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For the analytical description of the relationship between undercoolings, lamellar spacings and
growth velocities during the directional solidification of ternary eutectics in 2D and 3D, different
extensions based on the theory of Jackson and Hunt are reported in the literature. Besides
analytical approaches, the phase-field method has been established to study the spatially
complex microstructure evolution during the solidification of eutectic alloys. The understanding
of the fundamental mechanisms controlling the morphology development in multiphase,
multicomponent systems is of high interest. For this purpose, a comparison is made between the
analytical extensions and three-dimensional phase-field simulations of directional solidification
in an ideal ternary eutectic system. Based on the observed accordance in two-dimensional
validation cases, the experimentally reported, inherently three-dimensional chain-like pattern is
investigated in extensive simulation studies. The results are quantitatively compared with the
analytical results reported in the literature, and with a newly derived approach which uses equal
undercoolings. A good accordance of the undercooling–spacing characteristics between
simulations and the analytical Jackson–Hunt apporaches are found. The results show that
the applied phase-field model, which is based on the Grand potential approach, is able to
describe the analytically predicted relationship between the undercooling and the lamellar
arrangements during the directional solidification of a ternary eutectic system in 3D.
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I. INTRODUCTION

DURING the directional solidification of a ternary
eutectic composition, the melt transforms into three
solid phases. These three phases can form various
patterns, which influence the mechanical properties of
the macroscopic component.[1–3] Gaining a deeper
understanding of the pattern formation process is
therefore of high technical and scientific interest.

Experiments of directionally solidified eutectic sys-
tems show that the lamellar spacing of the solid phases
correlates with the velocity of the solidification front.[4–7]

In 1966, Jackson and Hunt[8] derived an analytical
approach for the correlation between the lamellar
spacing, the solidification velocity, and the average
front undercooling below the temperature of the eutectic
point in binary systems, which occurs during lamellar
and rod eutectic growth. Further extensions for the
directional solidification of binary eutectics and eutec-
toids are presented in References 9–12. Himemiya and
Umeda,[13] as well as Himemiya,[14] extended the
approach of Jackson and Hunt[8] for special patterns
in ternary eutectic systems, which is referred to as
HU1999 in the following. In their study, they derived
analytical approaches for a two-dimensional a-b-a-c
pattern and for three-dimensional chain-like and hexag-
onal patterns. A generalized derivation for arbitrary
lamellar arrangements of ternary eutectics in 2D sec-
tions is presented by Choudhury et al. in Reference 15,
which is called CPN2011 in the following.
To study the effect of the undercooling on the pattern

formation process in complex spatial arrangements, the
phase-field method has been established in recent
years.[17–20] Phase-field simulations allow to investigate
the undercooling depending on physical parameters and
process conditions. For a directionally solidified binary
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eutectic, a Jackson–Hunt-like behavior is found by
Folch and Plapp[16] in 2D phase-field simulations. In
CPN2011, a quantitative accordance is found between
2D phase-field simulations, based on a free energy
model of Reference 17 and the derived analytical
approaches. In continuation, binary eutectoid growth
is considered in Reference 12 for a comparison between
an extended Jackson and Hunt approach and 2D
phase-field simulations.

Two-dimensional phase-field simulations of ternary
eutectic alloys, based on the minimization of the free
energy, are presented in Reference 21, for In-Bi-Sn, in
Reference 22, for Al-Ag-Cu, and in References 23 and
24, forMo-Si-B. The simulations in Reference 21 predict
the average undercoolings, and in Reference 23, an
accordance with the analytical approach of Reference 15
is found. In experiments, directional solidification takes
place in three dimensions. In Reference 25, a Jack-
son–Hunt-like behavior is shown for a 3D phase-field
study of the directional solidification of binary eutectics,
with the model from Reference 16. However, the results
from the simulation studies of References 16 and 25 are
not compared with the analytical predictions following
Jackson and Hunt.

Three-dimensional phase-field simulations of the pat-
tern formation process during the directional solidifica-
tion of three-phase ternary eutectics are studied for
idealized systems in References 15, 17, and 26–28 and for
the ternary eutectic systemAl-Ag-Cu inReferences 22, 27,
and 29–31. Jackson–Hunt-like behaviors in 3D phase-
field studies of the directional solidification of ternary
systems, with a model based on the grand potential
approach,[29,32,33] are discussed in References 28 and 35.

