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The recently published viscosity data of heterogeneous silicate melts with well-documented
structure and experimental conditions are critically re-analyzed and tabulated. By using these
data, a non-Newtonian viscosity model incorporating solid fraction, solid shape, and shear rate
is proposed on the basis of the power-law equation. This model allows calculating the viscosity
of the heterogeneous silicate melts with solid fraction up to 34 vol pct. The error between the
calculated and measured data is evaluated to be 32 pct, which is acceptable considering the large
error in viscosity measurement of the completely liquid silicate melt.

DOI: 10.1007/s11663-017-1075-9
� The Minerals, Metals & Materials Society and ASM International 2017

I. INTRODUCTION

VISCOSITY of heterogeneous silicate melts (con-
taining solid crystals) has long been investigated to
support the understanding of natural processes, e.g.
volcano eruption[1,2] and control the industrial produc-
tion, e.g. iron and steelmaking.[3] Enormous efforts have
been made to develop a mathematic model allowing
viscosity estimation without the costly and time-con-
suming experimental measurement. The most widely
used viscosity equation for suspension system is the
Einstein-Roscoe (ER)[4] equation. Kondratiev and Jak[5]

validated the applicability of the ER equation with a
large experimental data set in the Al2O3-CaO-‘‘FeO’’-
SiO2 slag with solid fraction up to 30 vol pct. They
underlined the effect of solid fraction and liquid viscos-
ity, however, the effect of particle shape and shear rate
were neglected. Wright et al.[6,7] observed the shear
rate-dependent behavior in the calcium ferrite slags and
calcium alumino-silicate slags containing spinel parti-
cles, but no model was proposed to calculate the
non-Newtonian behavior. Later work by Wu et al.,[8]

Xu et al.[9] and Zhen et al.[10] all employed the ER
equation in calculating solid-bearing slag viscosity by
fitting the parameters in this equation to the measured
data. Consequently, the values of the parameters varied
at lot. One of the main reasons is that they neglected the
influence of particle shape (Xu et al.,[9] Wu et al.[8]) or
approximated the non-spherical particles as spheres

(Zhen et al.[10]). In reality, however, the heterogeneous
silicate melt systems contain solid particles of different
sizes and shapes. And it has been experimentally
observed that solid particles’ shape can influence the
viscosity of melts significantly.[6,7] Furthermore,
although non-Newtonian behavior has been observed
in solid-containing slags and it is found the Newtonian
assumption is only valid at dilute limit, i.e., solid fraction
<2 vol pct,[11] most of the existing work still treat the
heterogeneous slag as Newtonian system in terms of
modeling. As a consequence, the calculated viscosities
are inevitably erroneous and incomparable between
different reports.
To correctly evaluate viscosity of heterogeneous

silicate melts, in this work, a non-Newtonian viscosity
model incorporating solid fraction, solid shape, and
shear rate is proposed by re-examining the currently
published viscosity data with respect to solid-bearing
silicate systems. Reliability of the model is subsequently
assessed by comparing the calculated results with
measured data.

II. EXAMINATION OF MEASURED DATA

There have been multiple experimental studies on
viscosity of the solid-bearing silicate melt, including
magmatic system, metallurgical slag, and coal ash slag.
The limited data reported in metallurgical were reviewed
firstly. Most of the published data, however, do not
include all of the relevant measurement parameters, with
respect to solid fraction and shape, temperature, and
shear rate. For example, Wright et al.[6,7] studied the
viscosity of calcium ferrite slags and calcium alu-
mino-silicate slags containing spinel particles. However,
the particle shape was not quantified and its effect was
neglected. In Wu’s study[8] on Al2O3-CaO-MgO-SiO2
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system, the irregular MgO particles were not further
characterized and the shear rate applied was not
reported. Xu et al.[9] investigated the CaO-MgO
(-Al2O3) -SiO2 system without quantifying the particle
shape. Additionally, the volume fraction of solids was
calculated through weight fraction and estimated den-
sities, leading to large uncertainty. Zhen et al.[10] mea-
sured the viscosity of CaO-MgO-Al2O3-SiO2-(TiN)
system with TiN as particles, which were approximated
as spheres. The rotating speed was given instead of shear
rate and the dimensions of spindle and crucible were not
specified, thus the shear rate is not accessible. Therefore,
it is not possible to apply these data for modeling in this
study. Alternatively, it is found that the recent work on
magmas are well-documented with the detailed struc-
tural information (silicate system, crystal type, volume
fraction of solid and solid shape) and clearly defined
experimental conditions (temperature, shear rate and
shear rate ramp), which are necessary information for
the purpose of viscosity modeling. Therefore, they are
summarized in Table I and critically reviewed
afterwards.

