
TOPICAL COLLECTION: METALLURGICAL PROCESSES WORKSHOP FOR YOUNG SCHOLARS

Automated Classification and Analysis
of Non-metallic Inclusion Data Sets
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The aim of this study is to utilize principal component analysis (PCA), clustering methods, and
correlation analysis to condense and examine large, multivariate data sets produced from
automated analysis of non-metallic inclusions. Non-metallic inclusions play a major role in
defining the properties of steel and their examination has been greatly aided by automated
analysis in scanning electron microscopes equipped with energy dispersive X-ray spectroscopy.
The methods were applied to analyze inclusions on two sets of samples: two laboratory-scale
samples and four industrial samples from a near-finished 4140 alloy steel components with
varying machinability. The laboratory samples had well-defined inclusions chemistries,
composed of MgO-Al2O3-CaO, spinel (MgO-Al2O3), and calcium aluminate inclusions. The
industrial samples contained MnS inclusions as well as (Ca,Mn)S+calcium aluminate oxide
inclusions. PCA could be used to reduce inclusion chemistry variables to a 2D plot, which
revealed inclusion chemistry groupings in the samples. Clustering methods were used to
automatically classify inclusion chemistry measurements into groups, i.e., no user-defined rules
were required.
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I. INTRODUCTION

NON-METALLIC inclusions are an inevitable pro-
duct of chemical reactions occurring during steel pro-
cessing and they play an important role in defining the
properties of steel.[1] If not controlled, they can often
reduce ductility, fatigue resistance, and toughness of
steels.[2–7] There has been a significant amount of
research on inclusion control during liquid steel pro-
cessing[8] with intentional efforts to control inclusion
populations referred to as ‘‘inclusion engineering’’ with
the resulting product called ‘‘clean steel.’’

An enabling technology for inclusion engineering
efforts on both the laboratory scale and the production
scale is automated analysis in a scanning electron
microscope equipped with energy dispersive X-ray
spectroscopy (SEM/EDS).[9] While one of several anal-
ysis and quantification methods,[10] automated SEM/
EDS can measure hundreds or thousands of individual
inclusions per sample and obtain chemistry, size, shape,

and spatial distribution information in times on the
order of hours or less. Several recent studies have
advanced in back-scattered electron (BSE) imaging and
EDS measurement parameters,[11,12] to improve the
speed and accuracy of the method. Automated analysis
is now a common tool among companies and research-
ers in the steel industry and it has enabled many
developments in the scientific understanding of inclu-
sions and in industrial process control.[10,13–18]

Inclusion chemistry and chemistry changes have been
of primary interest. Considering many different grades
and process routes, inclusions could be combinations
of Al, Ca, Si, Mg, Mn, Ti, Zr, Ce, La, O, S, and N
although the total number of possible elements is
usually constrained by grade or processing conditions.
Despite the constraints, often more than three variables
are needed to fully represent inclusion populations and
this creates a visualization challenge. Display of
inclusion chemistry results is most typically done by
Gibbs triangle ternary plots with inclusion composi-
tions represented by cation or anion mole or mass
fraction. An example plot is shown in Figure 1(a),
where each inclusion chemistry in mole fraction is
represented by a single data point. A proportional
symbol plot (Figure 1(b)) shows the same data but
with the symbol size proportional to the number of
inclusions of that chemistry. The assumption is fre-
quently made that there is little chemistry change
during solidification, so the phases that comprise an
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inclusion in the liquid steel can be inferred from its
composition by overlaying the ternary phase bound-
aries for the system at steelmaking temperatures, as
shown in Figure 1(c).

Representing inclusion chemistry by ternary diagram
provides an easily interpretable view of inclusion chem-
istry distribution. However, they are limited in that only
three variables can be plotted. For example, the
Ca-containing inclusions in Figure 1 are CaS and this
can only be verified by plotting the distribution on an
Al-Ca-S diagram. Other data representation schemes
have been proposed,[19] but still a diagram (or diagrams)
must be produced for each sample. These diagrams
provide engineers easily interpreted visual representa-
tions of inclusion chemistry distributions that are
typically used to diagnose specific process issues.[18]

Comparisons of many samples (e.g., looking at trends in
behavior over many heats of steel or sequential samples)
are difficult because one or more diagrams must be
compared. Overall averages do not capture the mul-
ti-phase nature of inclusions. User-defined classification
rules have been developed based on expected chemistry
ranges.[18] However, this requires assumptions about the
expected inclusion chemistries and they must be consis-
tently applied.