A dependence of the arising patterns on the average
front undercooling is reported in Reference 15, from 2D
simulations. During the three-dimensional growth of
ternary eutectics, a wide range of different microstruc-
tures can evolve. Due to the assumed correlation
between the arising patterns and the resulting under-
cooling, the quantitative investigation is of high interest
to identify the fundamental parameters that control the
morphology development in multiphase, multicompo-
nent systems. This correlation of three-phase ternary
eutectic systems, during 3D directional solidification,
has not previously been studied with phase-field
simulations.

Therefore, this study focuses on the quantitative
comparison of the undercooling in three-dimensional
ternary eutectic phase-field simulations with analytical
results derived by HU1999, and with a newly derived
analytical theory based on a combination of HU1999
and CPN2011. For the comparison with theory, the
lamellar spacings and the growth velocities are varied
systematically. The purpose of this study is to conduct a
quantitative comparison between the analytical
approaches and the phase-field model in 3D. For this

reason, the undercooling–spacing relationship of a
ternary eutectic alloy is investigated for a 3D pattern.
Previous studies focused on two-dimensional simula-
tions. Gaining a better understanding of this relation is
essential to elucidate the complex pattern arrangement
mechanisms in ternary eutectic alloys,[34] and to predict
the microstructure which forms during three-dimen-
sional growth.
In the studies, the thermodynamically consistent

phase-field model of Reference 29 with an ideal ternary
eutectic system, is used.
As a first step of the comparison, the applied

phase-field model and the simulation setup are briefly
presented. Then, the analytical approaches for two-di-
mensional[13–15] and three-dimensional[13] ternary eutec-
tic directional solidification are discussed. In the
derivation of the analytical approaches from CPN2011
and HU1999, different assumptions are made. The
newly derived approach uses the assumptions of equal
undercoolings from Reference 15 to calculate the
average front undercooling in a 3D pattern. The
comparison of both approaches allows to investigate
the validity of the different assumptions.
The two-dimensional lamellar arrangement

a� b� a� c is compared with the analytical
approaches from CPN2011 to validate the model by
recapitulating the study of Reference 15, and also using
the analytical approach from HU1999.
After the validation of the model, an extensive

three-dimensional phase-field study of a chain-like
pattern, which is also referred to as brick-like struc-
ture[4,36–38] is conducted. An experimental example of a
brick-like structure is depicted in Figure 1, showing a
cross section of the ternary eutectic system Al-Ag-Cu.
The undercoolings obtained from the simulations are
compared with the analytical approaches of HU1999
and the newly derived approach.
Finally, the results are summarized, and the conclu-

sions are drawn.

II. METHODS

A. Phase-Field Model

For the simulations, a thermodynamically consistent
phase-field model,[29,32,33] based on the Allen-Cahn
approach, is applied. In the case of three-phase ternary
eutectic directional solidification, the coupled evolution
equations for the N ¼ 4 phase-fields /â in Eq. [1] as well
as the K ¼ 3 chemical potentials in the vector

l ¼ ðlA; lB; lCÞT in Eq. [2] are solved numerically,
together with an expression for the evolution of the
analytic temperature T in Eq. [3]. The evolution
equations of the chemical potentials in Eq. [2] are
derived from Fick‘s laws to ensure mass conservation.
The set of evolution equations is written as
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In Eq. [1], the parameter s is related to the kinetics of the
interfaces, and � is related to its thickness. To model the
shape of the diffuse interfaces, the gradient energy
density a and the potential energy x are applied. As
driving forces for the phase transition, the differences
between the grand potentials wb̂, which are calculated

from the Gibbs energies, are used. The driving forces in
the interface are interpolated with the polynomial
function hb̂. The usage of the Lagrange multiplier

K ¼ 1
N

PN
ĉ¼1 rhsĉ is introduced in the model to fulfill

the constraint
PN

â¼1 @/â=@t ¼ 0 for /â 2 ½0; 1� . In
Eq. [2], the matrix M is the mobility of the K chemical
potentials, and câðl;TÞ is the concentration vector. The
effect of the artificially enlarged interface[33,39,40] is
balanced by the anti-trapping current vector Jat. The
evolution of the analytic temperature gradient in Eq. [3]
is described with the initial base temperature T0, the
applied gradient G, and the velocity v in the growth
direction z.

