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Recent work has investigated various schemes for the attachment of free-floating grains in
models of equiaxed solidification in multicomponent alloys. However, these models are
deterministic in nature, and simply investigating their differences for a limited number of results
would not constitute an adequate comparison of their predictions. Instead, the models are
compared in the context of the uncertainty in the most important input parameters. This
approach is especially important in light of the effort required to implement a new model. If the
predictions are essentially the same, then either model will suffice, or one may be selected for
ease of implementation, numerical robustness, or computational efficiency. If, however, the
models are significantly different, then the most accurate should be selected. In order to
investigate the effects of input uncertainty on the output of grain attachment models, the
PRISM Uncertainty Quantification framework was employed. The three models investigated
were a constant packing fraction (CPF) scheme, an average solid velocity method (AVM), and a
continuum attachment approach. Comparisons were made between the CPF and AVM models
to estimate the importance of the local velocity field and between the CPF and continuum
models to determine the sensitivity of the macrosegregation to new parameters unique to the
continuum model.
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I. INTRODUCTION

IN any model intended to represent some physical
system, there are uncertainties in both the values of the
appropriate input parameters and the assumptions used
in constructing the model itself. These different sources
of uncertainty may be broadly categorized into two
types: epistemic and aleatoric.[1] In many cases, different
models are proposed for a specific physical phe-
nomenon, each making use of different assumptions
and representing the underlying governing equations in
different ways. Epistemic uncertainties, also called
reducible uncertainties, may be theoretically reduced
by gaining additional knowledge of a system. For
example, improved measurements of a material property
or experimental validation sufficiently support the use of
one model type over another. The second type is
aleatoric, or irreducible, uncertainty. Aleatoric uncer-
tainties are natural, random variations in inputs. They
cannot be reduced given more knowledge of the system.
An example is the uncertainty in the value of a given

input due to the error inherent to a particular measure-
ment technique.
The practice of understanding how these different

sources of uncertainty affect the output of a model is
called uncertainty quantification. Due to the ever
present nature of input uncertainties, UQ has become
increasingly common in fields such as heat transfer,[2]

fluid mechanics,[3,4] and materials[1] modeling. To this
point, however, UQ has only gained limited adoption in
the solidification community.[5–8] Hardin et al.[5] used
UQ for design optimization in a simple casting by
predicting the probability of failure for a particular riser
size, and iterating to reduce cost while minimizing
casting defects. Fezi and Krane[6,9] used a non-intrusive
UQ method to evaluate the uncertainty in a series of
solidification models of increasing complexity, begin-
ning with a one-dimensional wire casting model, and
advancing to two-dimensional models for static castings
and direct chill casting. These examples primarily
considered the effect of aleatoric uncertainties (although
Fezi and Krane[6] considered the effect of three different
permeability models for the mushy zone). The purpose
of the present work is to further demonstrate how UQ
may be used within the solidification field to understand
the present state of solidification modeling, to improve
comparisons to experimental data, and to accelerate
model development and guide corresponding experi-
mental work. In particular, cases in which multiple
possible models may be used for the same physical
phenomenon are of interest. To this end, an example
problem of static casting of a grain refined aluminum
alloy is presented in which several different models for
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treating the attachment of free-floating grains have been
proposed. The primary goal is to understand the effect
of the epistemic uncertainty in the choice of various
models on the resulting macrosegregation pattern. A
method for quantifying uncertainty in solidification
models is presented, as well as techniques for comparing
outputs of the UQ process between models and
approaches for visualizing the results in a manner that
will enable comparisons to future experimental work.

Predicting macrosegregation in equiaxed solidification
presents several challenges from a modeling standpoint.
The motion of free-floating particles with respect to the
bulk fluid flow, their coalescence into a rigid solid
structure, and the permeability of the resulting solid
network all affect the overall macrosegregation distri-
bution and each necessitates careful consideration of
both the model and its numerical representation. In
particular, the shape of the interface between the slurry
(containing free-floating grains) and rigid solid regions
has a dramatic effect on the local fluid flow due to the
damping effect of the dendrite permeability. The mul-
ti-phase and mixture formulations represent two distinct
approaches to modeling equiaxed solidification, each
with advantages and disadvantages. The multi-phase
formulation solves governing conservation equations for
each phase considered within the system. The simplest of
these are two-phase models[10,11] that include only the
solid and bulk liquid and generally assume a spherical
grain morphology. In this case, dendrite coherency
occurs at a volume fraction solid equal to the density of
random close packed spheres (0.637).[12] Three-phase
models[13,14] add a set of equations for the interdendritic
liquid, allowing for the consideration of spherical grain
envelopes that include solid dendrites and interdendritic
liquid. In this case, dendrite coherency occurs when the
grain envelope fraction within a numerical cell equals
that of random close packed spheres, and this value
relates to the solid fraction via a set of relationships
describing the solid grain morphology inside the enve-
lope.[15] Further extensions of this model type include
both equiaxed and columnar grain morphologies and
their associated interdendritic liquids, allowing for the
prediction of the columnar-to-equiaxed transition.[16,17]

While flexible and detailed, the multi-phase formulation
also incurs a significant computational expense due to the
necessity of solving a separate set of conservation equations
for each phase. The mixture approach avoids this problem
by developing a set of governing equations written in terms
of variables which are mixtures of contributions from the
constituent phases.[18,19] In this way, only a single set of
conservation equations is solved, and individual phase
contributions are extracted using supplemental relation-
ships when necessary. Vreeman et al.[20,21] formulated such
amodel for equiaxed solidification based on the work of Ni
and Incropera.[22,23] Subsequent work comparedmacroseg-
regation predictions from this type of model to experimen-
tal measurements of an industrial scale direct chill casting,
finding a favorable comparison for the case of a grain
refined, fully equiaxed ingot.[24] These studies assumed that
dendrite coalescence occurred at a specified volume frac-
tion solid that was held constant and uniform throughout
the domain, disregarding solid morphology and velocity in

determining the dendrite coherency point. Instead, the
selection of a packing fraction lower than that for random
close-packed spheres implicitly defined an assumption
about the grain morphology.
Within the framework of the mixture formulation of

