Inserting the Eqs. [54] into [52] yields:

@ ln c1
@Xj

�
XN

k¼2

Xk
@ ln c1
@Xk

¼ �
XN

k¼2

Xk �jk þ
@u
@Xk

� �
ðj ¼ 2; 3; . . . ;NÞ

½55�

Considering a similar equation, replacing j by i, and
subtracting one from the other, one obtains:

@ ln c1
@Xi

� @ ln c1
@Xj

¼
XN

k¼2

ð�jk � �ikÞXk ði; j ¼ 2; 3; . . . ;NÞ

½56�

From the form of the above equation, ln c1 should
have a formula

ln c1 ¼
XN

k¼2

akkX
2
k þ

XN

k;l¼2
k 6¼l

bklXkXl þ
XN

k¼2

ckXk ½57�

Using the Eq. [56], it can be shown as (See Appendix
B):

ln c1 ¼ � 1

2

XN

j;k¼2

�jkXjXk ½58�

which is identical to the ln c1 proposed by Pelton and
Bale[4–6] (Eq. [12]). Therefore, the ln c1 can be uniquely
defined, no matter how the u is defined. And the cor-
rective function u can be uniquely obtained through
the Gibbs–Duhem equation along with all ln ci’s,
which is indeed identical to the ln c1.
Expansion to include higher-order interaction param-

eters (�ijk; �ijkl, etc.) are straightforward.

IV. DISCUSSION

In general, partial properties can be obtained by
differentiating an expression of the corresponding inte-
gral property, as was shown in Section III–B. By this
process, the partial properties can be made in an unique
way, and this assures thermodynamic consistency.
Therefore, it may be said that there are an infinite
number of ways of expressing the partial properties of a
solution in a thermodynamically consistent way, for
each infinite number of expressions for the integral
property. However, calling these ‘‘correction’’ to Wag-
ner’s formalism is a stretch since most of them would
not resemble Wagner’s formalism at all. The mathemat-
ical expression for the integral property should be based
on a reasonable solution model. The quadratic formal-
ism, with polynomial expansions to cubic and high-
er-order terms, satisfies this criterion since it is based on
regular solution theory. Wagner’s formalism is based on
the quadratic formalism, but is not thermodynamically
consistent except in very dilute solutions. The UIPF can
be derived from the regular solution theory as the basis
but corrects the thermodynamic inconsistency in non-di-
lute solutions while reducing to Wagner’s formalism at
infinite dilution.
The present thermodynamic consistency analysis has

been applied to the composition dependence of the
activity coefficients of all the components. Since the
activity coefficient of a component i in a logarithm scale
is obtained by a partial differential of the total excess
Gibbs energy by the amount of the component i (see
Eq. [39]), partial differentials by the amount of different
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components yield different excess partial Gibbs energies
and corresponding activity coefficients. Nevertheless,
these must satisfy the Gibbs–Duehm relation (Eq. [13])
and the thermodynamic consistency equation (Eq. [51])
by the Maxwell relation. This ensures the uniqueness of
the correction to the Wagner’s interaction parameter
formalism.

Temperature dependence of the activity coefficients of
components may be also sought in view of the thermo-
dynamic consistency. It may be tested by applying the
Gibbs–Duhem relation under constant pressure (but not
under constant temperature) and the Maxwell relation
in the following ways:

XN

i¼1

Xidgi þ sdT ¼ 0 ½59�

where s is the molar entropy of the solution and,

@

@ni

@G

@T

� �
¼ @

@T

@G

@ni

� �
½60�

However, since the partial differential to T does not
yield any different expression per each component i,
these relations do not provide some useful relationship,
contrary to the present analysis for the composition
dependence of the activity coefficient.

Temperature dependence of parameters in the UIPF,
for example, ln c�2, ln c

�
3, �22, �33, and �23 in a ternary

1–2–3 system, depend on the temperature dependence of
interaction energies (x12, x23, and x13)) and that of C2

and C3, as can be seen in the Eq. [38]. By inspecting the
Eqs. [43] through [47], it is evident that there is no
interrelationship among the temperature dependence of
the parameters, in general. This means, if the formalism
is intended to be used only in the solvent-rich region,
thereby none of C2 and C3 is zero, the temperature
dependence of the five parameters is independent of each
other. However, if the formalism is to be valid over the
whole concentration range, therefore C2 ¼ C3 ¼ 0, then,
the following relationship should be held:

�22 ¼� 2 ln c�2 ½61�

�33 ¼� 2 ln c�3 ½62�

�23 ¼
x23

RT
� ln c�2 � ln c�3 ½63�

which was already well-known relationship.[3,25]

Accordingly, temperature dependence among the
parameters (Henrian activity coefficients and interac-
tion parameters) should satisfy similar relations which
are simply obtained by the partial differential of the
above equations (Eqs. [61] through [63]). This is valid
when the solution behaves as the regular solution. If
the solution’s behavior is interpreted by the quasichem-

ical theory, different relations between Henrian activity
coefficients and interaction parameters are found.[25]

By a choice of the temperature dependence of the xij’s
and Ci’s in Eq. [38], the temperature dependence of
Henrian activity coefficients and interaction parameters
are determined. While a linear dependence has been
most widely accepted (i.e., xij ¼ gij � rijT), a number of
different approaches are also available.[26–28]