The model is implemented as a combined solution of
the PACE3D package[41] and the massive parallel frame-
work WALBERLA*.[42,43] A detailed description of the

model is given in Reference 29, and the discretization
with finite differences is presented in Reference 44.

B. Simulation Setup

For the simulative investigations of the directional
solidification process, an ideal ternary eutectic system is
used. The characteristics of the system allow to study the
influence of the growth velocity and the lamellar
arrangement on the average front undercooling unaf-
fected by unequal phase fractions and differing physical
properties, like the interface energies. The ideal ternary
eutectic is defined by equal phase fractions of the three
solid phases, equal concentrations of the components in

the melt, equal surface energies, and equal diffusion
coefficients. For the thermodynamic definition, the
Gibbs energies of the solid phases are equally distributed
on the concentration simplex around the Gibbs energy
of the liquid phase, which is located in the center of the
simplex. The Gibbs energies are modeled as parabo-
loids[45] with equal slopes. The values of the used
parameters are given in Reference 28.
To study the directional solidification, a simulation

setting, which is schematically depicted in Figure 2, is
applied. Starting from a defined cuboid initial structure,
three phases solidify in a coupled growth mode from the
melt and form different patterns in sections perpendic-
ular to the growth direction. The plane parallel to the
growth front is called base size in accordance with
Reference 29. The lamellar spacings of the three solid
phases are systematically varied and evaluated in the
base plane as the distance between periodically contin-
ued arrangements.[8] Perpendicular to the growth direc-
tion, periodic boundary conditions are applied. For
constant conditions, the undercooling below the ternary

Fig. 1—Experimental micrograph of directionally solidified ternary
eutectic Al-Ag-Cu, provided by A. Dennstedt at the German Aero-
space Center (DLR), Cologne. The micrograph is obtained from a
cross section parallel to the solidification front of an experiment with
a velocity of 0:08 lm=s and a temperature gradient of 2:2K=mm. The
three solid phases form a chain-like (brick-like) pattern of two pha-
ses, embedded in a matrix phase.
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@câðl;TÞ

@T

� �
@T

@t

!

;

½2�

@T

@t
¼ @

@t
T0 þ Gðz� vtÞð Þ ¼ �Gv: ½3�

*www.walberla.net

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 49B, FEBRUARY 2018—215



eutectic temperature converges during growth, and is
calculated from the computed mean temperatures at the
solidification front. The solidification front is defined as
the isosurface, where the order parameter of the liquid
phase equals 0.5. The growth velocity of the solidifica-
tion front is controlled by the pulling speed of an
analytic temperature gradient. To study the influences of
the growth velocity and of the lamellar arrangements on
the average front undercooling and on the arising
patterns, the three velocities v1 ¼ 0:035, v2 ¼ 0:071 ,
and v3 ¼ 0:141 in cells per time step are considered. In
this study, all simulations were run at least 1 million
time steps to ensure stable growth and converged
average front temperatures.

C. Discussion of the Jackson–Hunt-Type Analytical
Approach

In the following two analytical approaches, which are
both in the line of Jackson and Hunt,[8] for the
calculation of the average front undercooling in
three-phase ternary eutectics, depending on the lamellar
spacings, and the growth velocity are discussed and
compared. In addition, based on these approaches, a
new formulation for a three-dimensional chain-like
pattern is proposed.

The first approach HU1999 is derived by Hime-
miya[14] as well as Himemiya and Umeda.[13] In their
study, analytic solutions for the two-dimensional pat-
tern a-b-a-c and for a chain-like pattern as well as for a
hexagonal pattern in 3D are derived. The second
approach CPN2011 of Choudhury et al.[15] describes a
generalized form for the calculation of arbitrary lamellar
arrangements in 2D systems.

The undercooling DT is defined as the difference
between the temperature at the solidification front Tfront

and the temperature of the ternary eutectic point TE.