the governing conservation equations for heat and mass
transport in solidification, previous studies[25–27] have
proposed several models for grain attachment (also
referred to as dendrite coherency or packing) and
compared their predictions in simple example cases.
This study seeks to expand on these comparisons using
an uncertainty quantification (UQ) framework to
understand the distribution of outputs that result from
each of the attachment schemes and to determine
whether they produce significantly different predictions.
The previously mentioned studies in equiaxed solid-

ification modeling (for both formulations of the gov-
erning equations) assumed that dendrite coherency
occurs at some solid or grain envelope volume fraction
that is held constant and uniform over the domain. For
the mixture formulation, Vusanovic and Krane[25]

developed a method for including the effect of the local
velocity field on grain attachment and implemented it in
a model for horizontal direct chill casting. They pre-
sumed that the flow of solid grains toward a rigid
interface caused a local depression in the packing
fraction, while flow away from an interface increased
the packing fraction. Their model worked by expressing
the packing criterion as a function of the conditions of a
control volume downstream from the cell of interest. In
this way, rather than using the constant and uniform
packing fraction proposed by Vreeman et al.,[20,21] the
local packing fraction varied throughout the domain
depending on the motion of the free-floating grains.
Plotkowski and Krane[26] more closely investigated the

consequences of using velocity-based packing models in
simulations of static castings. They found that attachment
models used for mixture formulations of equiaxed solid-
ification suffered from significant numerical artifacts
resulting from the treatment of grain attachment phe-
nomena as discrete events on the length scale of the
numerical grid. In these models, each control volume may
only contain fully free-floating or fully rigid solid with no
intermediate states. When a cell switches from one state to
the other, the sudden introduction of the permeability
term for the rigid solid has a dramatic effect on the flow,
causing changes in the local solute advection and erro-
neous macrosegregation predictions. In a subsequent
study,[27] they proposed a continuum grain attachment
model that significantly reduced the formation of these
artifacts. This model managed the transition from
free-floating to rigid solid within a cell so that changes
in the governing equations occur smoothly over a specified
range of solid fractions. The path that the system takes
through the transition was controlled using a simple
power-law weighting function that affects the relevant
source terms in the momentum conservation equations.
Essentially, there are currently three types of grain

attachment models to choose from within the mixture
formulation: constant packing fraction, velocity based,
and continuum. While there are some differences in
the outcomes of each packing model (highlighted
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in References 26 and 27), there is uncertainty in which is
the best representation of the physical behavior of the
system. This is an epistemic uncertainty in that improved
knowledge of the physical system through careful exper-
imentation would theoretically allow for determination of
the most accurate model. Unfortunately, validation data
sufficient to select a particular attachment model are not
currently available, butwemust still ask thequestion: given
the present knowledge of the system, is one model actually
superior to the others? To approach this problem, a more
fundamental question must first be answered: do the
models actually produce different results? In answering
these questions, specific areas of model development and
experimental validation research will be identified.

This study will first present a general mixture model for
equiaxed solidification capable of representing solid
motion and each of the three grain attachment schemes
followed by a description of the uncertainty quantifica-
tion framework and methods for quantitatively compar-
ing output distributions. Next, the results of each
attachment scheme for a simple example problem will
be presented and the main differences will be highlighted.
Probability distributions for a variety of input parameters
will then be imposed. Answers to the questions outlined
above will be investigated by comparing the relevant
output probability distributions. It should be noted that
the purpose of this study is not to present a detailed
analysis of the uncertainty for one particular case, but to
demonstrate how these uncertainty quantification meth-
ods may be implemented for solidification models in
general in order to guide future work in both model
development and supporting experimentation. To that
end, differences among the grain attachment models will
be used as an example of a facet of solidificationmodeling
that presently has a significant amount of uncertainty in
both input parameters and choice of numerical methods.

II. MODEL DEVELOPMENT

A. Solidification Model Description

The basis of themodels used for thiswork is themixture
formulation proposed by Vreeman et al.,[20] written here
for an axisymmetric domain, and solved using standard
finite volume techniques[28] on a uniform, orthogonal,
staggered grid. Mass continuity may be expressed as:

r � qV
*

� �
¼ 0; ½1�

where q ¼ gsqs þ glql is the mixture density with solid
and liquid densities, qi, weighted by volume fractions gi,

and V
*

is the mixture velocity vector defined as

V
*

¼ fsV
*

s þ flV
*

l, where V
*

i are the velocity vectors of the
solid and liquid phases and fi are the corresponding
mass fractions. Phase densities are assumed constant
with temperature and composition except where repre-
sented by the Boussinesq approximation, and in this
work, qs ¼ ql and so fi ¼ gi. However, the appropriate
use of these two different sets of variables, as well as
solid and liquid densities, has been used throughout in

order to maintain generality in the model description.
Buoyancy forces due to actual differences between solid
and liquid density have been included using a represen-
tative density difference, Dq 6¼ 0.
Conservation of axial momentum is

@

@t
quð Þ þ r � qV

*

u
� �

¼ r � ll
q
ql
ru

� �
� @P

@z

þ 1� Fð ÞSz
slurry þ FSz

rigid;

½2�

where t is time, u the axial component of the mixture
velocity, ll liquid dynamic viscosity, and P pressure.
The final two terms represent source terms that apply
to either the slurry of free-floating grains suspended
in the liquid metal, or the rigid mush, respectively.
The weighting function, F, is used to activate each of
these terms in the appropriate regions of the domain,
and in the case of continuum grain attachment
model, to vary these terms continuously at the inter-
face between the two regions. The source terms are
defined as follows:

Sz
slurry ¼ �r � ll

qfs
ql

rus

� �
þr � �lsgsrusð Þ þ gsDqg

�r � qfs
fl

V
*

� V
*

s

� �
u� usð Þ

� �

� gsqsg bT;s T� T0ð Þ þ
Xn
i¼1

biS;s Ci
s � Ci

0

� 	
" #

� glqlg bT;l T� T0ð Þ þ
Xn
i¼1

biS;l C
i
l � Ci

0

� 	" #
;

½3�

and

Sz
rigid ¼ � ll

K

q
ql
u� qlg bT;l T� T0ð Þ þ

Xn
i¼1

biS;l C
i
l � Ci

0

� 	" #
;