In order to ensure a reliable dataset for viscosity
modeling, the crucial parameters, i.e., volume fraction of
solid, solid shape, melt viscosity, shear rate, and shear
rate ramp, which determine the viscosity of solid-bear-
ing silicates are examined.

Volume fraction of crystals is the key parameter
affecting viscosity of silicate melts. To determine the
volume fraction, the SEM (scanning electron micro-
scopy) or OM (optical microscopy) images of the
quenched silicates are analyzed via image processing
software, e.g., Corel Draw,[14] Image J,[15] Adobe
Photoshop,[16] and SCION.[12] The area fraction is used
as a measure of the volume fraction, provided that the
particles are randomly distributed in the matrix and
sufficient area of the sample is analyzed.[17] However, an
error of this technique is inevitable due to the poor
resolution of the image, the limited observation area, the
inhomogeneously distributed crystals etc. Analysis of
different locations of the same sample demonstrates a
standard deviation of 1.44 to 2.5 pct by Vona et al.[14]

and 1 pct by Cherverl et al.[15] in terms of volume
fraction of crystals. Instead of the direct measurement
with the SEM/OM images, Ishibashi[13] calculated the
weight percentage of each mineral phase using a
generalized mixing model (a thermodynamic model
used for calculating equilibrium content of each phase).
And the volume fraction is then obtained with the
known density of each phase. These data are also
included in the present study considering that the
generalized mixing model is widely used in magmatic
systems.

The second parameter, which should receive particu-
lar attention, is the crystal shape. Due to characteriza-
tion difficulty of irregular shapes, an approximation of
ellipsoidal shape is commonly applied. The aspect ratio
(rp), which is expressed as the ratio between the axis
length of rotational symmetry and the maximum axis
length orthogonal to the rotational axis,[11] is used for
characterizing particle shape. The aspect ratio is
obtained by digitally analyzing the SEM/OM images
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using image processing software as mentioned above. It
is difficult to assess the error level of this technique due
to the irregular shape and connected crystals in silicate
melts. However, as no better approach is available, the
aspect ratio analyzed by this image processing is used
for the interpretation of present results. According to
Table I, the aspect ratio of solid crystals varies between
1.32 and 11.6, covering most of the cases in heteroge-
neous silicate melts.

The viscosity of pure liquid also influences the
viscosity of overall solid-bearing system. Due to the
fact that melt composition is changing with crystalliza-
tion, the direct measurement of residual melt viscosity is
complex, time-consuming, and costly.[16] In general, it
can be calculated using the existing viscosity models,
provided that the compositions of residual liquid at
different temperatures are known. In the articles listed in
Table I, the compositions of residual liquid are all
obtained by analyzing the quenched samples at different
temperatures using electron microprobe (WDS or EDS),
ensuring the accuracy of liquid chemistry. In this way,
the effect of temperature on the melt chemistry is taken
into account. A number of viscosity models with good
precision for liquid silicate melt are available in litera-
ture, such as the GRD equation[18] used by Ishibashi
and Sato,[12] Vona et al.,[14] Chevrel et al.[15] and
Campagnola et al.[16] Ishibashi[13] calculated the residual
melt viscosity with Shaw’s equation.[19] In order to keep
consistency with other data and ensure the reliability of
viscosity data, the melt viscosity in Ishibashi’s study is
re-calculated in the present work using the GRD
equation, which is based on more recently published
viscosity data.

Another important parameter in viscosity study is the
shear rate, which is often omitted from discussion.
However, it critically influences the measured result.
With increasing solid fraction, the viscosity tends to be
shear rate-dependent, i.e., non-Newtonian. A heteroge-
neous silicate melt may exhibit evident non-Newtonian
behavior at very low solid concentration, e.g., 6 vol pct
in Ishibashi and Sato’s work.[12] Therefore, it is of great
importance to take into account the shear rate in
viscosity modeling. As shown in Table I, the selected
five studies present detailed shear rate/rotating speed
information. For comparison, the rotating speed in the
work of Ishibashi and Sato[12] is converted to shear rate
using the following equation based on the geometry of
spindle and crucible in their study.

_c ¼ 2xR2
o

ðR2
o � R2

i Þ
½1�

where Ro, Ri are the radius of the crucible and the
spindle, respectively, m; x is the rotating speed, rad/s.