According to the Gibbs–Thomson equation, DT consists
of the solutal undercooling DTsolutal, the curvature-based
undercooling DTcurvature, and the kinetic undercooling
DTkinetic. According to Reference 8, DTkinetic can be
neglected for the diffusion-controlled solidification of
metals. To calculate the concentration fields in the liquid,
a Fourier series approach is applied in both derivations.
In HU1999, it is assumed that the concentrations and

the phase fractions of the developing microstructure are
equal to those at TE. Thus, all Fourier coefficients,
including the zeroth, are calculated by inserting the
approach into the Stefan condition. As the phases
solidify at a temperature below TE, the authors in
CPN2011 argue that the concentrations of the solids
differ from the equilibrium concentrations at the ternary
eutectic temperature and therefore the phase fractions
differ as well. The determination of the real phase
fractions, depending on the solidification conditions,
requires a self-consistent calculation with a high com-
putational effort[15] Therefore, the zeroth Fourier coef-
ficients are treated as unknowns, similar to the
Jackson–Hunt approach,[8] and are solved in the calcu-
lation of the average front undercooling.
For the generalization of the lamellar arrangements in

2D, CPN2011 applies weighted averages in the case of
more lamellae than involved solid phases to calculate the
average concentration and the average curvature.
To determine the average front undercoolings DTn for

each of the solid phases n with a constant velocity, two
different procedures are applied.
In HU1999, the undercoolings consisting of DTsolutal

and DTcurvature are rearranged as expressions of the form

DTn ¼ Anvk1 þ Bn 1

k1
8 n : ½4�

The functions An and Bn in Eq. [4] summarize the

expressions of DTn
solutal and DTn

curvature from HU1999. In

Fig. 2—Schematic illustration of the simulation setup to study the directional solidification of the ternary eutectic system. The plane called base
size, in accordance with Ref. [29], is highlighted in red (Color figure online).
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2D, An and Bn depend on the lamellar spacing k1, and in
3D, they depend on the two spacings k1 and k2.

By averaging the three undercoolings DTn, the total
front undercooling for two- and three-dimensional
growth is determined as

DT ¼ 3

X3

n¼1

1

An

vk1 þ

X3

n¼1

Bn

An

X3

n¼1

1

An

1

k1
: ½5�

CPN2011 is using a different procedure to calculate
the average front undercooling. Due to treating the
zeroth Fourier coefficients as unknowns (A0, B0, andC0

of the three components), the formulations for the
average front undercooling of each of the solid phases
can be rearranged as

DTa ¼ âaðB0;C0Þ þ Âaðk1Þvk1 þ B̂aðk1Þ
1

k1
½6�

DTb ¼ âbðA0;C0Þ þ Âbðk1Þvk1 þ B̂bðk1Þ
1

k1
½7�

DTc ¼ âcðA0;B0Þ þ Âcðk1Þvk1 þ B̂cðk1Þ
1

k1
: ½8�

The functions ân, Ân, and B̂n summarize the expres-

sions of DTn
solutal and DTn

curvature from CPN2011.
By means of the relation A0 þ B0 þ C0 ¼ 0 from the

Stefan condition and assuming equal undercoolings for
all solid phases DT ¼ DTa ¼ DTb ¼ DTc, the set of
equations can be solved, and the total average front
undercooling can be calculated. As shown in Reference
46 and mentioned in CPN2011, the assumption of equal
undercoolings is quite accurate for systems with similar
phase fractions of the solid phases. However, for
asymmetric systems in 2D, with unequal phase fractions
or 3D structures, this assumption is inaccurate. In the
current study, an ideal system with equal phase fractions
is employed for the simulation studies.

In summary, it can be said that different undercool-
ings for the solid phases are determined in HU1999;
however, due to the calculation of the zeroth Fourier
coefficients, the concentrations are equal to the ones at
TE. In contrast, the concentrations of the three solid
phases at the growth front can be different from the
values at TE, according to CPN2011. This requires equal
undercoolings for all phases to close the equation
system.

In addition to HU1999, we present an extension to
calculate the undercoolings for the chain-like pattern in
the following, which is based on HU1999, and is in the
line of CPN2011. The extension provides a further
analytical expression to calculate the undercooling for
chain-like patterns with equal DT. The concentration
fields in the melt and the curvatures of the solidification

front are calculated according to HU1999. However, the
zeroth Fourier coefficients (A0, B0, and C0) are treated
as unknowns, similar to CPN2011. By applying the
relation A0 þ B0 þ C0 ¼ 0, and by assuming equal
undercoolings for all solid phases, the total average
front undercooling is calculated. This approach, which
is labeled as HUequalDT in the following, allows to
compare the effect of the different assumptions to
calculate the average front undercooling.