½4�

where �ls is the average solid viscosity, V
*

s the solid
velocity vector with axial component us, g the acceler-
ation due to gravity, bT;sthe thermal expansion coeffi-
cient for the solid, T temperature, T0 a constant

reference temperature, biS;s the solutal expansion coef-

ficient of component i, Ci
s the solid composition with

respect to component i, Ci
0 the nominal composition

of component i, bT;l the thermal expansion coefficient

of the liquid, biS;l the solutal expansion coefficient of

component i, Ci
l the composition of the liquid with

respect to component i, and K the permeability.
In the radial direction, momentum conservation is

written as:

@

@t
qvð Þ þ r � qV

*

v
� �

¼ r � ll
q
ql
rv

� �
� ll

q
ql

v

r2
� @P

@r

þ 1� Fð ÞSr
slurry þ FSr

rigid;

½5�
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where the slurry and rigid source terms are again
weighted using F, and are defined as:

Sr
slurry ¼ �r � ll

qfs
ql

rv

� �
þ ll

qfs
ql

v

r2

þr � �lsgsrvð Þ � �lsgs
v

r2
;

½6�

and

Sr
rigid ¼ � ll

K

q
ql
v: ½7�

The permeability is described using the Blake–Kozeny
model:

K ¼ k2

180

1� gsð Þ3

g2s
; ½8�

where k is the dendrite arm spacing.
The average solid viscosity, �ls, is calculated by

numerical integration of (9)[21,29]:

�ls ¼
1

0:7gs;c

Z0:7gs;c

0

lsdgs; ½9�

where gs,c is the critical solid fraction used for the
grain attachment models and

ls ¼
ll
gs

1� gs
gs;c

� ��2:5gs;c

�gl

" #
: ½10�

The solid velocity is calculated from Eqs. [2] and [5],
the definition of mixture velocity, and using Stokes’ law
for spherical particles to described the combined effects
of drag and buoyancy:

V
*

s ¼ 1� Pð Þ 1� gsð Þ
18lm

Dqd2g
* þ V

*

l

� �
; ½11�

where P is the packed fraction, lm the mean viscosity,
and d a representative particle diameter, which, in the
case of equiaxed solidification, may be interpreted as a
representative free-floating grain size.

The conservation equations that govern energy and
species are

@

@t
qcTð Þ þ r � qcTV

*
� �

¼ r � krTð Þ � @

@t
qflLf

� 	

�r � qV
*

flLf

� �
�r � qfsLf V

*

� Vs

*
� �h i

;

½12�

and

@

@t
qCi
� 	

þr � qV
*

Ci
� �

¼ r � qflDrCi
� 	

þr

� qflDr Ci
l � Ci

� 	� 	
�r � q V

*

� V
*

s

� �
Ci

l � Ci
� 	� �

;

½13�

where c is the constant pressure specific heat, k ther-
mal conductivity, Lf latent heat of fusion, and D mass
diffusivity. The SIMPLER algorithm is used for the
momentum and continuity equations. The transient

latent heat source term in the energy equation is
linearized using the method of Voller and
Swaminathan,[30] and the advection-like source terms
in the species equations are discretized according to
Vreeman and Incropera.[31] Based on the recommenda-
tions of Kumar et al.,[32] the permeability is calculated
in the staggered velocity grids using a linear interpola-
tion of the volume fraction solid from the main con-
trol volumes.

B. Grain Attachment Model Descriptions

In this study, three different grain attachment models
are considered and include two discrete models and one
continuum model. The first of the discrete models
applies a constant and uniform critical solid fraction,
gs,c, to the domain. Any cell with a volume fraction solid
that exceeds gs,c is considered packed, under that
condition that it has at least one packed neighbor.
Here, the packing fraction throughout the domain, gs,p,
is simply equal to the critical solid fraction gs,c. For
reference, this scheme will be referred to as the constant
packing fraction (CPF) model.
The second discrete model was originally proposed by

Vusanovic and Krane[25] and explored further by
Plotkowski and Krane.[26] It is intended to account for
the effect of the local velocity field on the likelihood of
grain attachment by determining packing for a given
control volume based upon the condition of a neigh-
boring cell in the downstream direction. If the down-
stream cell has a volume fraction solid exceeding the
critical value, gs,c, and is packed itself, then the solid
within the cell of interest is converted from free-floating
grains to a rigid structure. The downstream cell is
determined by averaging the solid velocities (located at
the cell faces) in each direction and using the larger of
the two resulting vectors to indicate the downstream
direction. This scheme will be referred to as the average
velocity method (AVM). In this case, the local packing
fraction for each cell varies throughout the domain. For
comparison to the other attachment models, the average
packing fraction of the domain, �gs;p, will be used.
Plotkowski and Krane[26] accurately fit a quadratic
function (R2 ¼ 0:9989) to the relationship between the
average packing fraction and the critical solid fraction
for the AVM model in the present system using
simulation data over a range of critical values:

�gs;p ¼ 0:525g2s;c þ 0:776gs;c ½14�

In these two discrete models, all of the solid within
each main control volume is assumed to be either fully
rigid or fully free-floating. Therefore, depending on the
condition of a cell, P is set to a value of either zero or
one, with no states in between. On the staggered velocity
grids, because by definition solid cannot flow into or out
of a fully rigid cell, the value of P in a staggered cell is
one if either of the neighboring cells (in the direction of
the momentum equation of interest) is packed, and
equal to zero otherwise.
The continuum model used here[27] is similar to the

CPF model in that cells become fully packed at a
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particular volume fraction solid that is constant and
uniform throughout the domain. However, rather than
P being a binary variable, it is allowed to vary
continuously from zero to one over a finite range of
solid fractions described by the packing range, Dgs, with
the upper limit equal to gs,c. A linear relationship
between the solid fraction and the packed fraction over
the packing range is expressed as:

P ¼
0; if gs<gs;c � Dgs
1� gs;c�gs

Dgs
; if gs;c � Dgs<gs<gs;c

1; if gs>gs;c

8<
: ½15�

where gs is the volume fraction solid of a main control
volume. Unlike the discrete models, here, since P is
now a continuous variable, it may simply be interpo-
lated for the staggered velocity grids.

As described in Reference 27, due to the large
difference in the order of magnitude of the rigid and
slurry source terms in the momentum equations, a
weighting function is used as a way of adjusting the
behavior of the cells undergoing the transition from
free-floating to rigid solid. A power-law form for this
function is a simple way of adjusting the behavior while
introducing only a single new parameter:

F ¼ Pn ½16�
For values of the weighting exponent, n, less than one,

the transition region is weighted toward rigid solid
behavior. For values greater than one, it is weighted
toward the behavior of the slurry. In the discrete
attachment models, the value of n does not affect the
solution because P may not take on values between zero
and one. The effect of the addition of these two new
parameters (n and Dgs) is investigated in Section III–D.