This study applied methods of classifying, learning
from, and representing large, multivariate data sets to
inclusion chemistry data measured by automated SEM/
EDS analysis. The methods investigated were (1) prin-
cipal component analysis (PCA), and (2) cluster anal-
ysis. Method (1) is a technique for dimensionality
reduction, i.e., representing multivariate chemistries in
a two-dimensional plot, and method (2) automatically
groups inclusions by chemistry. These methods were
applied to a laboratory- and an industrial-scale data
sets, to illustrate how these methods might be used to
condense inclusion chemistry presentation, i.e., not
require one or more ternary diagrams per sample. The
industrial data set was gathered from analysis of two
semi-finished components that exhibited differences in
machinability. The objective of the analysis was to
compare the inclusion populations to examine if they
might be the cause of the machinability differences, as
inclusions are well known to influence machinability.[20]

II. ANALYSIS METHODS

A. Principal Component Analysis (PCA)

PCA was investigated as a dimensionality reduction
technique. It is a common exploratory data analysis tool

Fig. 1—Two representations of the same inclusion chemistry distribution (a) each measured chemistry (cation fraction) plotted as one data point,
(b) the same data with symbol size proportional to the number of inclusions with that chemistry. (c) The ternary phase diagram of the
MgO-CaO-Al2O3 system at 1873 K (1600 �C).
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that is used to provide a visual relationship between
observations for multivariate data sets. The aim of PCA
is to extract the important information from multivari-
ate data sets and express the output as a set of new
orthogonal variables called principal components
(PC).[21] The new PC variables are linear combinations
of the original variables. The principal components are
generated such that the greatest variance (i.e., the
greatest spread in the data set) between the observations
lies on the first principal component, PC1, and the
second greatest variance on PC2, and so on; in addition,
the succeeding PC is computed on the constraint that it
is orthogonal to the previous PC. The number of PCs
computed is equal to the number of variables in the
initial data set, but in most cases more than 80 pct of the
variance between the observations is contained in the
first two PCs, thus enabling the plotting of multivariate
data sets on 2D scatter plots with minimal information
loss.[21] Figure 2 shows an example of PCA, where high
dimensional data, 3D, is transformed to 2D using the
first 2 PCs, as a result the observations are viewed in
simple 2D plots while losing minimal information,
keeping in mind that PCs are linear combinations of
the original variables.

B. Cluster Analysis

Not to be confused with the physical clustering of
inclusions, clustering is an automated method of
arranging data into groups (referred to as clusters).
The analysis breaks down a data set into a set of
clusters, such that observations in one cluster are related
to each other, in one way or another, more than
observations in other clusters. Accordingly, the analysis
referred to in this study pertains to the cluster of data,
where a cluster is composed of inclusions with similar
chemistries. Clustering itself is not one specific algorithm
that can be applied to any set of data, rather it is a
general term used that serves a specific task. There are
numerous clustering models, each with its own algo-
rithm on how to define and identify a cluster; as a result,
the different models vary significantly depending on the
input parameters and desired output.[23]

Because there are numerous models, an understand-
ing of the various cluster models and the data sample is
essential for selecting the appropriate clustering algo-
rithm. The most basic method is k-means clustering,[23] a
centroid-based clustering technique where the number
of clusters is predetermined and the initial cluster
centroids are randomly assigned. Then observations
are assigned to the nearest cluster by minimizing the
distance between the observations and the centroids of
the various clusters. Distance here is a generic term. The
physical distance between any two points in 2D space is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � x1ð Þ2þ y2 � y1ð Þ2
q

but this can be generalized to

any variables (not just positions).
While fast and conceptually straightforward, two