D. Parameters for the Analytical Approaches

The parameters to calculate the undercooling from
the analytical approaches in Sections II–E and III are
described in Reference 28. The slopes of the liquidus
planes, the equilibrium phase fractions, and the equi-
librium concentrations in the phases are calculated from
the Gibbs energies. The contact angles in equilibrium at
triple and quadruple points are calculated with Young’s
law from the interface energies. The Gibbs–Thomson

coefficients Cn are determined according to References
12 and 47 as

Cn ¼
rn liq

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

i¼1 m
n liq
i

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2

j¼1

P2
i¼1

@2gn

@cn
i
@cnj

ðcni � c
liq
i Þ

� �2
s ; ½9�

with the Gibbs energy gn of the solid phase n and the
interface energies rn liq between the phase n and the

melt liq. The parameters m
n liq
i denote the slopes of the

liquidus planes, and c
liq
i and cni are the equilibrium

concentrations of the chemical elements in the phases.

E. Validation of the Model with Simulations of the
Stacking Sequence a� b� a� c

In this section, the undercooling in the simulations for
the stacking sequence a� b� a� c, with three different
velocities, and with systematically varied lamellar spac-
ings, are studied. The results of the 2D phase-field
simulations are quantitatively compared with the ana-
lytical approaches of HU1999 and CPN2011. The
comparison with CPN2011 recapitulates the investiga-
tions from Reference 15, conducted with the free energy
model of Reference 17, to validate the applied phase-
field model based on the grand potential approach. In
the applied grand potential model, no excess energy does
occur in the interface, which is in contrast to Reference
15, as discussed in Reference 33.
The investigated lamellar arrangement of the form

a� b� a� c is depicted in the inlet of Figure 3. This
kind of stacking sequence is reported from experimental
cross sections of the ternary eutectic systems Al-Ag-Cu[6]

and In-Bi-Sn:[21,48] The width of the a lamella is half the
width of the b and the c lamellae, respectively. As
expected, different growth modes (oscillation,
stable growth, and overgrowth) can be distinguished in
the simulations, depending on the lamellar spacing. For
the velocity v2, one of the a lamellae is overgrown for
k � 50 cells. For k � 55 cells, stable lamellar growth
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occurs, and for a lamellar spacing larger than 75 cells,
the width of the lamellae starts to oscillate. This is in
accordance with the results in Reference 15.

The average front undercoolings of the 2D simula-
tions over the lamellar spacing without overgrowth are
depicted in Figure 3, with black marks. The behavior of

Fig. 3—Average front undercooling over the lamellar spacing for the arrangement a� b� a� c and three different velocities v1, v2 , and v3. The
results from 2D and 3D simulations are drawn with black and red symbols, respectively. The analytical results from CPN2011[15] are drawn as
blue curves, and the analytical results from HU1999[13] are displayed as green curves (Color figure online).

Fig. 4—Average front undercooling over the lamellar spacing for chain-like patterns with a quadratic base size for the three different velocities
v1, v2 and v3. The results from 3D simulation are shown with red marks. The analytical results from HU1999[13] are depicted as green curves,
and the results from HUequalDT are drawn in blue (Color figure online).
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the undercooling values shows the well-known trend of
the Jackson–Hunt theory,[8] described by the relation

DT ¼ Avkþ B

k
; ½10�

with a minimum undercooling at the operating point
kJH, and with the material-specific constants A and B.

In Figure 3, the analytical results from CPN2011 and
HU1999 are plotted as solid blue and green lines,
respectively.

The results from HU1999 predict a slightly larger
undercooling than the results from CPN2011, but the
operating points kJH differ by a maximum of 2.18 cells,
for all three velocities. Compared with CPN2011, the
maximum deviation of the undercooling between the
simulations and the analytical results from HU1999 is
10:2 pct at k ¼ 60 for the velocity v3, and 8:5 pct at
k ¼ 100 also for the velocity v3. The simulation results
lie between both analytical curves for the considered
lamellar spacings. For the velocity v2, the difference in
kJH is 3:7 pct for CPN2011 and 5:7 pct for HU1999.