C. Model Limitations and Implications on Uncertainty
Quantification

The rationale of the mixture formation of the gov-
erning conservation equations is to minimize the com-
putational expense required to express the relationships
between the solid and liquid phases compared to
multi-phase methods. The limitation of this approach
is the simplification of many of the relevant microscale
effects present during solidification. For example, a
uniform free-floating particle size is assumed here,
whereas in order to accurately predict the solid motion,
the size distribution of the free-floating grains must be
known for each computational cell. This information
can only be obtained by accurately modeling the size
distribution and transport phenomena of potential
nucleation sites as well as the grain growth kinetics.
Complex models that include some of these effects exist
(i.e., References 33 and 34), but include still other
assumptions. Furthermore, it is not clear that a more
complex model necessarily produces more certain
results. The inclusion of new phenomena requires the
addition of new parameters, each of which has its own
uncertainty that contributes to the overall output
uncertainty in the model predictions, and also signifi-
cantly increases the computational expense. Therefore,

an honest assessment of the selected model assumptions
is required to properly determine whether increased
complexity and expense improves the model predictions.
The specific assumptions of the present model that

will be used during the subsequent uncertainty quantifi-
cation include the following:

(1) A constant and uniform free-floating grain size,
affecting the solid velocity field through viscous drag

(2) A constant and uniform dendrite arm spacing,
affecting the damping force exerted on the flow field
by the rigid dendritic array within the packed region
of the domain

(3) Parameters of each grain attachment model that
control the coalescence of free-floating grains

(4) Constant and uniform thermophysical properties
are not a function of phase or temperature (except
where expressed using the Boussinesq approxima-
tion)

D. Uncertainty Quantification Methodology

The PUQ (PRISM Uncertainty Quantification)
framework is an alternative to direct Monte Carlo
sampling for propagating uncertainty in computation-
ally expensive models.[35] The fundamental idea of this
code is to compute the complete model for a small
number of specific cases, then to fit a lower order
response surface to the results, from which output PDFs
may be efficiently sampled. PUQ uses the Smolyak
sparse grid algorithm to select a comparatively small
number of model configurations based on the input
probability distributions and fits polynomials to the
resulting outputs using generalized polynomial chaos
(gPC). The number of data points in the sparse grid
corresponds to the order of the polynomial response
function. A level 1 sparse grid fits a linear function for
each of the input parameters and a level 2 fits a
quadratic function, etc. The quality of fit of the response
surface to the model data is quantified using the root
mean squared error (RMSE). Latin hypercube sampling
of the response surface is used to construct the output
PDF. The first advantage of this approach is that it is
non-intrusive, in that it does not require any changes in
the underlying simulation tool in order to propagate
uncertainty through the model. The second is a consid-
erable savings in computation time because the model
need only be evaluated at selected points based on the
sparse grid algorithm and the sampling required for
construction of the output distribution is performed
exclusively on the inexpensive surrogate model. Further
details of the use of PUQ to study uncertainty
propagation in solidification models may be found in
References 6, 7, and 9.
The primary results from the uncertainty quantifica-

tion are the probability distribution of output param-
eters and the sensitivities of the outputs to each of the
inputs. The output PDFs are calculated by sampling
from the response surface. The sensitivities are calcu-
lated using the elementary effects method.[6,36,37] In this
approach, an elementary effect is the partial derivative
of the output of interest with respect to a particular
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input as calculated between a neighboring pair of points
in the sparse grid. The mean sensitivity, u*, has units of
the output of interest (normalized by the PDF range for
the input in question to allow comparisons between
inputs), is positive, and calculated using an arithmetic
average of the associated elementary effects. Any higher
order effects caused by a non-linear output relative to
that input, or interacting effects with other inputs, are
characterized by the standard deviation of the elemen-
tary effects, r.

For this study, it is of interest to quantitatively
compare the output probability distributions of interest
for the various grain attachment models. To do so, the
Bhattacharyya coefficient[38,39] will be used to describe
the amount of overlap between two output distribu-
tions. For two continuous distributions p and q, both
with respect to an output variable x, it is defined as:

BC p; qð Þ ¼
Z1

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p xð Þq xð Þ

p
dx: ½17�

The coefficient varies from zero to one, in which a
value of one indicates two identical distributions, and a
value of zero two distributions that do not overlap at all.
The output distributions in the present study are not
continuous since they consist of discrete bins of data.
Additionally, these bins are not of equal size or location
between different distributions. As a result, Eq. [17] is
calculated by numerical integration over the two distri-
butions, using a step size much smaller than either bin
size and representing each bin as a constant value over
its width.

This discussion of uncertainty quantification so far
applies generally to any output of interest. To make the
analysis specific to macrosegregation, it is necessary to
identify an output metric that describes the composition
field. Previous work[40] showed that a three-parameter
Weibull distribution effectively characterizes the final
composition distribution within the domain when
weighted by volume. The volume distribution function
for the composition C of a particular alloying element is
given by:

VDFw xð Þ ¼ a
b

C� c
b

� �a�1

exp � C� c
b

� �a� �
; ½18�

where a is the shape parameter, b the scale parameter,
and c the threshold value. The deviation, rW, normal-
ized by the nominal composition of the alloying ele-
ment in question represents the spread of the volume
distribution, and therefore, characterizes the magni-
tude of the overall macrosegregation. The normalized
Weibull deviation, W, is defined as:

W ¼ rW
C0

¼ b
C0

C 1þ 2

a

� �
� C2 1þ 1

a

� �� �1=2
: ½19�

where C0 is the nominal composition of the alloying
element in question and C is the gamma function. To
understand the effect of input uncertainty on
macrosegregation, the normalized Weibull deviation

will be used as the primary model output. For a given
set of input uncertainties, the three grain attachment
models will be compared using the sensitivities of the
normalized Weibull deviation to each of the inputs,
and the output PDFs will be compared using the
Bhattacharyya coefficient.