drawbacks of k-means clustering are that the number of
clusters for a data set must be preselected and that equal
size clusters are often produced. Other algorithms do
not have these restrictions. One such algorithm is the
expectation-maximization (EM) algorithm and this
method was employed in this study. The EM algorithm
is a soft clustering method. In contrast to hard cluster-
ing, where each observation is assigned to one specific
cluster, soft clustering assigns probabilistic mix propor-
tions for an observation to belong to each cluster. For
example, if sample X has 2 clusters, the ith observation
has certain probabilities of belonging to clusters 1 and 2,
and the algorithm assigns the observation to the cluster
with the highest probability. If the ith observation has a
95 pct chance of belonging to cluster 1, and therefore a
5 pct chance of being in cluster 2, it will be assigned to
cluster 1. This form of clustering is beneficial for
assessing the quality of cluster classification, and when
observations are midway between clusters. The main
assumption behind the EM algorithm is that each
cluster has its own Gaussian distribution, and the whole
data set is a Gaussian Mixture Model (GMM).
The EM algorithm is an iterative clustering technique,

involving two main steps, the expectation (E) and
maximization (M) steps. First the initial parameters,
the means and covariances of each cluster, are esti-
mated, either randomly or using other statistical tech-
niques such as utilizing the k-means algorithm to

Fig. 2—Transformation of 3D data to 2D using PCA, reprinted from Ref. [22].

1570—VOLUME 49B, AUGUST 2018 METALLURGICAL AND MATERIALS TRANSACTIONS B



initialize the EM. Then, using these parameters, the E
step calculates the probabilistic mix proportions for
observations to belong to each cluster. The M step then
re-estimates the parameters using the values computed
in the E step. The E and M steps are reiterated until
convergence.

The EM algorithm requires the number of clusters to
be an input. Determination of the number of clusters
was made in the following way. First, the Bayesian
Information Criterion (BIC)[25,26] is calculated assuming
the data consists of one to nine clusters, and the
evaluation is made to verify if a sample is composed of
one cluster or more than one cluster. The BIC is the
value for the maximized log likelihood, considering the
observations, parameters, data dimensions, and number
of clusters (Eq. [1]). It is computed for a range of
numbers, and the optimal number of clusters should be
given by the largest BIC value.

BIC ¼ 2logL � df� log nð Þ; ½1�

where L is the likelihood function, L hjxð Þ ¼ P xjhð Þ, a
function of the parameters given the outcomes, which
is equal to the probability of the outcomes given the
parameters, h is the parameters of the model, the mean
and covariance of each cluster, x is the outcomes of
the model, df is the degrees of freedom, and n is the
number of observations.

Usually, the BIC tends to over fit the number of
clusters when several clusters exist in inclusion data sets.
Therefore, if the optimal number of clusters evaluated
using the BIC is one, then the data are assumed to be
single clustered, and if it was found to consist of more
than one cluster, the Silhouette index[24] was employed
to determine the optimal number of clusters. This index
measures how similar an observation is to its own
cluster compared to observations in other clusters. The
silhouette index is calculated using Eq. [2]:

Silhouette ¼
Pn

i¼1 SðiÞ
n

; Silhouette 2 �1; 1½ �; ½2�

where n is number of observations, S ið Þ ¼ b ið Þ�aðiÞ
max a ið Þ;bðiÞf g

the Silhouette coefficient for observation i, a(i) is the
average distance between the ith observation and
observations within the same cluster, and b(i) is the
average distance between the ith observation and
observations in its nearest neighboring cluster.

The index is computed for a range of number of
clusters, and the maximum value defines the optimal
number of clusters. This procedure was employed
because the Silhouette index cannot be defined for one
cluster.

III. MATERIALS AND METHODS

A. Materials

The laboratory-scale samples were taken from a series
of experiments studying calcium treatment and reoxi-
dation. Details of the experimental methods can be

found in Reference 27. The samples, referred to in this
paper as sample 1 and sample 2, were prepared in an
induction furnace. Electrolytic iron was melted in an
MgO crucible enclosed in a graphite crucible with no
slag addition. The iron was deoxidized with Al, Ca
treated, and reoxidized with Fe2O3 powder. The first
sample, 1, was taken just before reoxidation, and the
second, 2, right after reoxidation. The purpose of these
lab samples was to create samples with controlled
inclusion distributions to demonstrate the capabilities
of PCA and clustering.
The industrial-scale data set was composed of four (4)

samples, referred to in this paper as A, B, C, and D. All
samples were taken from the same location on a
near-finished component. The components were
machined from continuously cast 4140 bar stock that
was melted via an electric arc furnace, Al deoxidized,
and Ca treated. Table I presents an overview of the
sample chemistries, analyzed by spark optical emission
spectroscopy (OES). Samples A and B were noted by the
supplier to have better machinability compared to that
of samples C and D. It should be noted that this ranking
of machinability was relative, but sufficient to suggest
there were differences between the samples that could be
identified.