A good accordance between the simulations and the
analytical approaches is found for the velocities v1 and
v2.

For the velocity v3, which is four times higher than v1,
the differences are larger. This behavior is also observed
in Reference 15 and can be explained by the larger
deviation from the thermodynamic equilibrium, and by
the inherent assumptions used in the analytical deriva-
tions, like a planar solidification front, as reported in
References 12 and 16. An analytical derivation, com-
bined with a phase-field study that evaluates the
influence of curved interfaces, is in preparation.[49]

In addition, an extension of the 2D simulations to 3D
is conducted by expanding the two-dimensional setting
to a quadratic base size in the third dimension. In
Figure 3, the results of the 3D simulations without
overgrowth are displayed as red marks. As expected, the
deviation is in the order of the machine epsilon.

The investigation with the stacking sequence
a� b� a� c shows a good accordance between the
simulations and the analytical results. This demonstrates
the capability of the model, based on the grand potential
approach to quantitatively reproduce the undercoolings
predicted from analytical results.

III. RESULTS OF 3D SIMULATIONS WITH
CHAIN-LIKE STRUCTURES

In the following, the undercooling of an inherently
three-dimensional phase ordering, the chain-like struc-
ture, is investigated and compared with the analytical
solutions of HU1999 and HUequalDT. From CPN2011,
no analytical solutions for three-dimensional patterns
are reported, and therefore HUequalDT is derived.
Chain-like patterns as exemplarily illustrated in Figure 1
are observed for example in experiments of the ternary
eutectic system Al-Ag-Cu:[4,36–38,38] In this pattern, chain
links of the phases b and c are embedded in an a matrix.

The setting for the 3D phase-field studies is plotted in
Figure 2 and in the inlet of Figure 4. To investigate this
pattern, two lamellar spacings have to be considered: k1
is defined perpendicular to the chain direction, and k2 is
defined in the chain direction.

A. Influence of the Growth Velocity in a Quadratic Base
Size

In the first simulation series for the chain-like pattern,
a quadratic base size is used with k ¼ k1 ¼ k2, which is
varied from 30� 30 to 100� 100 cells with a step size of
5 cells. With this series, the influences of the growth
velocity and the lamellar spacing on the undercooling
are studied.
The undercooling over the lamellar spacing k of the

simulations with a retaining chain-like pattern, for the
velocities v1, v2 and v3, is plotted in Figure 4 with red
points. The results confirm the Jackson–Hunt-like
behavior of Eq. [10], with an operating point kJH.
Besides the simulation results, the analytical predictions
from HU1999 and HUequalDT are plotted in green and
blue for the three velocities, respectively.
Both analytical approaches show a similar behavior

for the considered velocities and the lamellar spacings.
For the investigated parameters, combinations of veloc-
ity and lamellar spacings exist, where the approach with
equal undercoolings (HUequalDT) predicts higher under-
coolings than HU1999. This is in contrast to the studied
two-dimensional a� b� a� c stacking sequence.
For both analytical approaches, the operating points

kJH differ from each other by a maximum of 3.7 cells for
all three velocities. For the investigated spacings, the
maximum deviation in the undercooling between the
analytic curves is 12:6 pct for v1 and k ¼ 90 referred to
HU1999.
The undercoolings in Figure 4 record a good accor-

dance between the simulations and the analytical results
for different velocities and lamellar spacings for the
considered 3D pattern. The comparison with HU1999
shows that the computed analytical undercoolings at the
operating points differ by a maximum of 16:3 pct for the
velocity v1. However, for low velocities, the relative
deviation becomes larger due to smaller absolute under-
coolings. In the case of HUequalDT, the maximum
deviation at the kJH’s of the simulations is measured
for the velocity v3 with 7:5 pct referred to HUequalDT.
Despite the reported relative maximum deviation, the
simulations and the analytical approaches follow the
same trends.
For the arising microstructures, a behavior similar to

the two-dimensional validation case is observed. With
an increase of the lamellar spacings, the final microstruc-
ture evolves into different patterns, as shown in the
equally scaled micrographs with different base sizes in
Figure 5. First, the rods rearrange to non-chain-like
structures, then a stable growth of the predicted pattern
occurs. By further increasing the spacing, the phase
widths start to oscillate, transition patterns occur, and
finally multiple chain-like structures form.
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The rearrangement of the pattern is accompanied by a
decrease of the average front undercooling, which is in
accordance with the results in Reference 25 for a binary
eutectic and with the results in Reference 28, for a
ternary eutectic hexagonal pattern. As expected, the
average front undercoolings for the switched chain-like
patterns are equal to the corresponding simulations with
the half base size and without a pattern switch. This is
reflected in the average front undercoolings for the base
sizes 110� 110 and 120� 120, which are equal to the
undercoolings of the simulations with the base sizes
55� 55 and 60� 60, respectively.