E. Example System

A simple static casting will be used as a basis for
comparison of the attachment models. AA7050, an
industrially relevant alloy, was used for the simulations,
the properties of which are given in Table I. Equilibrium
thermodynamics are assumed. While the alloy contains
many alloying elements, only the transport of Zn, Cu,
and Mg is explicitly modeled. The fraction solid and
solid and liquid compositions for each cell are calculated
using an equation for the liquidus surface and partition
coefficient for each element. These thermodynamic
parameters were obtained from Thermo-calcTM using
the TCAL1 database.[41] The relevant partition coeffi-
cients are given in Table I, and the liquidus surface is
given by:

Tliq ¼ 933:15þ 0:63� 174:16CZn
l � 271:55CCu

l

� 494:68CMg
l

½20�

where the temperature is in K, the first term is the
melting point of pure aluminum, the second accounts
for elemental additions not calculated by the model,
and the three remaining terms correspond to weight
fractions of Zn, Cu, and Mg, respectively.
The domain in question (Figure 1) is axisymmetric,

with heat transfer coefficient boundary conditions
applied at the bottom and outer radius, with the top
assumed insulated and symmetry applied at the center-
line. The height and radius are both 15cm, the initial
temperature is 950 K (677 �C), with an ambient tem-
perature of 300 K (27 �C). The nominal packing frac-
tion value used for this case is gs,p = 0.15. For the
average velocity method, in which the packing fraction
varies throughout the domain, previous work,[26] in
developing Eq. [14], showed that a critical fraction solid
of gs,c = 0.175 yields an average packing fraction of
0.15.

III. RESULTS AND DISCUSSION

A. Comparison of Grain Attachment Models

Before performing any uncertainty quantification, a
brief comparison of the effects of the three attachment
models on the macrosegregation patterns will be pre-
sented for the nominal values of the system parameters
given in Table I and Figure 1. Figure 2 shows the Zn
composition field, streamlines, and packed interface for
two intermediate times and the final composition field
for the three attachment models, all with a uniform
80 9 80 numerical grid. A weighting exponent n ¼ 1
and a packing range of Dgs ¼ 0:05 are used for the
continuum model. In all cases, because the partition
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coefficient for Zn is less than one (true for the three main
alloying elements), the first solid to form at the outer
radius is depleted. Negative thermosolutal buoyancy at
the wall drives a flow cell in a clockwise direction. The
magnitude of the flow is similar for the CPF and AVM
schemes, but slightly slower for the continuum model
due to a gradual introduction of the permeability term
at solid fractions below gs,c. As the rigid solid advances
upwards and to the left, the flow carries enriched liquid
from the rigid interface into the bulk, replaced by liquid
nearer the nominal composition. Solid is also advected
in the flow cell, but the downward buoyancy of the
dense solid particles resists the upward flow at the
centerline, resulting in a depleted region caused by
particle settling. This solid motion displaces an associ-
ated amount of enriched liquid, which eventually
collects at the top of the domain and becomes the last
solid to freeze.

The general trends in the final composition fields are
largely the same for the three attachment models. The
largest differences are in the channel segregates that tend
to form near the outer radius, as reported by Plotkowski
and Krane[26,27] and found to be numerical artifacts of

the treatment of the transition from free-floating to rigid
solid. These channels are most severe for the CPF
model. They are suppressed in the velocity-based model
for this particular case, but have been found to reappear
even for small changes in the input parameters, such as
the boundary conditions. The continuum model largely
suppresses these artifacts for a wide range of conditions
due to the improved smoothness of the interface
between the slurry and rigid solid regions.[27] The
discrete models (CPF and AVM) force this boundary
to lie on the faces of the control volumes and to advance
one cell at a time, while the continuum model interpo-
lates the interface, allowing it to move smoothly through
the domain.
Another major difference between the three attach-

ment models is the dependence of the predicted
macrosegregation on the size of the numerical grid
(Figure 3). The channel segregates in the CPF model
appear regardless of the grid size and are always spaced
on the length scale of the grid. The AVM model
suppresses these channels for intermediate length scales
(as shown in Figure 2) but they appear in the coarser
grid and, to a lesser extent, in the finer grid as well.
Alternatively, the shape of the composition field does
not change dramatically with grid size for the contin-
uum model, but rather, the features are better resolved
as the grid is refined. Fezi et al.[40] showed that the grid
dependence of solidification simulations can be quanti-
fied using the normalized Weibull deviation (Figure 4)
which is a measure of the distribution of the composi-
tion in the ingot. This analysis quantifies the observa-
tions from the contour plots in Figure 3 in that the
continuum model shows less dependence on grid size
than either of the discrete models. The velocity-based
model in particular shows a strange relationship
between the number of cells and the normalized Weibull
deviation caused by the changing appearance of the
channel segregates. As a compromise between accuracy
and computational expense, an 80 9 80 numerical grid
was used for all subsequent simulations.

B. Initial Uncertainty Quantification

In order to use PUQ to compare the grain attachment
models, some decisions must be made on the inputs of
interest and their probability distributions. Because the

Table I. Properties of AA7050 Taken from Refs. [29], [41–44]

Property Value Property Value

Initial comp. Zn, CZn
0 (wt. fr.) 0.062 density, q (kg/m3) 2515

Initial comp. Cu, CCu
0 (wt. fr.) 0.023 density difference, Dq (kg/m3) 229.1

Initial comp. Mg, CMg
0 (wt. fr.) 0.0225 specific heat, c (J/kg K) 1141

Liq. solutal expansion coef. Zn, bZnS;l �0.65 thermal cond. solid, ks (W/m K) 149.4
Liq. solutal expansion coef. Cu,bCuS;l �0.75 thermal cond. liquid, kl (W/m-K) 83.2
Liq. solutal expansion coef. Mg,bMg

S;l 0.53 latent heat, Lf (J/kg) 3.76x105

Sol. solutal expansion coef. Zn,bZnS;s �1.43 liquid mass diffusivity, Dl (m
2/s) 8.0x10�9

Sol. solutal expansion coef. Cu,bCuS;s �2.01 liquid dynamic viscosity, ll (kg/m s) 1.3x10�3