It is also noted in Table I that the viscosity is
measured at shear rate decreasing ramp (down ramp)
except for the work of Campagnola et al., who con-
ducted the measurement on both decreasing ramp and
increasing ramp (up ramp) of shear rate. According to
Campagnola et al.’s observation, the viscosity variations
in the two processes are asymmetrical. For the up-ramp
condition, the progressive alignment of crystals and/or

the disruption of aggregates lead to a decrease in
viscosity with increasing shear rate, exhibiting a pro-
nounced non-Newtonian behavior. However, under the
down-ramp condition, the viscosity is only slightly
increased.[16] This is probably due to that the randomly
orientated crystals or the solid network cannot be
completely recovered during shear rate decreasing, once
disrupted by high shear rate at the beginning of rotating.
For a shear-thinning silicate system, the viscosity shows
an abrupt decrease with increasing shear rate, due to the
rearrangement of solid particles. At a shear rate above a
critical value _cc (determined by the intersection of two
tangent lines, as shown in Figure 1), the particles are
well aligned and change only slightly with further
increased shear rate (provided no shear-induced clusters
occur). We therefore define silicate melts as less-sheared
(a system with randomly orientated crystals) and well-
sheared system (the crystals are well aligned) depending
on the viscosity changing profile with increasing shear
rate, shown in Figure 1. The critical shear rate may vary
with solid fraction and particle shape and the typical
range of _cc is between 102 and 103 s�1.[20]

Five datasets are selected for the viscosity modeling of
a solid-bearing silicate melt in this paper. The details of
these five datasets are summarized in Table I, providing
information of each study with respect to the specified
volume fraction of crystals, crystal’s aspect ratio and
shear rate, which are of significant importance for the
subsequent viscosity modeling.

III. VISCOSITY MODELING OF THE
SOLID-BEARING SILICATE MELTS

Numerous equations have been formulated to
account for the viscosity of solid-liquid systems. Rutgers
reviewed over 250 viscosity equations in 1962.[21] Many
other review articles are also available.[22–24] However,
most of the equations gradually fade into oblivion due
to the limited application range or the phenomenolog-
ical nature, except for a few equations, such as the

Fig. 1—Different flow behaviors at different shear rate ranges.
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well-known formula (Eq. [2]) derived by Einstein in
1906.[25]

gr ¼
gS
gL

¼ 1þ 2:5U ½2�

where gr is the relative viscosity; gS the viscosity of a
suspension and gL the viscosity of the liquid; U the
volume fraction of solids; 2.5 is termed as the Einstein
coefficient or the intrinsic viscosity, which is a non-unit
parameter characterizing the behavior of non-interact-
ing particles in a dilute system.

Although the Einstein equation enables viscosity
calculation of suspensions at dilute regime, i.e. 2
vol pct,[26] it fails with increasing solid fraction or
particle’s shape diversity, as it does not account for
the particle-particle interaction (e.g., collision). In con-
centrated suspensions, however, the flow field around a
particle is ‘‘felt’’ by other particles and the collisions
between particles lead to the formation of aggregates[27]

or even a solid network.[28,29] The complicated structure
leads to non-Newtonian behavior which has been
observed in a number of silicate systems.[12,13,15] Most
of the existing viscosity models only deal with the dilute
and Newtonian regime, which are far from some
practical applications. The present work aims to develop
a viscosity model of solid-bearing silicate melts by
taking into account non-Newtonian behaviors.

A. Power-Law Equation

In order to quantify the non-Newtonian behavior of
solid-bearing silicate melts, the power-law equation is
employed, as it is the most commonly used constitutive
equation which allows characterizing both shear thin-
ning and shear-thickening behaviors. The power-law
model is expressed as

s ¼ m _cn ½3�

or

g ¼ s
_c
¼ m _cn�1 ½4�

where s is the shear stress, _c the shear rate, m the flow
consistency, n the flow index. The equation

encapsulates various types of fluid, i.e., n = 1 for a
Newtonian fluid; n< 1 for a shear-thinning fluid;
n> 1 for a shear-thickening fluid. A shear-thinning
liquid has a decreasing viscosity with increasing shear
rate, whereas a shear-thickening liquid has an increas-
ing viscosity with that, as illustrated in Figure 2.
In order to correlate the constitutive equation with

system properties, e.g., solid particle fraction and
particle shape, the power-law equation is divided by
the viscosity of residual liquid (gL):

gr ¼
m

gL
_cn�1¼mr _c

n�1 ½5�

where mr is defined as the relative flow consistency,
which is equivalent to the relative viscosity for Newto-
nian fluid or the non-Newtonian fluid at shear rate of
1 s�1, using the consistent unit system. Physically, the
relative flow consistency reflects the structure (i.e., spa-
tial distribution and orientation of crystals) of
solid-bearing silicate melts at unit shear rate. The flow
index n is the parameter characterizing the influence of
shear rate on structure, therefore on viscosity. Accord-
ing to Eq. [5], mr and n can be obtained by fitting this
equation to measured data. Employing the viscosity
data from the articles reviewed in Table I, the relative
flow consistency and flow index are obtained by the
best fit, as shown in Table II.
Considering the physical meaning of the flow consis-

tency and flow index, it is reasonable to conclude that
these two parameters are dependent on the structure of
silicate melts, e.g., crystal fraction (U) and shape (rp). In
this work, the efforts will be attempted to express mr and
n as functions of the structure parameters (U and rp) of a
solid-bearing silicate melt.