B. Methods

Automated inclusions analysis was carried out on
mechanically polished samples using an SEM, utilizing a
back-scattered electron detector equipped with an EDS
analyzer. For the laboratory samples, a Phillips XL-30
SEM was utilized, with the accelerating voltage set to
10 kV, and a working distance of 10 mm. For the
industrial samples, an FEI/Aspex Explorer SEM was
used, the accelerating voltage was held at 20 kV, and the
working distance ranged from 13.7 to 14.3 mm. The
output raw data were prescreened to remove obvious
outliers. A filter excluded any readings with Fe content
larger than 75 pct, and more than 90 pct of the original
data were retained for all samples. For the industrial
samples, at least 1140 inclusions were measured per
sample and the minimum detected inclusion size was
0.3 lm2. A summary of the number of inclusions
measured and scanned area per sample is shown for
the industrial samples in Table II.
The variables considered for PCA and clustering were

the inclusion chemistries only, which were limited to the
Mg, Ca, and Al contents for the laboratory samples, and
the Mg, Ca, S, Al, Mn, Si, and Ti contents for the
industrial samples. Other variables investigated in this

Table I. Relevant Steel Chemistry (Mn, S, Al, and Ca in

Weight Percent) for Industrial Samples

Sample Mn S Al Ca

A 0.84 0.030 0.021 0.0006
B 0.85 0.026 0.022 0.0006
C 0.88 0.020 0.030 0.0027
D 0.88 0.030 0.026 0.0012
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study included the areas, maximum diameters, and
aspect ratios, which represent the size and morphology
of inclusions; however, these variables were examined
post-clustering.

All the statistical analysis preformed in this study was
carried out in RStudio,[28] an interactive interface for R,
a free and open-source programming language for
statistical computing and graphics.[29] The ‘‘MCLUST’’
and ‘‘NBCLUST’’[30,31] packages were utilized for the
EM algorithm and the Silhouette index, respectively. In
addition, the ‘‘GGTERN’’ package[32] was used to plot
the ternary diagrams.

IV. RESULTS

The results of the inclusion analyses are presented
below, first for the laboratory samples and then for the
industrial samples. Initially, inclusion chemistry distri-
butions on ternary diagrams are given. All ternary
diagrams presented in this study pertain to the mole
fraction of the respective elements. Thereafter, PCA was
best used to help compare data from several samples on
a 2D scatter plot, while clustering was utilized to
automatically define groups in each sample. For PCA,
principal components were computed for all samples
combined in a single data set, to enable the plotting of
observations from all samples on a single 2D plot.

It should be noted that the methods of PCA and
clustering are not examined here simply to differentiate
between samples. Differences in inclusion populations
would be expected based on the processing history of
these samples (as was known for the laboratory-scale

samples and can be inferred from the chemistry of the
industrial samples). This work presents the methods of
PCA and clustering in the context of automated
inclusion analysis and connects them to relatively small
data sets that can be interpreted via conventional means.
Possible further applications of these techniques are
presented in Section V.

A. Laboratory Samples

The laboratory samples investigated in this study had
controlled chemistries, and the variables considered for
the analyses were confined to the Mg, Ca, and Al
contents only. An overview of the inclusion chemistry
distributions is presented as ternary diagrams in
Figure 3. Sample 1 inclusions were composed of
MgO-Al2O3-CaO inclusions, while sample 2 displayed
two distinct inclusion groups—spinel (MgO-Al2O3) and
solid calcium aluminates.
To get a visual comparison between samples on a

single plot using PCA, both samples were combined into

Table II. Industrial Sample Inclusion Count and Scanned

Area

Sample No. of Inclusions Scan Area (mm2)

A 6809 22.2
B 3309 11.1
C 1140 12.8
D 2686 11.9

Fig. 3—Inclusion chemistry distribution of laboratory samples. Sample 1 on the left, and sample 2 on the right.