Sol. solutal expansion coef. Mg,bMg
S;s 0.31 kZn 0.39

Liq. thermal expansion coef., bT;l (K
�1) 2.29 9 10�5 kCu 0.09

Sol. thermal expansion coef., bT;s (K
�1) 1.5 9 10�5 kMg 0.29

Fig. 1—System schematic.
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differences between the grain attachment models are the
main concern of this study, inputs that directly relate to
grain attachment are of the greatest interest. However,
differences between the grain attachment models are
negligible if uncertainties in the material properties and
boundary conditions affect the result much more than
the attachment models do. Unfortunately, the solidifi-
cation model is too computationally expensive to
consider a large number of parameters at once due to
an increase in the number data points required by the
sparse grid algorithm. Therefore, the best approach to is
to first use a low level uncertainty analysis to determine
the importance of the grain attachment inputs relative to
material properties and boundary conditions, and then

to reduce the number of inputs in order to perform
higher level analyses.
Normal distributions were chosen to represent the

uncertainties of all of the inputs because they only
require two parameters (mean and standard deviation)
and using mean values equal to those given in Table I
and Figure 1 means that the most probable outcomes
are those shown in Figure 2. The inputs that will be
considered for level one analysis and the parameters of
their probability distributions are given in Table I,
divided into categories for grain attachment, material
properties, and boundary conditions. The primary
inputs that affect solid motion and grain attachment
are the packing fraction, the average particle size, and

Fig. 2—Zn compositions fields at intermediate times during the process for the discrete and continuous packing models. The dark line shows the
interpolated P=0.5 interface, and the lighter lines are streamlines varying from 0.02 to 0.22 kg/s in 0.02 kg/s increments. Simulations were per-
formed with an 80 9 80 numerical grid.
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the dendrite arm spacing. As emphasized in Sec-
tion II–3, these parameters are assumed uniform and
constant throughout the domain, but in reality, local
difference in cooling conditions, composition, and the
number and size of grain refiner particles, may cause
them to vary widely. Therefore, fairly large standard
deviations were selected for these input distributions
(Table II). By comparison, the material properties are
reasonably well understood. The epistemic uncertainty
in this case comes from the assumption that they are not
functions of temperature and phase. Therefore, a
somewhat arbitrary choice was made to give these
inputs standard deviations equal to five percent of the
mean value. Similar uncertainties were applied to the
boundary conditions as well. The probability distribu-
tions for all input parameters are summarized in

Table II. For the purposes of this analysis, the weighting
range and weighting exponent for the continuum model
are assumed constant, where n ¼ 1 and Dgs ¼ 0:05.
Due to the computational expense of using so many

input uncertainty distributions, only a level one analysis
was used, corresponding to linear response functions
with respect to each input. The resulting sensitivities for
each attachment model are shown in Figure 5 where the
height of the bars represent the mean elementary effect
of the normalized Weibull deviation for the final Zn
composition field with respect to a given input, and the
error bars indicate the standard deviation of the
elementary effects. Based on these results for all three
attachment schemes, the sensitivity of the simulations to
parameters that directly influence free-floating solid and
grain attachment are comparable or much greater than

Fig. 3—Final Zn composition field for the three grain attachment models at various grid sizes.
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to the material properties and boundary conditions. For
subsequent analysis, in order to reduce the number of
model evaluations for higher order response surfaces,
the uncertainty in material properties and boundary
conditions will be neglected, and only the input uncer-
tainties for the packing fraction (gs;c), particle size (d),
and dendrite arm spacing (k) will be used. Note that
while the boundary condition at the right wall does
contribute uncertainty to the macrosegregation predic-
tions (though generally less than the grain attachment
parameters), this is not a parameter subject to changes
through refinement in the model formulation. So while it
is acknowledged as an important factor to understand, it
is neglected here to simplify the interpretation of the
following results.

C. Uncertainty Quantification in Discrete Attachment
Models

The first comparison of interest is between the two
discrete grain attachment models. The purpose of the

AVM scheme proposed by Vusanovic and Krane[25] was
to include the effect of the local velocity field on the
likelihood of free-floating grains attaching to the rigid
solid interface. However, it is of interest to determine
how much of a difference the inclusion of this effect
actually has on the macrosegregation prediction. If the
solutions are very different, then those which more
accurately reflect the physical system must be deter-
mined. If they are largely the same (for some set of input
uncertainties), then one model might be selected over
another for other considerations, such as numerical
stability or computational expense.
By reducing the number of inputs to only those

directly affecting the grain attachment model (packing
fraction, particle size, and dendrite arm spacing), the
uncertainty analysis was able to be increased to level
three, significantly reducing the error in the fit of the
response surface to the model data points collected from
the sparse grid. The resulting probability distribution
functions for the normalized Weibull deviation of the
final Zn composition fields are shown in Figure 6. The
two models have slightly different mean values
(10.5 9 10�3 for the CPF model and 8.94 9 10�3 wt.
fr. Zn for the AVM) but mostly overlap. The Bhat-
tacharyya coefficient for these two distributions is 0.871.
Considering that these two attachment models yield

substantially the same results for the given input
uncertainties, an interesting question is with what level
of certainty must these inputs be known in order for the
differences in the attachment models to become signif-
icant? To address this question, the standard deviations
of the input distributions were multiplied by factors less
than one, and the overlap in the output distributions
was monitored as the input uncertainties were
decreased. The Bhattacharyya coefficient (measuring
the amount of overlap between the distributions) as a
function of the assumed standard deviation multiplier is
shown in Figure 7 along with examples of the output
PDFs at selected points. As expected, when the input
uncertainties are decreased, the overlap between the
output PDFs also decreases. When the input standard
deviations reach 10 pct of the original values given in

Fig. 4—Grid dependence of the normalized Weibull deviation for
the final Zn composition field for the three grain attachment models.

Table II. Input Probability Distributions Parameters

Variable Type Input Variable

Distribution Parameters

Mean Std. Dev.

Attachment model gs,c (CPF and Cont.) 0.15 0.0375
gs,c (AVM) 0.175 0.04375
d (lm) 30 5
k (lm) 50 10

Material properties ks (W/m K) 149.4 7.47
kl (W/m K) 83.2 4.16
cp (J/kg K) 1141 57.05
q (kg/m3) 2515 125.75
Dq (kg/m3) �229.1 11.45
l (Pa-s) 1.3 9 10�35 6.5 9 10�5

Lf (J/kg) 3.75 9 105 1.88 9 104

bT (K�1) 1.5 9 10�4 8 9 10�6

Boundary conditions hR (W/m2) 1000 50
hB (W/m2) 500 25
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Table II, there is no overlap between the output distri-
butions. The consequence of this analysis is that, if the
uncertainty in the outputs does not achieve a high
amount of precision so that they do not significantly
overlap, then they may be said to produce essentially the
same results. In this case, selection of one model over the
other can be based on concerns such as ease of
implementation or numerical efficiency, rather than on
physical accuracy. However, if this is not the case and the
two models are significantly different, then one must be
selected over another based on their physical relevance.