B. Relative Flow Consistency

A number of formulas have been derived to correlate
the relative viscosity with solid concentration. Amongst
these equations, Krieger–Dougherty (KD) equation[30]

has been widely applied in silicate melts. This KD
equation is considered by Wildemuth and Williams as
the most successful viscosity model due to the most
rigorous derivation process.[31] The KD equation is

Fig. 2—Behavior of Newtonian, shear thinning, and thickening systems. (a) Correlation between shear stress and shear rate for different systems;
(b) correlation between viscosity and shear rate for different systems.
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therefore employed in the present work to relate the
relative flow consistency with the solid fraction (Eq. [6]).

mr ¼ 1� U
Um

� ��½g�Um

½6�

where [g] is the intrinsic viscosity,[32] which is consid-
ered to be 2.5 for suspensions containing spherical par-
ticles,[33–35] but it varies with particle shapes;[36] Um is
geometrically defined as the upper limit of the volume
fraction, beyond which there is no space to accommo-
date more particles.[11]

The obtained relative flow consistency in
Section III–A is plotted against the volume fraction of
solids and Eq. [6] is applied to fit to the data, as shown
in Figure 3. The obtained parameters are demonstrated
in Table III together with the crystals’ aspect ratio.
As shown in Table III, the determination coefficients

(adjusted R2) are close to unity, indicating an excellent
fitting, except for that of Ishibashi and Chevrel et al.’
data. The poor fitting to these two datasets is mainly
because of the large analytical error of the samples with
low solid fractions (both of the systems studied have
solid fraction <25 vol pct) as discussed in Section II.

Table II. The Relative Flow Consistency mr and the Flow Index n Obtained by the Best Fit to the Measured Viscosity at Different

Shear Rates

References
Temperature

[K (�C)]
Volume Fraction of

Crystals
Relative Flow

Consistency (m )(sn�1) Flow Index (n)

Campagnola et al.[16]

Up ramp 1423 (1150) 0.34 9.10 0.91
1438 (1165) 0.26 3.79 0.77
1466 (1193) 0.22 2.50 0.75
1475 (1202) 0.211 3.33 0.81
1408 (1207) 0.209 2.96 0.83
1484 (1211) 0.199 2.40 0.79
1491 (1218) 0.187 2.49 0.81
1494 (1221) 0.178 2.22 0.82
1499 (1226) 0.146 2.06 0.78
1503 (1230) 0.103 1.91 0.84
1508 (1235) 0.087 1.69 0.84
1513 (1240) 0.063 1.71 0.90

Down ramp 1423 (1150) 0.34 7.94 0.98
1438 (1165) 0.26 3.70 0.97
1466 (1193) 0.22 3.33 0.96
1475 (1202) 0.211 3.26 0.97
1408 (1207) 0.209 2.88 0.98
1484 (1211) 0.199 2.46 0.95
1491 (1218) 0.187 2.41 0.97
1494 (1221) 0.178 2.10 1.00
1499 (1226) 0.146 1.93 1.00
1503 (1230) 0.103 1.75 1.00
1508 (1235) 0.087 1.58 1.00
1513 (1240) 0.063 1.55 0.98

Chevrel et al[15] 1453 (1180) 0.072 2.19 0.98
1441 (1168) 0.123 2.41 0.99
1435 (1162) 0.129 2.00 0.93
1435 (1162) 0.129 2.22 0.90
1430 (1157) 0.127 1.81 0.83
1425 (1152) 0.135 2.60 0.78
1417 (1144) 0.173 3.54 0.63

Vona et al[14] 1460.5 (1187.5) 0.11 1.41 0.98
1455.3 (1182.3) 0.125 1.77 0.95
1450.2 (1177.2) 0.139 2.53 0.94
1445.1 (1172.1) 0.137 3.40 0.95
1440 (1167) 0.179 3.33 0.91

1429.7 (1156.7) 0.272 12.57 0.91
Ishibashi[13] 1490 (1217) 0.06 1.15 1.01

1470 (1197) 0.133 1.45 0.94
1450 (1177) 0.187 2.50 0.94
1430 (1157) 0.248 1.77 0.82

Ishibashi and Sato[12] 1443 (1170) 0.046 0.99 0.95
1433 (1160) 0.196 1.66 0.96
1423 (1150) 0.258 3.60 0.91
1413 (1140) 0.306 4.59 0.90

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 48B, DECEMBER 2017—3031



The fitting confirms that the correlation between mr and
U can be expressed via the KD equation. Secondly, it is
noted that with a change in the aspect ratio rp, the
obtained maximum packing fraction Um varies from
0.33 to 0.57 and the intrinsic viscosity [g] increases from
0.92 to 5.16. This suggests that not only the relative flow
consistency is connected to the solid fraction and solid
shape, but also the extent of the crystal’s effect at a given
solid fraction on the viscosity is dependent on its
morphology. This influence extent, represented by Um

and [g], of the solid crystal morphology is further
discussed below.