V. CONCLUSION

Condition of thermodynamic consistency for the repre-
sentation of excess partial Gibbs energy of multicompo-
nent solution has beendiscussed, in particular in the course
of correction to the Wagner’s formalism. Apart from the
Gibbs–Duhem relation and Darken’s condition of ther-
modynamic consistency for solutes, it has been stressed
that a similar condition should also be obeyed between
solvent and solute. A general condition of thermodynamic
consistency has been derived in the present study.
A recent issue raised for the possibility of non-unique

correction to Wagner’s formalism was analyzed.[18] It
has been shown in the present article that the correction
can be made in a unique way for given functional form
of the activity coefficient of solutes (ln ci, i ¼ 2; 3; . . . ;N)
regardless of the way of the correction. The corrective
function uðX2;X3; . . . ;XNÞ, as well as the activity
coefficient of solvent (ln c1) can be uniquely defined
through the Gibbs–Duhem relation and the general
condition of thermodynamic consistency. It ensures the
use of UIPF with a confidence for multicomponent
dilute solution. Temperature dependence of the interac-
tion parameters (�ij) and Henrian activity coefficients
(ln c�i ) was discussed, although it depends on tempera-
ture dependence of interaction energies (xij).
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APPENDICES

APPENDIX A

Extension of Darken’s Thermodynamic Consistency
into Multicomponent Solution including Solvent

As Gibbs energy, G, is a state function, and its
differential is exact, the Maxwell’s relation is obeyed:
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@

@ni

@G

@nj

� �
¼ @

@nj

@G

@ni

� �
½A1�

where ni, nj are the number of moles of components i
and j, and

G ¼
XN

i¼1

nig
�
i þRT

XN

i¼1

ni lnXi þ
XN

i¼1

ni ln ci

 !
½A2�

and

Xi ¼
niPN
j¼1 nj

¼ ni
n

where n ¼
XN

j¼1

nj ði ¼ 1; 2; . . . ;NÞ
½A3�

By differentiating G with respect to nj, while all other
niði 6¼ jÞ are kept constant,

@G

@nj
¼ g�j þRT lnXj þ ln cj þ

XN

k¼1

nk
@ ln ck
@nj

 !
½A4�

The last term in the Eq. [A4] is zero due to the
Gibbs–Duhem relation. From the above,

@

@ni

@G

@nj

� �
¼ RT

@ ln cj
@ni

� 1

n

� �
½A5�

Similarly,

@

@nj

@G

@ni

� �
¼ RT

@ ln ci
@nj

� 1

n

� �
½A6�

Therefore, the following relationship between activity
coefficients of components i and j are obtained:

@ ln cj
@ni

¼ @ ln ci
@nj

½A7�

which is the same as the Eq. [14]. Taking all Xi’s
except for X1 as independent variables, and using the
following derivatives of Xk with respect to ni,

@Xk

@ni
¼ @ðnk=nÞ

@ni
¼ dikn� nk

n2

¼ dik � Xk

n
ði; k ¼ 1; 2; . . . ;NÞ

½A8�

the above equation is expressed as:

@ ln cj
@ni

¼
XN

k¼2

@ ln cj
@Xk

@Xk

@ni

� �

¼
XN

k¼2

@ ln cj
@Xk

dik � Xk

n

� � ½A9�

Similarly,

@ ln ci
@nj

¼
XN

k¼2

@ ln ci
@Xk

djk � Xk

n

� �
½A10�

Therefore, the following equation is obtained which
represents the conditions of thermodynamic consis-
tency between two components (i and j) in N-compo-
nent system, including solvent (i ¼ 1 or j ¼ 1) and
solute (i; j 6¼ 1):

XN

k¼2

ðdik � XkÞ
@ ln cj
@Xk

¼
XN

k¼2

ðdjk � XkÞ
@ ln ci
@Xk

½A11�

APPENDIX B

Derivation of ln c1 in Multicomponent Solution

From the Eq. [57],

@ ln c1
@Xi

¼2aiiXi þ 2
XN

k¼2
k6¼i

bikXk þ ci ½B1�

@ ln c1
@Xj

¼2ajjXi þ 2
XN

k¼2
k6¼j

bjkXk þ cj ½B2�

Then,

@ ln c1
@Xi

� @ ln c1
@Xj

¼ ð2aii � 2bjiÞXi þ ð2bij � 2ajjÞXj þ
X

k¼2
k6¼i;j

2bikXk

�
X

k¼2
k6¼i;j

2bjkXk þ ci � cj

½B3�

¼
X

k¼2
k6¼i;j

ð2bik � 2bjkÞXk þ ð2aii � 2bjiÞXi þ ð2bij � 2ajjÞXj

þ ci � cj

½B4�

Therefore by comparison with the Eq. [56],

2aii � 2bji ¼�ji � �ii ½B5�

2bij � 2ajj ¼�jj � �ij ½B6�
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2bik � 2bjk ¼�jk � �ik ½B7�

ci � cj ¼0 ½B8�

According to Raoult’s law (@ ln c1@Xi
! 0 when Xi;Xj ! 0),

it can be shown that ci ¼ cj ¼ 0. Furthermore, by

inspection, aii ¼ � 1
2 �ii, ajj ¼ � 1

2 �jj, bij ¼ bji ¼ � 1
2 �ij,

etc. Therefore,

ln c1 ¼� 1

2

XN

k¼2

�kkX
2
k �

1

2

XN

k;l¼2
k 6¼l

�klXkXl ½B9�

¼ � 1

2

XN

j;k¼2

�jkXjXk ½B10�
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