A more traditional manner of comparing the results
of the two discrete attachment models is by comparing
the means and standard deviations of the output
distributions as a function of the input deviation
multiplier (Figure 8). As the level of input uncertainty
is reduced, the means of the models (particularly the
AVM scheme) decrease slightly, but the standard
deviations become much smaller as the input uncer-
tainty is reduced. This manner of representing the data

is a convenient way to compare to experiments that have
their own set of uncertainty ranges.
There are essentially three different sources of the output

uncertainty shown in Figures 6 through 8. The first is the
lack of knowledge of the appropriate values of the critical
solid fraction, dendrite arm spacing, and particle size. This
source of error is significant, but reducible through
improved experimentation. Second, any experimentation
used to determine these inputs contains irreducible error in
the limitations of the measurement technique, generally
referred to as aleatoric uncertainty.
The last type of error is related to the model

limitations in that both the CPF and AVM schemes
assume that the these inputs are constant and uniform
over the domain. However, the critical fraction solid and
dendrite arm spacing are related to the grain morphol-
ogy which is subsequently a function of the local cooling
conditions, solute field, and details of the grain refiner
additions. The particle size is a representative average,
but in reality, the free-floating grains nucleate at some
size and then grow over time, resulting in a time varying
distribution of sizes over the domain. If these spatial
distributions are well known before hand, then it is a
simple extension of the model to allow these inputs to
vary over the domain. However, using new sub-models
to predict these distributions represent a significant
effort and will introduce new input parameters that must
then be determined in some way. The effort required to
add new physical phenomena to the model requires the
modeler to ask whether it will really improve the
macrosegregation predictions. Thankfully, uncertainty
quantification allows for insight into this question
before expending the effort. If further experiments will
allow for better determination of the spatial variation
among these parameters for a particular situation, then
using these distributions as input uncertainties may
reduce the level of output uncertainty. If that level is still
too high, then this result may be motivation to add new
physics to the model. If the output uncertainty is within

Fig. 5—Sensitivities from level 1 analysis of the three attachment schemes for the input distributions given in Table II.

Fig. 6—Level 3 analysis of the CPF and AVM models for input ran-
ges in the attachment model parameters. The RMSE for the CPF
model is 5.58 pct and for the AVM model is 5.13 pct.
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a tolerable limit, then the model may be used in its
present condition.

D. Comparison of Continuum and Discrete Attachment
Models

The other model comparison of interest is between the
CPF and continuum attachment schemes. The primary

question to be answered here is how the continuum
model changes the macrosegregation predictions relative
to the related discrete model. (In this case, the best
comparison is not with the AVM scheme because the
continuum model does not include the effect of the local
velocity field.) The intention of the continuum attach-
ment model is to reduce the occurrence of numerical
artifacts that appear in the discrete models due to the
effect of inaccurate geometric representations of the
rigid solid interface on the local velocity field and solute
advection (Figures 2 and 3). In doing so, however, the
continuum model may have also significantly changed
the overall macrosegregation prediction. If this is in fact
the case, then experimental validation data are required
to show that the continuum model is more physically
accurate. However, if the results of the two models are
largely similar, then the continuum model may be used
freely in place of the CPF model and the benefits of
limiting numerical artifacts gained.
Another concern, however, is that there is uncertainty

in the model parameters that were introduced with the
continuum scheme that do not apply to the discrete
attachment models, namely the weighting exponent and
packing range. Two interesting problems arise from this
complication. The first is that, in the absence of robust
experimental validation data (to which those parameter
might be calibrated), it is of interest to determine what
input values yield the closest predictions to the CPF

Fig. 7—The Bhattacharyya coefficient comparing the CPF and AVM schemes as a function of the width of the input uncertainty distributions
(going from the deviations given in Table II toward zero), with insets showing the output probability distribution function for the normalized
Weibull deviation for the final Zn composition fields for three different input uncertainty levels.

Fig. 8—The mean and standard deviation of the normalized Weibull
deviation for the CPF and AVM attachment models at various
uncertainty levels.
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model, allowing a fair comparison of the effects of the
other various inputs. The second is the determination of
the sensitivity of the model to these new input param-
eters. If the model is very sensitive to them, then their
calibration to experimental results (or the development
of a new packing scheme) becomes a priority. If,
however, the model is not overly sensitive to these
parameters, then less precise knowledge of their values is
acceptable.

The first task is to calibrate the new parameters in the
continuum model by determining the values of the

weighting exponent and packing range that yield output
distributions with the greatest similarity to the CPF
model. This goal can be accomplished by holding one of
the inputs constant while the other is varied (though
with zero input uncertainty) and then comparing the
output distribution functions against the CPF model.
First, the weighting exponent is varied while the
weighting range is held constant (Dgs ¼ 0:05). An
example of three resulting distributions is shown in
Figure 9, compared against the CPF model. For small
values of the weighting exponent, the permeability term

Fig. 9—Examples of continuum model output distributions for the normalized Weibull deviation for Zn for three different weighting exponent
values, compared to the output distribution for the CPF model.

Fig. 10—Comparison of the output normalized Weibull deviation distributions for the continuum model for various values of the weighting
exponent (n) and a constant weighting range (0.05) to the CPF model. (a) Mean normalized Weibull deviations for the continuum model with
error bars for the standard deviation against the mean CPF value (solid line) and plus and minus one deviation (dotted lines). (b) The
Bhattacharyya coefficient between each output distribution from the continuum model to the CPF model.