The maximum packing fraction Um, at which the
relative viscosity approaches infinity, is proved to be
63.66 ± 0.05 pct[37] for randomly packed monodisperse
spheres. For non-spherical particles, a number of
equations are found in literature attempting to correlate
Um with the particle’s aspect ratio, rp, as summarized in
Table IV. The comparison between calculated Um from
different equations is demonstrated in Figure 4.

It is clear that (1) Rahli et al. and Evans and Gibson’s
equations predict Um > 1 at low aspect ratio, while
Parkhouse and Kelly’s equation predict Um £ 0 at
aspect ratio £1, no one of which has physical meaning;
(2) Kitano et al., Pabst et al. and Mueller et al.’s
equations are merely valid in a certain range of aspect
ratios; (3) Mueller et al.’s equation can calculate Um in
all the rp ranges by assuming the asymmetrical effect of
the prolate (rod-like, rp> 1) and oblate (plate-like,
rp< 1) particles on the viscosity. This assumption is
reasonable based on the author’s experimental data[44]

and is therefore adopted in the present study. The
parameters Um1 and a in this equation are optimized by
fitting to the experimental data in Table I (see Figure 5)
and the fitted equation is expressed as Eq. [7].

Um ¼ 0:52 exp �
log rp
� �2
2� 1:482

" #
½7�

Although the experimental data points show scatter in
Figure 5, Eq. [7] is acceptable considering the large error

in viscosity measurement (25 pct according to Mills
et al.[45]), and the error and distribution in the determi-
nation of the particle’s aspect ratio. This result reveals:
(1) Um1, the maximum packing fraction for particles in
the silicate melt at rp = 1 is approximately 0.52, which
is lower than that for the system of randomly packed
monodisperse spheres (0.63 according to Scott et al.[37]).
We find this to be due to the characterization imperfec-
tion of crystal shape using rp (for example, the rp
non-spherical particles such as cubes can also be 1); (2)
the maximum packing fraction, Um, decreases with
increasing particle’s aspect ratio in the range of rp> 1,
suggesting the strong exclusion-volume effect[46] in the
orientationally disordered packings; (3) the fitted curve
based on silicate data is consistent with the data
obtained from analogy experiment at room temperature,
as seen from the room temperature data in Figure 5; (4)
more experimental work is needed to validate the Eq. [7]
for plate-like crystals, i.e. particle’s aspect ratio smaller
than 1 (rp< 1).
The other parameter, the intrinsic viscosity [g] in

Eq. [6], reflects the hydrodynamic interaction between
particles and the suspending liquid, which is linked with
the particle shape. As proved by Einstein, the intrinsic
viscosity is 2.5 for the rigid spherical particle. A number
of empirical equations, which correlates [g] with the
particle shape rp, are summarized in Table V.
It can be seen that the application ranges of the

existing formulas deviate far from the aspect ratio of 1.
In the selected systems, however, crystals with
1.52 £ rp £ 6 are present (see Table III). Considering
the fact that (1) the intrinsic viscosity is 2.5 at rp = 1
and (2) the intrinsic viscosity increases with increasing rp
(this is confirmed by experimental observation[38,44]),
Eq. [8] is proposed herein to link [g] with the particle
shape parameter rp.

g½ � ¼ 1

0:4� kðrp � 1Þ ½8�

where k is a fitting parameter and rp < 1þ 0:4k�1.
To obtain a reasonable [g]–rp relations/curves with

enough data points, the viscosity data of polymer melts
containing inorganic particles (glass fiber, etc.),[38] are
also considered as this system is similar with a hetero-
geneous silicate melt. Figure 6 shows the [g]–rp rela-
tions/curves by fitting Eq. [8] to the above mentioned
polymer melt containing inorganic particles. The fitted
parameters k of Eq. [8] and the determination coefficient
(the adjusted R2) for these data are 0.012 (k) and 0.85
(adj. R2), respectively.
It is evident that: (a) the intrinsic viscosity increases

with increasing particle’s aspect ratio due to the larger
solid-liquid interaction for more anisotropic particles;
(b) the Eq. [8] can be applied to the particles with
1 £ rp < 1þ 0:4k�1, i.e., spherical and rod-like crystals;
(c) [g] is 2.5 at rp = 1, which is in agreement with the
well-known Einstein’s equation; (d) the measured data
from the silicate systems are scattered, resulting in poor
fitting. More experimental data, (specifically, data in the
range of rp< 1, plate-like crystal) are required to further
identify/evaluate the reliability of Eq. [8].