Fig. 4—Scatter plot of inclusions in laboratory samples, transformed
to 2D using PCA.
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one data set. The transformation of the original data
points to principal components was performed using the
following equations:

PC1 ¼ �0:585Mg� 0:201Al þ 0:786Ca ½3�

PC2 ¼ 0:570Mg� 0:791Al þ 0:222Ca; ½4�

where the coefficients represent the relative loading of
each of the original variables to each respective PC,
which are unique to this data set. Figure 4 displays a
2D scatter plot of all the observations, where the hori-
zontal axis is represented by the first principal compo-
nent, PC1, and the vertical axis by the second, PC2,
and observations are colored according to sample. As
shown on the axes, PC1 represents 69.8 pct of the vari-
ance between the observations, and PC2 30.2 pct.
Since only three variables were considered for PCA,
the first two PCs were enough to represent the entire

variance in this data set (i.e., the variance represented
in PC3 was zero); however, this will not be the case
when larger number of input variables are used.
Observations from sample 1 are all relatively con-
densed in the same area, while sample 2 can be
broadly broken down into 2 groups; in addition, over-
lap between samples is very minimal. This is expected
from the lab samples, since the samples are composed
of different inclusion types. Figure 5 provides an illus-
tration of how the original variables contribute to the
principal components. The arrows shown on the plot
represent the contribution of the original variables to
PC1 (by the magnitude in the horizontal direction)
and PC2 (by the magnitude in the vertical direction).
To understand the distribution of data points, both

Figures 4 and 5 need to be considered simultaneously.
The red data points of sample 2 can be broadly broken
down into 2 groups, one group with positive PC1 values
(on the right), and the other with negative PC1 values
(to the left of the plot). From Figure 5, it is clear that the
former group contains higher Ca contents and the latter
group has higher Mg contents, corresponding to solid
calcium aluminate and spinel inclusions, respectively.
Due to the nature of this data set, composed of only
three input variables with some inclusions (e.g., the
spinels) comprising only two of the input variables,
some of the data points form a straight line, as shown in
Figure 4. These specific data points, or inclusions,
having similar chemistries with slight deviations in
cation mole fractions, correspond to the inclusions of
lab sample 2 lying on the Mg/Al and Ca/Al axes of the
ternary diagram (Figure 3); thus, they are not influenced
by the third variable, and as a result they form a straight
line on the scatter plot.
A summary of the cluster analysis, performed using

the EM algorithm, is presented in Table III, for the lab
samples. The table displays the average chemistry, the
number and percentage of inclusions, and the average
inclusion area, for each cluster. The table is ordered in
decreasing cluster size, quantified by the number of
inclusions per cluster.

Fig. 5—Variable contribution to each PC, for lab samples.

Table III. Summary of Cluster Analysis, for Lab Samples

Sample 1 1 cluster

Cluster Mg Al Ca Inc/Clus Avg Inc Area 
(μm2)

16% 57% 27% 352 100% 0.66

Sample 2 2 Clusters

Cluster Mg Al Ca Inc/Clus Avg Inc Area 
(μm2)

6% 75% 19% 293 57% 1.07
31% 69% 0% 222 43% 0.42
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As stated earlier, initially the BIC was evaluated for
each sample; if the BIC identified the optimal number of
clusters as one, then the data were assumed to be single
clustered; otherwise, the optimal number of clusters was
computed using the Silhouette index. For the laboratory
data set, the clustering algorithm identified one cluster
was optimal for sample 1 and two clusters were optimal
for sample 2.

The assignment of clusters can help simplify ternary
diagrams, as shown in Figure 6. Here the average
chemistry of each cluster is plotted as a semi-transparent
circle, where the size of each circle is proportional to the
cluster’s total inclusion area. This was useful when
comparing the relative amounts of inclusions in each
cluster. Considering Figure 6(b) along with Table III,
the two clusters identified in sample 2 pertain to calcium

aluminate and spinel inclusions, with calcium aluminate
inclusions dominating the inclusion population.