B. Influence of Unequal Lamellar Spacings

In the next study, the influence of unequal lamellar
spacings on evolving chain-like patterns for k1 6¼ k2 and
on the average front undercooling is investigated.

In Figures 6(a) and (b), the undercoolings for the
velocities v1, v2 and v3, calculated from the analytical
approaches of HU1999 and HUequalDT, are, respectively,
plotted as red, green, and blue hyperplanes, depending
on both lamellar spacings.

For all velocities, the planes follow a Jack-
son–Hunt-type behavior of Eq. [10] for k1 with a

constant k2 and for k2 with a constant k1, respectively.
All hyperplanes show global minima in the undercool-
ings, similar to the undercoolings at kJH in the previous
studies. These minima on the planes and their projec-
tions on the bottom planes of the 3D plots are
highlighted with colored marks corresponding to the
planes. The ratios of k1 and k2, for the three minima,
follow the relationship k2=k1 ¼ 1:138 for HU1999, and
k2=k1 ¼ 0:705 for HUequalDT, indicated by the black lines
in the bottom planes in Figure 6.
For a comparison with the analytical approaches, a

phase-field study with a systematic variation of k1 and k2
is conducted for the velocity v2. For this study, k1 as well
as k2 are varied from 40 to 100 cells in steps of 5 cells.
Each of the 169 three-dimensional simulations is com-
puted with 360 CPUs for up to 120 minutes.
Different forms of chain-like structures occur in the

simulations. Depending on the lamellar spacings, vari-
ous patterns, such as stable growth, oscillation of the
phase widths or a change of the phase arrangement, is
observed. The different growth modes of the simula-
tions, depending on k1 and k2, are outlined in a
morphology classification diagram in Figure 7. Regions
with stable growth are marked with green triangles. The
area without pattern change, but with an oscillation of

Fig. 5—Average front undercoolings of the simulations for the velocity v2 with quadratic base sizes as well as a selection of occurring
microstructures at different domain sizes.
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the phase widths, is depicted with red circles. Two
regions are outlined with blue squares, in which the
initial chain-like pattern changes. The behavior of the
simulations differs in the k1- and k2-direction. The blue
area, with a pattern change in the region 90 � k1 � 100
and 60 � k2 � 80, evolves through the interplay of the
degrees of freedom for oscillation and limitations
through diffusion and interface energies. Beside the
mentioned areas, selected cross sections after 1 million
time steps are placed around the k1-k2 diagram in
Figure 7 to illustrate the arising patterns. Especially for
the simulations in the upper right corner oscillations
occur, which lead to temporally different phase frac-
tions. However, the average phase fractions remain
constant for the whole simulation with one third for
each solid phase in consistency with the lever rule.

The undercoolings DT, related to the velocity v2 of the
simulations without pattern change, and the analytical
approaches are plotted in Figure 8 over both lamellar
spacings k1 and k2. The analytical results are inserted as
translucent green and blue planes, and the simulation
results are depicted as red points. The simulations show
the same trends as the analytical approaches. In the
bottom plane of the 3D plot, the direction of the
sections for k1 ¼ const and k2 ¼ const is marked. In the
lower parts of Figure 8, the undercoolings for these
sections are plotted as marks for the simulations,
depending on the respective lamellar spacings. For the
simulations, both diagrams show the Jack-
son–Hunt-type behavior of Eq. [10] for k1 with
k2 ¼ const as well as for k2 with k1 ¼ const, respectively.
The undercoolings for k1 ¼ k2 are already displayed in
Figure 4.