Fig. 3—Fitting of the Krieger–Dougherty model (Eq. [6]) to the
selected viscosity data.
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By inserting Eqs. [7] and [8] into Eq. [6], the relative
flow consistency mr in the power-law equation (Eq. [5])
can therefore be calculated as a function of U and rp. In
this way, influences of the system properties (e.g. solid
fraction and particle shape) are incorporated in the
viscosity calculation of solid-bearing silicate melts at
unit shear rate. The effect of shear rate on viscosity will
then be discussed in the following section.

C. Flow Index

The other determinant in the power-law equation
(Eq. [5]) is the flow index, n, which quantifies the effect
of shear rate on the viscosity. Shear-thickening behavior
(i.e. viscosity increases with shear rate) is constantly
observed in colloidal systems and densely packed
suspensions.[49] However, it is rarely observed in silicate
melt whereas shear-thinning behavior (i.e., viscosity
decreases with shear rate) has been experimentally
identified in a number of silicate melts. Many efforts
have been attempted to reveal the underlying physical
process and a number of mechanisms have been
proposed to account for the origin of the shear-thinning
behavior, including flow-induced reorientation of
solids,[12,13,15] migration of solids,[34,50] formation, and
break up of aggregates,[16,51] decrease of solid phase
contiguity (the fraction of the solid’s internal surface
area shared with other solids[52]), viscous heating,[53,54]

amongst which the flow-induced reorientation of parti-
cles is commonly believed to be one of the main causes
of shear thinning. Before applying shear to a solid-bear-
ing silicate melt, the solids orientate randomly, however,

the solids tend to align parallel to the flow direction
when subjected to a shear stress in a rotational vis-
cometer.[11,13,55,56] The decrease in the dispersion of
solid orientation alleviates the solid-solid interaction,
minimizes the viscous dissipation,[43,57] and also
increases the maximum packing fraction,[12] leading to
the viscosity decrease. Moreover, in melts with a high
solids fraction, less space intensifies the solid-solid
collision, resulting in the formation of aggregates[16] or
even the construction of a solid framework.[29] The weak
connection between the solid crystals is likely to be
disrupted when subjected to a sufficient shear stress,
separating individual crystals.[16] Consequently, the
obstruction exerted on the rotation of the spindle
decreases, resulting in a shear-thinning behavior.[51]

The key parameters controlling the motion of an
ellipsoidal particle and therefore the particle orientation
and interaction are the particle concentration[11,43] and
the aspect ratio.[11,57,58] It is deduced that the flow index
is a function of both solid concentration and aspect
ratio.[59] In order to figure out the correlation between
flow index and its influencing factors, the recently
published experimental data in Table I except the data
from Chervel et al. are employed for the discussion. In
Chervel et al.’s study, an abrupt flow index decrease
with increasing solid fraction is found, which is unex-
plainable and therefore are excluded in this discussion.
As shown in Figure 7, it is clear that the experimental
data from Campagnola et al. (up ramp) deviate from the
other data.
As has been reviewed and re-analyzed in Section II,

there are two types of shear history conditions in the

Table III. Parameters Obtained by the Best Fit to the Measured Data and the Crystal’s Aspect Ratio

References rp* Um g½ � Adjusted R2

Ishibashi and Sato[12] 4.9 0.45 2.98 0.91
Ishibashi[13] 8.5 0.50 0.92 0.60
Vona et al.[14] 6.0 0.37 5.16 0.98
Chevrel et al.[15] 11.0 0.33 5.09 0.47
Campagnola et al.—up ramp[16] 1.52 0.48 3.71 0.97
Campagnola et al.—down ramp[16] 1.52 0.57 4.04 0.98

* The aspect ratio here is the average of the aspect ratios at different temperatures/solid fractions.