B. Industrial Samples

The inclusion chemistry distributions for the indus-
trial samples are presented in Figure 7. Inclusions
comprised Mn, S, Al, and Ca, with traces of Mg, Ti,
and Si. Thus, analysis should strictly have accounted for
all seven chemistry variables, but there could be a
reasonable reduction to the four major compo-
nents—Mn, S, Al, and Ca. This still required two
ternary diagrams per sample, and in this case S-Ca-Al
and S-Mn-Si ternaries were presented. Samples A and B
were similar to each other and were predominately
(Ca,Mn)S; inclusions in samples C and D were similar to

Fig. 6—Mg-Ca-Al cluster average ternary plots for laboratory samples. The center of the circles represents the cluster centroids, and the size of
each circle is proportional to the total area fraction of inclusions in that particular cluster. (a) Sample 1, (b) Sample 2.

Fig. 7—Inclusion chemistry distributions of industrial samples, in the form of S-Ca-Al and S-Mn-Si Ternary Diagrams. Diagrams for Sample A
shown on the top-left, sample B on the top-right, sample C on the bottom-left, and sample D on the bottom-right.
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each other and had more calcium aluminate oxide
inclusions.

As with the laboratory-scale samples, all four samples
were consolidated into one large data set, for PCA. PC1
represents 88.1 pct of the variance, and PC2 represents
6.8 pct, and thus both PCs combined retain 94.9 pct of
the original data’s variance. The PCA transformation of
the industrial data set was performed using the follow-
ing equations:

PC1 ¼ �0:027Mg� 0:716Alþ 0:002Siþ 0:468S

� 0:198Ca� 0:007Tiþ 0:478Mn
½5�

PC2 ¼ 0:007Mgþ 0:331Al� 0:008Si� 0:391S

� 0:569Ca� 0:014Tiþ 0:643Mn:
½6�

The coefficients represent the loading of each of the
original variables to the PCs. PCA results are pre-
sented in Figure 8.

Figure 8 shows that samples A and B have similar
chemistry distributions, and samples C and D display a
similar trend, with sample C skewing more to the
negative values of PC1. Samples C and D appear to
differ from A and B because of the large number of data
points at PC1< 0. Figure 9 provides an illustration of
how the original variables contribute to the principal
components. As expected, inclusion chemistries were
dominated by Al, Mn, S, and Ca, while the Mg, Ti, and
Si contents are negligible.

Thus, from the results presented in PCA, it can be
inferred that samples A and B were similar to each
other, and C and D were similar to each other.

Inclusions in samples A and B contained primarily Mn
and S, and Ca and Al contents were higher in samples C
and D.
The cluster analysis results for the industrial data set

are presented in Table IV and Figure 10. Two clusters
were identified for both samples A and B: one cluster
with predominately MnS inclusions and the other with
complex inclusions, (Ca,Mn)S+calcium aluminate
oxides. The largest cluster in both samples corresponded
to the MnS inclusions. In samples C and D, four and
three clusters were identified, respectively. Again MnS

Fig. 8—PCA scatter plots of industrial samples. Sample A shown on the top-left panel, sample B on the top-right panel, sample C on the
bottom-left panel, and sample D on the bottom-right panel.

Fig. 9—Variable contribution to each principal component, for
industrial samples.
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and complex (Ca,Mn)S+calcium aluminate oxide
inclusions were identified. However, in this case the
(Ca,Mn)S+oxide inclusion clusters were larger. There
was also some overlap of clusters in these samples,
suggesting there was opportunity for additional opti-
mization of the analysis method.

V. DISCUSSION

In this work, PCA and cluster analysis were employed
to analyze a controlled laboratory-scale data set and a
relatively large industrial inclusion data set. The
lab-scale data set was limited to two samples, where

Table IV. Summary of Cluster Analysis, for Industrial Samples

Sample A 2 clusters

Number Density: 307 /mm2 Area Density: 899 ppm

Cluster Mg Al Si S Ca Ti Mn Inc/Clus
Avg Inc 

Area (μm2)

0% 0% 1% 54% 0% 0% 45% 5687 83% 2.92

2% 12% 0% 46% 8% 0% 32% 1122 17% 3.00

Sample B 2 clusters

Number Density: 299 /mm2 Area Density: 1229 ppm

Cluster Mg Al Si S Ca Ti Mn Inc/Clus
Avg Inc 

Area (μm2)