Similar to the analytical approaches in Figure 6, a
global minimum of the undercoolings occurs in the
simulated chain-like pattern for a variation of both

Fig. 6—Calculated undercooling DT, depending on the spacings k1 and k2, for the velocities v1, v2 and v3 in red, green, and blue, according to HU1999 in
(a) and HUequalDT in (b). The global minima and the projections on the bottom planes are highlighted in the corresponding colors (Color figure online).

Fig. 7—Morphology diagram with different growth modes, depend-
ing on the spacings k1 and k2. The cross sections refer to evolution
states after 1 million time steps and illustrate the different kinds of
arising patterns.
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lamellar spacings. The minimum undercooling point is
located at approximately k1 ¼ 50 and k2 ¼ 50, resulting
in a ratio of k2=k1 ¼ 1:0 for the simulation series. The
operating point of the simulations differ by 8.1 cells

from the analytic of HU1999 and 15.5 cells from
HUequalDT in euclidean metric. The simulated under-
coolings referred to the analytic result have a deviation
of 2:1 pct for HU1999 and of 1:3 pct for HUequalDT. In

Fig. 8—Average front undercooling over the lamellar spacings k1 and k2 for a chain-like pattern. The results from 3D simulations are shown
with red points. The analytical results from HU1999[13] are incorporated as a green plane, and the results from HUequalDT are incorporated as a
blue plane. Below, results from selected sections for constant values of k1 and k2 are presented (Color figure online).
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total, the maximum differences in the undercooling,
which refer to the analytic values of HU1999, are 3:4 pct
for the lamellar spacings k1 ¼ 50 and k2 ¼ 100, and for
the analytic values of HUequalDT, the maximum devia-
tions are 9:1 pct for the lamellar spacings k1 ¼ 100 and
k2 ¼ 40.

IV. CONCLUSION

In this study, the influence of the lamellar spacings on
the arising patterns and on the average front under-
cooling during the directional solidification of an ideal
ternary eutectic system is investigated with phase-field
simulations.

For the validation of the phase-field model, based on
a grand potential approach, the lamellar spacing is
systematically varied for three different velocities and a
lamellar arrangement a� b� a� c in 2D and 3D
simulations. The results show a good accordance with
the analytical approaches from Himemiya and
Umeda[13] (HU1999) and Choudhury et al.[15]

(CPN2011).
In extensive three-dimensional phase-field studies, the

inherently three-dimensional chain-like structure is
investigated. The 3D simulation results are quantita-
tively compared with the analytical results from
HU1999 and with a newly derived approach,
HUequalDT, based on Reference 13 with the assumption
of equal undercoolings following.[15]

From the investigations, we draw our five main
conclusions: (i) The used phase-field model,[29] based on
a grand potential approach, is capable to correctly
reproduce the undercooling–spacing–velocity relation in
quantitative manner, for the considered ideal ternary
eutectic system. (ii) The results indicate that a predefined
chain-like pattern is favorable from an energetic point of
view. The pattern remains stable for various values of k1
and k2. Even if a pattern change occurs, rearranged
chain-like structures evolve. (iii) For the undercoolings
of the chain-like patterns, a Jackson–Hunt-type behav-
ior is observed in direction of both lamellar spacings for
the analytics and the phase-field simulations. (iv) The
occurrence of a global minimum in the undercooling for
certain values of k1 and k2 as operating points is found
both with analytical approaches as well as with the
simulations. For the analytical approaches, the global
minima follow lines through the origin, with different
slopes in the k1-k2 space for the considered velocities.
The operating point for the simulations is located
between both investigated analytical approaches. (v)
The analytical approaches of HU1999 and HUequalDT,
based on different assumptions for the calculation of the
average front undercoolings, show similar trends. This
indicates that for the considered system, the assump-
tions of both analytical approaches are only partly
fulfilled. Both approaches represent different idealized
scenarios. The pattern formation in the considered
ternary eutectic system seems to evolve from a mixture
of both scenarios.

In summary, by applying 3D phase-field simulations
and analytical approaches, we demonstrate that the
Jackson–Hunt relationship for quasi-two-dimensional
binary eutectic directional solidification[8] is also valid
for three-dimensional ternary eutectics. Based on the
accordance established in 2D and 3D, the phase-field
model is validated and can be employed to predict the
undercooling–spacing–velocity relationship for complex
pattern arrangements commonly occurring in experi-
mental micrographs.
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