Table IV. Summary of the Expressions for the Maximum Packing Fraction of Particle

References Expressions

Kitano et al.[38] Um ¼ 0:54� 0:0125rp; 5<rp<30

Evans and Gibson[39] Um ¼ 5:3
rp

Parkhouse and Kelly[40] Um ¼ 2 lnðrpÞ
rp

Rahli et al.[41] Um ¼ 11
2rpþ6þp=ð2rpÞ

Pabst et al.[42] Um ¼ 0:51� 0:0223rp; 1<rp<20

Mueller et al.[43] Um ¼ 2
0:321rpþ3:02 ; rp � 1

Mueller et al.[44] Um ¼ Um1 exp � log rpð Þ2
2a2

� �

Where rp, the aspect ratio of particles; a, b, constant or fitting parameter; Um1; the maximum packing fraction for particles with rp = 1.
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work summarized in Table I for viscosity measurement.
Those are (1) the less-sheared one, e.g., the studies of
Campagnola et al. (up ramp), where the melt is in the
state with random orientated crystals or clusters/frame-
work prior to viscosity measurement, and (2) the
well-sheared condition, e.g., the other work in Table I,
where the silicate melt has been subjected to a sufficient
shear (enable to align the crystals and/or breakdown the
solid network) prior to viscosity measurement. There-
fore, a lower flow index, i.e., more pronounced
shear-thinning behavior, is expected for the less-sheared
system, resulting in the deviation of Campagnola et al.
(up ramp)’s experimental data. In order to correlate the
flow index with the solid fraction and shape, a formula is
proposed in the present work, as shown in Eq. [9].

n ¼ 1� a
U
Um

� �
½9�

where a is a fitting parameter. The effect of particle
shape on the flow index is reflected by the maximum
packing fraction, which is a function of particle’s
aspect ratio.

Due to the fact that shear history condition can
significantly affect the rheological behavior, flow index
in Table II as a function of normalized solid fraction
(U=Um) under the two shear history conditions are fitted
separately with Eq. [9]. According to fitting results,
formulas to calculate the flow index of silicate melts are
obtained as Eqs. [10] and [11], respectively for the
well-sheared and the less-sheared conditions. It is clear
that the fitting is excellent (a value nearly unity for the
adjusted R2) and at a given normalized solid fraction,
the flow index of the less-sheared system is smaller than
that of the well-sheared system. This arises from (1) the
structure with randomly orientated and inter-connected
crystals in the less-sheared system is gradually broken
up with increasing shear rate, leading to significant
viscosity decreases; (2) in the system with isolated and

well-aligned crystals in the initial state, the viscosity
increases marginally as the decreasing in shear rate only
changes the structure to a limited extend, yielding little
shear-thinning behavior. The distinct formula is there-
fore necessary for evaluation of the flow index to
develop a reliable viscosity model of heterogeneous
silicate melts.
Well-sheared system:

n ¼ 1� 0:098
U
Um

� �
; Adj:R2 ¼ 0:999 ½10�

Less-sheared system:

n ¼ 1� 0:50
U
Um

� �
; Adj:R2 ¼ 0:997 ½11�

IV. VALIDATION OF PRESENT VISCOSITY
MODEL

By using the above calculation method, viscosities of
the silicate systems listed in Table I are calculated and
compared with the measured values (in Figure 8).
Reliability of the present calculation has been evalu-

ated using the error factor D proposed by Mills et al.[45]:

D ¼ 1

N

XN gcalc � gexp
gexp

�����
����� ½12�

where N is the number of data points; gcalc and gexp
are the calculated and the experimentally measured
viscosities, respectively.
The error factor D of the present viscosity calculation

is 32 pct with respective to approximately 200 experi-
mental data points of silicate melts. This is fairly
acceptable considering the fact that there is a 25 pct[45]

Fig. 4—Comparison of the proposed correlations between Um and
rp. Parameters used in Mueller et al.’s[44] equation: Um1 = 0.66,
a = 1.08.

Fig. 5—Fitting of the Mueller et al.’s equation to the measured sili-
cate melt data (Um–rp) in literature. The data from analogy experi-
ment (silicone oil containing particles of biotite and polyacrylic
glitter (oblate), glass beads (spherical), glass, and carbon fibers (pro-
late)) at room temperature[44] are also shown for comparison.
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error in viscosity measurement of the fully liquid
silicates and a higher measuring error is expected for
the solid-bearing silicate due to the non-uniformly
distributed crystals. That a reasonable reliability has
been achieved in the present method is the result of (1)
the three significant viscosity determinants of solid-con-
taining systems, Um, [g] and n are correctly evaluated as
functions of the crystal shape and volume fraction,
presenting a complete picture of the effect of crystal
characteristics on viscosity; (2) the non-Newtonian
behavior of the solid-bearing silicates has been consid-
ered in the calculation, which reflects the real measure-
ment conditions; and (3) the shear history of the
measurement has been taken into account in the
viscosity calculation, giving a deeper insight into the
complex structural influence on the viscosity. It should
also be underlined that the proposed/fitted equations
(Eqs. [7] to [11]) are only validated for crystal fraction
up to 34 vol pct due to the limited reliable viscosity
database at high solid fractions. This is mainly due to
the fact that the spatial distribution of crystals in melt is
much more inhomogeneous than in the case of dilute
suspensions. And the measured data differ a lot among
researchers and are not reproducible. Secondly, this
model is proposed based on the assumption of a
power-law fluid. This means it is not able to predict

the yield strength. At last, the particle size is not
included herein as its influence on viscosity is too
complicated, particularly for crystals with a large size
and shape dispersion. More work is needed in the future.