0% 0% 0% 56% 0% 0% 43% 2721 82% 4.28

1% 10% 1% 48% 6% 0% 34% 588 18% 3.30

Sample C 4 clusters

Number Density: 89 /mm2 Area Density: 432 ppm

Cluster Mg Al Si S Ca Ti Mn Inc/Clus
Avg Inc 

Area (μm2)

1% 47% 0% 26% 13% 0% 13% 443 39% 7.07

0% 0% 0% 58% 0% 0% 41% 400 35% 3.16

0% 0% 0% 58% 0% 0% 41% 261 23% 2.71

5% 33% 3% 27% 14% 7% 12% 36 3% 11.62

Sample D 3 clusters

Number Density: 227 /mm2 Area Density: 757 ppm

Cluster Mg Al Si S Ca Ti Mn Inc/Clus
Avg Inc 

Area (μm2)

0% 0% 0% 55% 0% 0% 43% 1157 43% 2.76

0% 0% 0% 55% 0% 0% 43% 950 35% 2.69

0% 34% 0% 33% 10% 1% 22% 579 22% 5.57
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both samples had well-defined inclusion compositions.
The analyses were carried out on the controlled samples
in order to examine their applicability. PCA enabled the
visualization of the entire inclusion population from
both samples on a single plot, and it is clear from this
plot that inclusions in sample 1 have relatively similar
chemistry, while inclusions in sample 2 can be roughly
divided into two inclusion types. This was also asserted
by the cluster analysis results, identifying one cluster in
sample 1 and two clusters in sample 2. Based on average
cluster composition, sample 1 formed predominantly
liquid MgO-Al2O3-CaO inclusions, and the two clusters
in sample 2 were identified as spinel and solid calcium
aluminate inclusion clusters. The samples were specifi-
cally selected to demonstrate whether the cluster anal-
ysis would identify one and two clusters for samples 1
and 2, respectively, using the BIC and Silhouette index,
and the results presented verified this presumption.

With respect to the industrial samples, the data were
measured from four samples, A and B, which exhibited
good machinability, and C and D, which exhibited poor
machinability. A complete representation of the inclu-
sion population required numerous ternary diagrams,
while PCA and clustering could condense this informa-
tion. The results showed that the two sets of samples
were indeed different. Samples A and B contained
predominately MnS inclusions and C and D had larger
amounts of complex (Ca,Mn)S+calcium aluminate
oxide inclusions. Below some observations on the data
analysis methods and the results are discussed.

Using PCA, an initial comparison between samples
and inclusion populations was visualized in one 2D plot.
The ability to visualize high dimensional data is a useful
application of PCA. PCA has also been used as a
method to explore data sets and reveal the existence of

potential clusters of data points. For the purpose of this
study, observations from all samples were consolidated
into a single data set, since in both cases, the laboratory
and industrial data sets, samples were processed to
produce the same steel chemistry. Otherwise, using PCA
to compare disparate samples on the same plot would
not necessarily be beneficial, since a scatter plot of the
first 2 PCs will only display a dissimilarity between
observations from each sample, which was already
expected. For example, performing PCA on an Al-killed
sample and a Si-Mn killed sample would be trivial since
these samples are known to be different and the PCA
results will only highlight the expected difference. PCA
would be most useful in reducing the number of
diagrams needed for visualization, particularly if sulfide
or nitride inclusions would be considered along with
oxide inclusions. If sufficient data are available, PCA
could be a process monitoring tool,[33,34] where new
inclusion populations could be benchmarked against an
existing baseline.
The cluster analysis performed was successful in

condensing the large data sets into a few points that
were representative of the inclusion chemistries. In some
cases, clusters were not uniquely defined in a sample and
sometimes two different clusters had similar chemistries,
such as the red and green clusters of sample C and the
black and red clusters of sample D. This was a
consequence of the automated nature of the analysis.
The clustering algorithm was generally successful at
recognizing and classifying the inclusion chemistry
groups. In addition, the algorithm performed well in
assessing the possibility of having single-clustered data,
as shown in the results presented for lab sample 1.
Once the industrial data were grouped by chemistry,