1648—VOLUME 48B, JUNE 2017 METALLURGICAL AND MATERIALS TRANSACTIONS B



in the momentum equations is introduced quickly once
the fraction solid of a cell crosses the threshold into the
weighting range. The effect of the permeability term is to
damp the flow at the edge of the rigid mush, effectively
reducing the relative motion of solid and liquid of
differing compositions and reducing the overall
macrosegregation. High values of the weighting

exponent introduce the permeability term slowly, tend-
ing to allow more flow at the rigid interface and
increasing the macrosegregation. These trends are
reflected in the distributions as shown in Figure 9 which
translate to higher Weibull deviations with larger
exponent values, while generally remaining similar in
shape and width.
The effect of the weighting exponent relative to the

CPF model can also be determined by plotting the mean
and standard deviation of the Weibull deviation distri-
butions against that of the CPF model and by calculat-
ing the Bhattacharyya coefficient between the
continuum Weibull deviation distributions and the
output of the CPF model. The results of both
approaches are shown in Figure 10. Again, as the
weighting exponent is increased, the mean of the
Weibull deviation increases as well, although the stan-
dard deviation of the distribution stays relatively con-
stant regardless of the exponent value. Figure 10(a)
shows that several weighting exponents, ranging from
about 1.4 to 1.7, give close agreement with the CPF
model. The calculation of the Bhattacharyya coefficient
(Figure 10(b)) agrees, and suggests that the best fit to
the CPF model is for an exponent value of 1.5
(BC = 0.995).
Similarly, the weighting exponent was then held

constant (n = 1.5) and the weighting range was varied.
The comparisons of the resulting Weibull deviation
distributions are shown in Figure 11. It is obvious from
these results that changes in the weighting range have a
much smaller effect on the overall macrosegregation
distribution than the weighting exponent does. For all
values of the weighting range that were tested, the
Bhattacharyya coefficient is above 0.94 (Figure 11(b)).
The best match with the CPF model is when Dgs ¼ 0:05.
Now that the best mean values for the new inputs to

the continuum attachment model have been determined,
a better comparison of it to the discrete CPF model may

Fig. 11—Comparison of the output normalized Weibull deviation distributions for the continuum model for various values of the weighting
range (Dgs) and a constant weighting exponent (1.5) to the CPF model. (a) Mean normalized Weibull deviations for the continuum model with
error bars for the standard deviation against the mean CPF value (solid line) and plus and minus one deviation (dotted lines). (b) The
Bhattacharyya coefficient between each output distribution from the continuum model to the CPF model.

Table III. Input Uncertainties Used to Determine the
Sensitivity of the Continuum Attachment Model to the New

Model Parameters

Parameter Mean Deviation

gs,c 0.15 0.0375
d (lm) 30 5
k (lm) 50 10
n 1.5 0.25
Dgs 0.05 0.01

Fig. 12—Comparison of the sensitivities of the normalized Weibull
deviation for the final Zn composition field in the CPF and contin-
uum grain attachment models.
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be made. Clearly, if these inputs are held constant, the
output of the continuum model is essentially identical to
the discrete model. However, if the continuum model is
overly sensitive to these parameters, any uncertainty in
their value has the potential to negate any benefit
derived from its differences with the discrete models. To
test this, the input uncertainties shown in Table III are
implemented into the continuum model. While the
resulting sensitivities (Figure 12) are not completely
negligible, they are smaller than the sensitivities of the
model to the input parameters that are shared with the
discrete models. These results show that the continuum
attachment model may be implemented in place of a
discrete model in order to reduce numerical artifacts and
improve convergence without fear of significantly alter-
ing the model predictions as a function of the uncer-
tainty in the values of the new parameters.

E. Guidance for Experimental Validation and Model
Development

The results in Sections III.3 and III.4 may be used to
guide future experimental efforts and model develop-
ment. The sensitivity analysis shown in Figure 5 demon-
strates the importance of the grain attachment models
and the parameters that govern them. One method of
refining the model predictions might be to sacrifice some
computational expense in order to break down the
assumptions made here about the uniformity of the
grain size distribution, the packing fraction, and the
dendrite arm spacing, and to replace these with physics
based sub-models. In this case, however, similar to the
continuum model compared to the CPF model, new
model parameters are necessarily introduced. Therefore,
a new uncertainty analysis must be performed in order
to understand the impact of these new parameters.

Model development should correspond to experimen-
tal observations, the primary purpose of which is to
obtain high-fidelity validation data. For the specific case
of macrosegregation predictions, the best approach is
composition measurements for simplified laboratory
scale ingots including sufficient repetition of experiments
in order to establish error bounds. Using a simple
laboratory case (a simple static sand casting for exam-
ple), it should also be possible to carefully measure the
parameters required for input to the model. For
example, inverse heat conduction methods[45] may be
used to approximate thermal boundary conditions from
thermocouple data, and post-mortem metallography
may be used to determine the dendrite arm spacing and
an upper limit for the free-floating grain size. Ideally,
these experiments would also include more complex
analyses of the dendrite coalescence point which
requires either additional thermal measurements within
the melt[46,47] or separate rheological measure-
ments[48–50] for the alloy in question.

IV. CONCLUSIONS

This study used the PUQ framework to quantify the
epistemic uncertainty in macrosegregation predictions

produced by the use of three different grain attachment
schemes in a model for equiaxed solidification. The three
models, namely, the constant packing fraction (CPF),
average velocity method (AVM), and the continuum
method, were successfully compared for a base level of
input uncertainties in those parameters that most
directly affect the attachment of free-floating grains
and the resulting macrosegregation (the critical fraction
solid, free-floating particle size, and dendrite arm
spacing). The macrosegregation was characterized using
the deviation of a three-parameter Weibull distribution,
normalized by the nominal composition, and the output
of the uncertainty quantification was a distribution of
these values. The Bhattacharyya coefficient was used as
a metric for comparing the overlap between distribu-
tions obtained from different attachment schemes. It
was found that the inclusion of the velocity field in the
AVM did not significantly impact the macrosegregation
predictions relative to the CPF model. For this effect to
become significant, experimental work is required to
precisely define these input parameters. The continuum
model was also found to produce largely similar results
to the CPF model given appropriate calibration. More
importantly, the introduction of new model parameters
did not greatly affect the output uncertainty in the
macrosegregation predictions. Based on these results,
the continuum attachment model is recommended due
to its decreased susceptibility to numerical artifacts.
A larger goal of this work was to provide an example

for how uncertainty quantification can be used for
comparison among various models and between models
and experiments within the solidification community.
The present grain attachment models primarily function
as a case study for how this type of analysis may be used
to evaluate the effect of model development and enable
quantitative comparisons between modeling approaches
as well as to experimental data, and weigh the constant
tradeoff between computational expense and accuracy.
Hopefully, future research will use these or similar
techniques to target experimental and modeling efforts
by fully understanding the impact of specific inputs.
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