A. Algorithm of Viscosity Calculation

According to the aforementioned analysis, three
equations are formulated to calculate the maximum
packing fraction Um, the intrinsic viscosity [g] and flow
index n. Combining Eqs. [5] to [8], [10] and [11], viscosity
of the solid-bearing silicate melts can be calculated for a
given shear rate, using data of the crystal shape and its
fraction of the measured samples. Figure 9 proposes a
flow chart for viscosity calculation. This includes the
following steps: (i) measure the volume fraction (U) and
the shape (rp) of solid crystals; (ii) calculate the
maximum packing fraction Um and the intrinsic viscos-
ity [g] using Eqs. [7] and [8], respectively; (iii) calculate
the relative flow consistency mr with the obtained Um

and [g] using the Krieger-Dougherty equation; (iv)
examine the measurement condition, if the silicate melt
is well-sheared (the critical shear rate is between 102 and
103 s�1 and in-between the two values, both two
equations, i.e., Eqs. [10] and [11], can be used) prior to
the measurement, apply Eq. [10] to calculate the flow

Table V. Summary of Expressions for the Intrinsic Viscosity

References Expressions

Onsager[47] g½ � ¼ 4
15

r2p

log rpð Þ ; rp � 1

Kuhn and Kuhn[48] g½ � ¼ 1:6þ r2p
5

1
3ðln 2rp�1:5Þ þ 1

ln 2rp�0:5

	 

; rp � 1

g½ � ¼ 4
9 þ 32

15prp
; rp � 1

Ishibashi and Sato[12] g½ � ¼ 1:642þ 0:512rp ð3<rp<20Þ

Mueller et al.[44] g½ � ¼ 3:02þ 0:321rp ðrp � 1Þ

Fig. 6—Fitting of Eq. [8] to the measured data ( g½ �–rp) in literature
(Data from Kitano et al. are reproduced from Mueller et al.[43]).

Fig. 7—Flow index dependence on the solid fraction for both well-
sheared and less-sheared systems.

METALLURGICAL AND MATERIALS TRANSACTIONS B VOLUME 48B, DECEMBER 2017—3035



index n, if not, use Eq. [11]; (v) calculate the liquid melt
viscosity gL with the existing models in literature and
calculate the shear rate _c applied to the silicate system
during measurement; (vi) calculate the viscosity of the
solid-bearing silicate melt g with the power-law equation
(Eq. [5]) by plugging the obtained relative flow consis-
tency mr and flow index n as well as the liquid melt
viscosity gL and shear rate _c.

V. CONCLUSIONS

In most of the existing work, the ER or KD equation
is employed to account for the effect of solid fraction on
viscosity and the influence of particle shape and shear
rate are constantly neglected. This leads to big deviation
in the values of parameters in ER/KD equation as they
are functions of particle shape and/or shear rate.
Therefore, the significance of particle shape and shear
rate is stressed herein and incorporated in the developed
model, presenting a more complete picture of the
particle’s influence on viscosity. In this work, the
measured viscosity data of the solid-bearing silicate
melts from recent years are firstly assessed and a
viscosity dataset with specified crystal fraction, crystal
shape, and shear rate/rotating speed is established for
the purpose of viscosity calculation. On the basis of the
power-law and Krieger–Dougherty equation, a
non-Newtonian viscosity calculation method is pro-
posed. The following conclusions are obtained:

1. Two new empirical equations are proposed to cal-
culate respectively the intrinsic viscosity in the Krie-
ger–Dougherty viscosity model and the flow index in
the power-law equation as functions of the particle’s
aspect ratio.

2. The shear history (with or without sufficient shear to
align the crystal’s orientation or breakdown the
clusters/solid framework prior to viscosity measure-
ment) is found to significantly influence the flow in-
dex. Distinct equations have been proposed to
evaluate the flow indexes for the well-sheared and
less-sheared measurement condition respectively. In
this way, shear history has been for the first time
considered in viscosity calculation.

3. An algorithm is presented to give a step-by-step
method for calculating the viscosity of the crys-
tal-bearing silicates at a given shear rate by using the
measured crystal shape and fraction. The relative
error between the calculated and measured viscosity
is evaluated to be 32 pct with respect to approxi-
mately 200 measured viscosity data points with solid
fraction up to 34 vol pct. This is fairly accept-
able considering the current level of viscosity studies
on solid-containing silicates at high temperature.
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