additional analyses were performed to examine the
relationship between chemistry, average inclusion area,
and average inclusion aspect ratio. To examine these
correlations, each cluster from Table IV was classified as
either a MnS cluster or complex ((Ca,Mn)S+oxide)
inclusion cluster based on its chemical composition. A
summary of the average inclusion area and aspect ratio
per cluster is provided in Figure 11, along with repre-
sentative BSE images of inclusions in each cluster.
The MnS inclusions in all samples had similar average

areas. The average inclusion area of the complex oxides
was greater for samples C and D. The average aspect
ratios (ratio of the longest 2D dimension to its perpen-
dicular width) of the MnS inclusions were higher in
samples C and D, indicating that they were slightly
elongated. Although elongated, these inclusions were
still small and so would not likely have the detrimental
effect of stringer MnS on mechanical properties.
In summary, all four samples contained essentially

two different inclusion populations—MnS and complex
(Ca,Mn)S+calcium aluminate oxide inclusions. In
samples C and D, the complex inclusions were more
numerous and they were larger than the complex
inclusions in samples A and B. The MnS inclusions
were globular in samples A and B, while they were more
elongated in samples C and D. These differences in
inclusion population likely affected the part

Fig. 10—S-Ca-Al cluster average ternary plots for industrial samples.
The center of the circles represents the cluster centroids, and the size
of each circle is proportional to the total area fraction of inclusions
in that particular cluster. (a) Sample A, (b) Sample B, (c) Sample C,
(d) Sample D.
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machinability, as it is well known that inclusions play an
important role in machinability.[35]

Numerous studies have been conducted on the rela-
tionship between inclusions, steel processing, and
machinability (for a recent review see Ref. [20]). It was
not possible to develop many connections between the
inclusions, processing, and machinability in this work.
The steels in this work were 4140 alloy steel with
approximately 300 ppm S and all samples were Al
deoxidized and Ca treated. Generally, this composition
and processing should lead to good castability, machin-
ability, and properties.[36,37] The samples for this study
were provided in the partially finished state and details
of the refining and Ca treatment processes were not
available; furthermore, significant changes to inclusion
populations can occur upon the solidification of the
samples.[38] The main purpose of this study was to
introduce the use of PCA and clustering methods to
analysis of inclusion distributions.

The objective of this study was to demonstrate
alternative methods for classifying and analyzing inclu-
sion populations. The method of PCA was shown to
produce a 2D representation of multivariate data, from
which differences between samples could be noted.
Cluster analysis provides an automated method for
classifying inclusion compositions without user-defined
rules. The clusters can then be analyzed individually.
They are amenable to much larger data sets than the
four samples investigated here and future efforts will be
devoted to application of these and other techniques to
improve the insights that can be gained from automated
non-metallic inclusion analysis data.

VI. CONCLUSIONS

In this study, the differences in non-metallic inclusion
population between two sets of samples were analyzed
with PCA and cluster analysis. The first data set, a pair
of laboratory-prepared samples with well-defined and
controlled inclusion chemistries, was utilized to validate
the statistical techniques. And the second data set, four
industrial-scale samples, grade 4140, Al deoxidized, and
Ca treated: two samples (A and B) were noted to have

better machinability, while the other two samples (C and
D) were noted to have poorer machinability. The
following observations were noted:

� PCA reduced several chemistry variables to a 2D plot
where differences were noted between samples.

� Cluster analysis, using the BIC and Silhouette index
to define the number of clusters and the expecta-
tion–maximization algorithm to perform the cluster-
ing, automatically classified inclusions into groups.
Essentially two groups: MnS and (Ca,Mn)S+cal-
cium aluminate oxide inclusions, for the industrial
samples. This was done without any user-specified
composition ranges.

� For the laboratory-scale samples, both PCA and
clustering generated promising results. PCA enabled
the visualization of the multivariate inclusion data set
on simple 2D plots, providing an initial comparison
between inclusion distributions of various samples.
And cluster analysis was successful in identifying the
inclusion groups present in each sample.

� Considering the industrial data set, once the inclu-
sions were clustered it was found that samples C and
D contained a higher number of larger (Ca,Mn)S+
oxide inclusions compared to samples A and B, which
contained higher numbers of smaller MnS inclusions.
The differences in machinability were attributed to the
differences in the inclusion populations.
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